
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

A Study of a Mechanism for Controlling
Multiprogrammed Memory in an

Interactive System

ALEXANDRE BRANDWAJN AND JEAN-ALAIN HERNANDEZ

Abstract-This paper deals with the following mechanism for con-
trolling the multiprogramming set in a demand paging system: processes
are dynamically divided into several categories according to the num-
ber of page faults generated during their residence in main memory.
A process is admitted into the multiprogramming set only if there is
enough space free in the main memory to contain the number of pages
corresponding to the current category of the process. Using a queueing
network model of an interactive system with such a control mechanism
we study the effectivenesss of the control considered, and, more par-
ticularly, its ability to partition the memory space according to the
locality of processes.

Index Terms-Classes of processes, demand paging, hybrid analytical-
simulation solution method, interactive system, multiprogrammed
memory, process admission and memory allocation, queueing network
models.

I. INTRODUCTION
S INCE the experimental studies of the dynamic program

behavior [1], and the introduction of the notion of lo-
cality and of the working set model [2], a number of system
designers have attempted to include these results in their mem-
ory management algorithms (e.g., [3]). An interesting attempt
to dynamically partition the memory space according to the
observed behavior of processes was implemented in the inter-
active virtual memory system ESOPE [4].
The algorithm, apparently inspired from the EMAS system

[5], is as follows (see Fig. 1): processes are divided into cate-
gories, and a process is admitted into the multiprogramming
set (i.e., allowed to share real memory and to compete for
other system resources) only if there is enough space free in
main memory to contain the number of pages corresponding
to the current category of the process. This number of pages
are reserved for the process, but the actual fetch takes place
on a page on-demand basis. The process category is adjusted,
basically, in two instances.
1) Upon Command Completion: The category is reduced

by one (if possible), if the number of pages fetched (i.e., of
page faults generated) is smaller than the corresponding limit
for the immediately preceding (i.e., lower) category.
2) Upon Category Transgression: If a process attempts to

Manuscript received June 1, 1979.
A. Brandwajn is with the Amdahl Corporation, Sunnyvale, CA

94086.
J.-A. Hernandez is with the Ecole Nationale Superieure des Telecom-

munications, Paris, France.

access more pages than reserved for it according to its current
category, the process is ejected from the multiprogramming
set. The memory pages that have been allocated to it are
freed, and its category is increased by one (if possible). The
process is then placed at the end of the admission queue.
A new process entering the system is assigned a category on

an arbitrary basis.
The intuitive motivation behind this algorithm seems to be

the following. The current category of a process is used as
an estimate of its working set size. In order to prevent thrash-
ing [6], processes are admitted into main memory only if the
latter can contain their estimated "working sets." Note that
this algorithm not only controls the partitioning of the mem-
ory space (and thus the multiprogramming level) but also auto-
matically ensures replacement of pages (when a process leaves
the multiprogramming set). Note also that it reacts to instan-
taneous changes in program behavior, and thus introduces a
strong coupling between the system execution and control
functions. This hinders the system's decomposability [7].
In summary, the algorithm controls the multiprogramming

set via dynamic memory partitioning. The latter depends on
an on-line process classification based on the virtual time
paging behavior of a process. The number and limits of the
categories are the parameters of the algorithm. Therefore, it is
important to study the system throughput (or, equivalently,
the mean response time) as a function of the category assign-
ment, and its dependence on system and program behavior
parameters. It is also important to study the effectiveness of
the virtual time on-line classification of processes. (The latter
point is suggested by the obvious result of recent modeling
studies (see, e.g., [8]) which indicates that the number of
pages needed by a process "to be executed efficiently" [9] is
not an absolute process characteristic but depends strongly on,
e.g., the average service time of the secondary memory de-
vice). These questions are addressed in this paper.
The problem of multiprogrammed memory management,

and, more particularly, that of controlling the level of multi-
programming has received considerable attention in the
literature, e.g., [10]-[19] are but a few recent references.
The work by Schoute [17] seems the closest to this paper.
Our work differs from [17] in that we explicitly take into
account the effect of program loading [20], [21] on the
performance of the admission mechanism, i.e., on the current
category of processes. This allows us to study the influence

0098-5589/81/0500-0321$00.75 C 1981 IEEE

321

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

I0

TERMINALS

memory sidence time out

tr1
'L {X :}1 I 1-1

FIFO multiprogramming
adImission qmieuie s e t

command completicml

2(0 40 60 8() 100 m miemory space (pages)

Fig. 2. Examples of lifetime curves.

Fig. 1. Framework for algorithm considered.

of program behavior on system performance, and, in particular
to consider the case where the processes belong to different
classes as regards their locality and total compute time.
Let us now define the scope of our paper. We shall restrict

our attention to a situation where only interactive processes
are present in the system (no background batch jobs) and
where the number of logged-in (active) terminals is constant
over periods of time long enough for a stationary analysis to
be valid. The arbitrary initial category assignment will thus
be neglected and only the long-run behavior of the algorithm
under consideration will be studied. It may be noted that in
the algorithm as implemented in the ESOPE system, processes

are ejected from the multiprogramming set if their residence
time in real memory exceeds a given limit. We concentrate
on the paging behavior of processes and, therefore, neglect
this mechanism.
To start with, we shall assume that all the users are statis-

tically identical and independent. Their paging behavior will
be modeled by the lifetime function [1] which relates the
average process execution time between two successive page
faults e(m), to the amount of memory m, allocated to the
process. We shall use the two-parameters fit proposed in [9],

e(m) = 2b/(l + (d/m)2), (1.1)

which accounts for the saturation effect at larger m. Fig. 2
shows examples of the life-time function for several sets of
parameters b and d. I/O activity other than caused by paging,
and most overheads, will be neglected.
The next section is devoted to the description of a queueing

model of the system under study. In Section III the numerical
results obtained with a single class of processes are discussed.
Section IV is devoted to the numerical results with several
classes of processes.

II. A QUEUEING NETWORK MODEL
The queueing network model we shall use to study the prop-

erties of the algorithm under consideration is represented in
Fig. 3. The behavior of a user is modeled by a sequence of
think times followed by a generation of a command after
which the user remains inactive until the system response [22].
(A somewhat more elaborate model of user interaction has
been proposed recently in [23].) The user think time is as-

sumed to be an exponentially distributed random variable with
mean 1/X; the set of terminals is thus represented by an expo-

SM

Fig. 3. A queueing network model.

nential server with service rate nc X, nc being the current num-

ber of active terminals. We assume that there are q categories
in the system, and we denote by m1 the page number limit for
category j, j = 1, - - *, q, where m1 <iM2 <'-*Mq-i <Mq-
A command generated by a user (a process) enters a FIFO
admission queue (AQ). According to the admission mecha-
nism described, if the process at the front of AQ is of cate-
gory j, it will be admitted only if there are at least m1 mem-

ory pages available.
The multiprogramming set is represented by a CPU and a

secondary memory (SM) device with their queues of pro-

cesses. We denote by v(m) the page fault rate of a process

which has m pages present in real memory, and we let

{l/e(m), m=l,. ,Mi
VI(m) =

1/w, m=0
(2.1)

where e(m) is given by (1.1), and co is the average system
overhead time per process admission into the multiprogram-
ming set. A process having requested a page is either placed
in the SM queue if m < m1, or ejected if m = mi. The mean

service time of the SM is l/u1, and it is assumed to account
for a possible preliminary saving of a written-onto memory
page before the actual fetch of the page requested. We assume

that the SM service time is an exponentially distributed ran-

dom variable, and that the SM queueing discipline is FCFS.
In the case of ejection, the memory pages belonging to the pro-

cess are freed, and the process category is adjusted (i := j + 1,
if i <q). The process is then placed in AQ, and, once ad-
mitted, will have to reacquire one by one its pages.

The service discipline at the CPU is assumed to be pro-

cessor sharing. The CPU service time for a process is as-

sumed to be an exponentially distributed random variable
with rate

new CommaTmd

322

BRANDWAJN AND HERNANDEZ: MECHANISM FOR CONTROLLING MULTIPROGRAMMED MEMORY

[vlO), ifm=0
v(m) =

0, i

,vi(m)+vo,. m=l, -,mj
(2.2)

for a process of category j with m pages in memory. vo de-
notes the rate of command completions. We let

Fig. 4. Multiprogramming set submodel.

where c is the mean total CPU time per command.
If a process of category j has no more than m71 pages in

memory at the moment of completion its category is adjusted
(j:=j- 1,ifj>l).
At this point, we shall use the mean system response time W

as a measure of overall system performance and of the utiliza-
tion of the CPU system resource (using Little's formula
[241, one can easily show that W = cN/B - 1/)X, where N is
the total number of terminals and B denotes user mode CPU
utilization).
Note that despite a number of assumptions aimed at the

tractability of the model its solution is far from obvious. A
direct brute-force attack of the model balance equations
would be difficult in practice because a very detailed state
description is needed. The latter seems particularly inadequate
with respect to the performance measures defined.
We summarize below the four main steps of the approximate

hybrid solution method we have used. The interested reader
may refer to the Appendix and [32] for details.
Step 1: We analyze the behavior of a user in its virtual (i.e.,

execution) time so as to obtain, for an active process of cate-
goryj,J=.,*- ,q:

f1 the rate of page faults;
w; the rate of category transgressions;
z; the rate of command completions;
sj the probability that process category will decrease upon

command completion.

This is similar to the approach used in [20], [21], and yields
a simple analytical solution (see also the Appendix).
Step 2: We use the average page fault rates fi in a simple

model of the multiprogramming set (see Fig. 4) to compute
A,(n), the CPU utilizations for processes of each category
under a constant load of n = (n ,n), where ni is the
number of category j processes in the multiprogramming
set. Due to the assumptions on service time distribution and
on queueing disciplines, the analytical solution of this model
may be easily obtained [25].
Step 3: We use the Ai(n), w1, z1, and sj in a queueing model

of the multiprogramming set control. The model (see Fig. 5)
reflects only events pertaining to the operation of the admis-
sion control. Following the "short-circuit" approach [28],
[33], it is studied under constant load of processes in order
to obtain u (1), the rate of command completions with a

total of I processes (waiting and admitted).
The multiprogramming set is represented by an exponential

queue. Its current state is described by n = (n , , nq), the
vector of the numbers of processes of each category currently
in the multiprogramming set. The rates of departures from
the latter are set to be the products of A,(n) by the corre-

sponding rate obtained in Step 1, e.g., the rate of category

command

comple tion
k n Ai(n)}

AQ multiprogramming
set processes

Fig. 5. Multiprogramming control model.

transgressions for processes of category j is A,(n) w1. The
state of the admission queue is described by k, the vector of
process categories in FIFO order.
The model can be solved using discrete event simulation [26].

A confidence interval for the result may be derived applying
the regenerative simulation method [27], so that we obtain
two numbers u'(l) and u"(l) which are the bounds of the con-
fidence interval for the rate of command completions with
a total of I processes.
Step 4: We analyze the system behavior at a highly aggre-

gate level via the queueing model of Fig. 6. The terminals and
the system are represented by exponential servers with service
rates n X and u (1), respectively (nc + I = N, the total number
of terminals). The analytical solution of this model is well
known and allows an easy computation of the average number
of processes in the system, and, hence, via Little's formula
[24], of-the mean system response time. In our case, since
u(l) is given in the form of an interval, interval arithmetic
would have to be used to finally obtain W' and W", the two
bounds of the confidence interval for the mean system re-

sponse time. Note that we have used a decomposition tech-
nique whereby one computes approximate values for condi-
tional probabilities by analyzing subnetworks under constant
(full) load conditions [28], [29]. As a whole, our approach
is similar to that discussed in [30], in that at each step in the
solution of the decomposed problem, the solution method
which seems the most appropriate (analytical, discrete-event
simulation,. . .) is used. The next section is devoted to nu-
merical results obtained from our model.

III. NUMERICAL RESULTS WITH A SINGLE CLASS
OF PROCESSES

Since the system under consideration is quite complex, and
both the model elaborated and its solution involve a number
of simplifications and approximations, it is important to gain
some confidence in the accuracy of the results before using
them to draw conclusions. Therefore, we have tested our
model using results of measurements of the ESOPE system
under simulated load [311. A few modifications had to be
introduced in our model to reflect the actual operation of the

Vo = 1/c (2.3)

Ppage fault

n=(nl, ...n)

323

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

TABLE I

SYS'IEM

Fig. 6. Aggregate system model.

ESOPE system, and to be able to use measurement results.
Mainly, in ESOPE not all page faults result in a page fetch.
Some of the pages deallocated at the moment of process ejec-
tion, and requested again during subsequent residence periods,
may still be present in main memory. Such pages are simply
"recovered" by table update. The number of pages actually
fetched has been measured. The ratio of the latter number
of the total number of pages faults will be denoted by 1 - 13,

so that is the relative frequency of pages recoveries. Hence,
the actual page fetch rate becomes fj = (1 - 1) fj, and this
value has to be used in Step 2 to compute the CPU utilization.
We also let

'00o m=0

v(m)= (4.1)
ul +Vv, m = 1,* ,

where v1 is the average page fault rate (i.e., total number of
page faults divided by total CPU time), v0 is, the rate of com-
mand completions (i.e., total number of interactions divided
by total CPU time).
Table I shows the results of model tests. A 90 percent con-

fidence interval will be used throughout this paper.

Clearly, the model may be used with reasonable confidence.
We now first use it to study the influence of system and

program behavior parameters on the choice of category limits.
To start with, we consider the case where the number of cate-
gories is equal to one (q = 1). The category mechanism then
results in a fixed maximum degree of multiprogramming. For
a given main memory size (available for paging), only a few
discrete values of category limit ml have to be studied, viz.,
those for which ml is maximum with a given resulting degree
of multiprogramming. All other values ofm I may only cause
the page fault rate fi to increase with no compensation by
the multiprogramming effect, since the multiprogramming
degree will not increase. Thus, for a memory of M = 128
pages, the values of m1 to consider are 128, 64, 42, pages, etc.
Note that with one category the solution Step 3 may be easily
carried out analytically.
We have represented in Fig. 7 the average relative system re-

sponse time i.e., the ratio W/e versus the number of terminals
N for a set of model parameters with the mean service time
of the secondary memory device, l/ul, set to 20 ms. Fig. 8
shows the results obtained with l/u1 set to 5 ms, the other
parameters remaining unchanged. We observe the important
effect of the mean service time of the secondary memory
device on system performance, and, in particular on optimum
(i.e., which minimizes mean system response time) category
assignment. The latter changes from 64 pages for the set of
parameters used in Fig. 7, to 42 pages in Fig. 8.
(In Figs. 7-14, and 16 and 17, the following values of model

values of model parameters:

category limits in number of pages (q=10):

m,=4; m,=8; m3=16; m4=24; m5 =32; m6,=48;

m,=64; m8=80; m,=112; m,O=148;
category reduction:

mJ=Mj I, -1 , j=2, 3,..., 10;

total memory available for paging: M=184 pages;

I N=5 (number of active terminals)

v. =l/c=1/464 ms ; vI =0.04 ms ; =0.76;

1/u1 =37 ms (mean service time per page fetch);

1/X =10.4 s (mean user think time);

response time W measured

obtained from model

0.70 s

: (0.77 s , 0.85 s)

II N=5

vo =1/458 ms ;v. =0.058 ms ; 3 =0.69; 1/u. =38 ms ; 1/A =10.8 s;

response time W measured 0.89 s

obtained from model : (0.93 s , 1.04 s)

III N=12

vO, =1/490 ms ;vr -0.038 ms ; =0.47; l/u, =41.1 ms; 1/A =11.8 s;

response time W measured : 1.44 s

obtained from model : (1.37 s , 1.56 s)

42

I. , , I. Il I
10 15 N

b=15; d=30; (c=50ms; /u1=20ms;

Fig. 7.

parameters are used: M 128 pages, 1/w - 0.01 ms.) The
effect of program behavior may be seen in Figs. 8 and 9 in
which the values of life-time function parameters used are

b = 15 ms, d = 30 pages, and b = 20 ms, d = 60 pages, respec-
tively. Again, we observe that the optimum category assign-
ment changes. A similar observation may be made as regards'
the influence of the average total CPU time per command c

in Figs. 8 and 10, c being set to 500 ms and 250 ms, respec-
tively. As a whole, the figures obtained clearly indicate that
the optimum limit assignment for one category may be sensi-

324

n11 =N-Z

BRANDWAJN AND HERNANDEZ: MECHANISM FOR CONTROLLING MULTIPROGRAMMED MEMORY

b=20; d=60; c=500ms; 1/u =5ms;

Fig. 9.

tive to both system and program behavior parameters. In par-
ticular, an important and undesirable effect to be noted is
that the optimum category assignment may depend on the
number of logged-on terminals. This may be seen in Fig. 8
where the category limit of 64 pages yields better results than
the 42 pages limit up to N = 12 terminals. The curves of Fig.
10 exhibit a similar effect.
As a next step in the study of the category mechanism we

consider where the number of categories is sufficiently large
so that two successive category limits differ only by a small
number of pages. For example, for a total memory space of
128 pages and q = 32 with equidistant category limits, two
adjacent categories differ only by 4 pages. A high number of
categories results in excessive computational difficulties in
Steps 2 and 3 of our solution procedure. It may be noted,
however, that the probability distribution of the current
category of an active process [denoted p(j)] is highly non-

uniform. As a consequence, if we use only the few most
probable categories in Steps 2 and 3, the error introduced in
the final result should not be important (this reduction of
the- number of categories has been actually used in the model

W/c

5.0

32

5170 15 N

b=15; d=30; c=250ms; I/i1 =5ms;

Fig. 10.

p(i)

0.3

{).2I

) q=16
:i

p(i)

0.3

n. 9

j (pages)

b=15; d=30;

p(j) q 0=1

jj (passg

0.

c=500ms

p(i)

I I

b=20; d=60; c=500sus;

Fig. 11.

validation for N = 12 terminals). Fig. 11 shows a few ex-

amples of the above probability distribution. We have rep-
resented there p(j) versus j, the category number, in the case

of equidistant categories with q = 16 and 32, for two different
life-time functions. We observe that p(j) is nonnegligible
only for some five to six values ofj out of 16 or 32.
In Fig. 12 we have plotted the results obtained (using the

five most probable equidistant categories out of 32) for the
values of model parameters used in Figs. 7 and 8.
A comparison of the curves indicates that a large number of

categories, in the case studied, does not improve the system
response time. The effect may even be adverse, as illustrated
by the curves for l/u1 = 20 ms. It is not difficult to under-
stand why this is so. While with only one category the latter
may be adjusted to match best the speed of the paging device,
in the case of a large number of categories there is not much
adjustment possible. The category mechanism "classifies"
the processes according to their virtual time page fault rates.
There is, in general, no reason for this classification to corre-

spond to the optimum multiprogramming level, since the
latter may be very sensitive to the speed of the paging device.

5.0

5 1(0 15 N

b=15; d=30; c=500ms; /Lu =5nis;

Fig. 8.

654
12

b)i q=32

(pages)

gs

d)4 q=32

I .11 11, ij

325

-.-1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO, 3, MAY 1981

5.0

5 10 15 N

Fig. 12.

W/c

b=15; d=30; c=500ms;

5.0

5 .10 15 N

a)

b=15; d =30; b2=20; d2=60;

PIp==p=09.5;

p(j)

0.3

0.2

0.

p(j)

0.3

0. 2

0.

b) c=1000 usj

c) c=250 ms;1

I/u =10 ms; q4I32; cl=c2=c;

So far we have considered only a single class of processes. It
is interesting and important to determine whether our observa-
tions carry over to the case where the processes form several
classes as regards their paging characteristics and total CPU
requirements. The next section is devoted to this subject.

IV. SEVERAL CLASSES OF PROCESSES
We now assume that there are t classes of processes present

in the system. We denote by ci, (i = 1, - * *, t) the average
total CPU time for a class i command, and by ei(m) the mean
CPU time between successive page faults for a class i process
with m pages in main memory. Using obvious notational gen-
eralizations we have

ei(m) = 2bi/(l + (dilmfl) (S.1)

vIi(m) = /e*(m) m-l, *,m1 (5.2)

0im
V =ci (5.3)

VIA ifm0,

v(M) =(5.4)Yli(m)+ voi, ifm=l,. ,m

for i= 1,***,.
We denote by pi, (2 pi = 1) the probability that a newly

generated command is of class i.
The analysis presented in Section II may be easily extended

to include several classes of processes. In fact, it suffices to
modify solution Step 1 (i.e., the analysis of process behavior
in its virtual time), the other steps remaining unchanged.
The detail of the modification is given in the Appendix and
[32]. It is worth noting that we obtain a well-decomposed,
easy to evaluate recurrent solution for Step 1. Hence, our
model has no difficulty in coping with many classes ofprocesses.
We now discuss the numerical results obtained from our

model with classes of processes. We have studied the case
when there are two classes of processes, equally probable
(PI = P2 = 0.5), with different memory locality as repre-
sented by the lifetime function parameters bi and d1. In
Fig. 13(a) we have plotted the relative average response time

Fig. 13.

versus the number of terminals for a set of model parameters
with 32 equidistant categories and two different values of the
mean total compute time per command: ci = 1000 ms, i = 1, 2,
and ci = 250 ms, i = 1, 2. The dotted curves correspond to the
optimum category assignment with only one category.
We observe that not only a large number of categories does

not result in an improvement over the optimum with one cate-
gory, but may yield significantly worse results. This is in par-
ticular the case for ci = 250 ms, i = 1, 2. Hence, we conclude
that the "classification" performed by the category mecha-
nism, based only on the virtual time behavior of processes,
does not provide an effective control of the multiprogramming
set. Parameters such as, e.g., the speed of the paging device
clearly influence the performance of the control mechanism
under consideration. We have represented in Fig. 13(b) and
(c) the virtual time probability that a process belongs to cate-
gory j, p(j), for c = 1000 ms and c = 250 ms, respectively. We
observe the important effect of the average total compute time
on the process classification.
Since the category mechanism with many categories fails to

control efficiently the multiprogramming set, and since its
primary motivation is to provide estimates of the "working-
set" sizes for different processes, i.e., to classify processes
according to their locality, it is interesting to study its per-
formance with respect to this objective. We have therefore
computed the stationary (virtual time) conditional probability
that a process is classed in category 1(j = 1, * * , q) given that
it is of class i(i = I, ,-), p(j i). The results obtained are
represented in Fig. 14. They clearly indicate that this prob-
ability strongly depends on the total compute times ci (which
we have already observed), and on the relative frequencies of
different classes of commands, pi. In particular, increasing
the total compute time ci results in a classification in a higher
category. A possible explanation for this effect is that with
larger ci more pages are referenced, and the category mecha-
nism is such that when new pages are to be loaded the cate-
gory must, quite often, be increased. Therefore, the most

c=IONO =250

/

326

BRANDWAJN AND HERNANDEZ: MECHANISM FOR CONTROLLING MULTIPROGRAMMED MEMORY

PWi/)l
0.3

0.2

0. 1
I i1,

p(j/2
0.3

0.2

0.

.1111.

0.1 01..,. 1[

c=1000 ms;

j(pages)

c=500 ms;

Il ij (pages)

0. 3 0.3

~~~~ ~~~c=500 ins;
p- ° 75; p2=25

0jI ;(Pages)

h =20: d,=60: b =15: d-=30: a=16:
MI- 1u,uI2- -, .2-'Fi14-. i

Fig. 14.

probable category for a given class of processes does not, in
general, correspond to a "good" point on the lifetime curve
of the process.
At this point it is important to determine to what extent

our findings could be affected by- the shape of the lifetime
curve. In particular, it is interesting to study the multicate-
gory versus the monocategory performance in the case where
the lifetime curves of processes possess distinct sharp "knees."
A sharp knee, as opposed to the relatively well-behaved shape
of the lifetime curves considered so far, has been reported for
a number of programs, e.g., [33].
The next section is devoted to the results obtained with

measured lifetime curves of this type.

V. RESULTS WITH A SHARP KNEE IN THE
LIFETIME CURVE

The lifetime curves used in this section are represented in
Fig. 15. They are borrowed from [33]; curves A, B, and C
correspond to a Fortran compiler, a DCDL compiler, and a
META7 compiler, respectively.
The numerical results obtained from our model with a

single class of processes indicate that the response time when
several categories are used exhibits little improvement, if any,
over that with optimum monocategory assignment. This is
illustrated in Fig. 16(a) and (b) for lifetime curves A and B,
respectively. The shaded areas represent the results with two
categories, and the dotted curves correspond to the optimum
(with respect to the mean response time) category assignment
with only one category. As might be expected given the steep
decrease in average interpage-fault-time below the knee of the
lifetime curves used, the optimum monocategory assignment
is strongly correlated with the knee. It corresponds, of course,
to a number of pages beyond the knee, i.e., in the "flat" re-
gion of the lifetime curves.

It is somewhat more surprising to observe that, even when
the processes in the system belong to two different classes
with such distinct paging behaviors as represented by life-time
curves A and C, the optimum monocategory assignment may

100

10

Number of allocated page frames

Fig. 15.

Wec

.5.0

l=u1 ms -

c = 500 ms

5 10 15 N

(a)

5 10 15 N

(b)
Fig. 16.

still yield better results than a large number of categories.
This is illustrated in Fig. 17 for an equiprobable mixture of
processes of type A and C.

VI. CONCLUSION
We have presented a study of the category mechanism for

multiprogrammed memory management. This study has been
performed in the context of a demand-paged interactive system.
A queueing network model of such a system has been built,
and a hybrid (analytical-discrete event simulation) decom-
posed solution has been obtained for classes of processes.
The model neglects I/O activity other than paging, and over-
heads other than that incurred when a process is admitted
into the multiprogramming set. (Numerical results, not re-
ported in this paper, show that the latter overhead has little
influence on the performance of the admission mechanism.)
These features can be relatively easily incorporated in our
model, and require that only Step 2 (i.e., the analysis of the
CPU utilizations) of our solution procedure be modified.
The numerical results obtained indicate that the system

327

u
(LI
m
E
j
FE
-W

1-1
-1
:I
m

14-1

CLO
ct

II
.D
4i

a)
.-c
m

C.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

W/c

5.0 1/
/ 1~~~/u=5 ins;

c = 500 ms;

5 10 15 N

Fig. 17.

performance (as measured by the relative average response
time) with several categories is, in general, worse than the
optimum performance with a single category. This seems to
be true both for cases when there is a single class and when
there are several classes of processes with distinct paging be-
havior characteristics. Moreover, the category which is the
most probable in the virtual time of a process of a given class
does not seem to reflect in any clear way the paging charac-
teristics of the process, as represented by its lifetime curve.
Hence, we must conclude that, for the types of life-time

curves considered, the category mechanism fails both in op-
timizing the level of multiprogramming and in classifying the
processes according to their paging characteristics, i.e., in
dynamically partitioning real memory. We interpret the
former failure as indicating that an effective control of multi-
programming, in general, cannot be based solely on virtual
time behavior of processes. (The working set policy, which
has proven effective, is not based only on virtual-time behavior
since the choice of the window size depends on system charac-
teristics.) Although, algorithms including the speed of the
paging device have been proposed (e.g., [11]), the problem
of optimal multiprogramming seems to require further study.
Indeed, a (near) optimal policy should also incorporate fea-
tures such as various I/O's and overheads (including that of
the policy itself) since these may be shown to importantly
affect the optimal multiprogramming level.
The observed fact that the expected response time when no

process classes are distinguished (optimum monocategory
assignment) may compare favorably with the system perfor-
mance when classes are distinguished is of potential interest
to system designers, and to people working on dynamically
adaptative multiprogramming. It therefore deserves further
investigation, under broader conditions.

APPENDIX

A. A Few Details of the Solution Steps
Step 1: Denote by p(m,j) the stationary probability (in

process execution time) that a process has m pages in real

memory and that it is of category j; m =O, 1, * - , mi;j = 1,
* * *, q. The balance equations for p(m,j) are easily obtained
as

v 1 (O) p(O,i)
m1

I=m_1
p(m,i))

+v1(mj 1)p(mj11,j- 1);

for j=2,---,q-1 (Al)

X M*I ml

ul(O)P(0,1)=vo E p(m,2)+ E p(m,l) ;~m=j M=l
(A2)

v,(0) p(O, q)

mq

=mVO E p(m,q)+Vm(Mq_)P(Mqql,q- 1)
m=m* 1+1

+ vi(mq) p(mq, q); (A3)

[V1(m)+vOI p(m,j)=v1(m- l)p(m- 1,j),
m=1,2,**-,mj; j=1,2,*-,q. (A4)

Let p(m j) be the stationary conditional probability (in pro-
cess execution time) that the process has m pages in memory
given that it is of category j. Using (A4) and the fact that

mi
E p(mlj)=1I, j=1**q
m =o

we readily get

1 (V1(m1)+vO) **(v1(m+l)+vO)
Gm)-* v(mi 1)* . *v1(m)

m = O,***, mi; (A5)

where G1 is a normalization constant.
Hence, we have

mi
Mi = E mp(m Il);

m =o

mi
fi = , p(m li)Vl (m);

m =o

Wj = V1(mj) p(mj1 I);

Zj = [1 - POWlX] Vo;

Si = L p(mlij) IP1 -P(Oli)] -
LM=j

(A6)

(A7)

(A8)

(A9)

(AIO)

In order to compute the stationary probability (in process ex-
ecution time) that the process is of category j, denoted p(j),
we note that p(j) = I Li 1 p(m, j). Summing (A4) over m =

1, * - *, mi, we obtain

328

M!PI
=VOL P(Mli + 1) +

M=l I



BRANDWAJN AND HERNANDEZ: MECHANISM FOR CONTROLLING MULTIPROGRAMMED MEMORY

Ml

ul (mj) p(m;,j)+ VO E p(m, j) = vl(O) p(O, j)
m=1

Adding to this equation (Al), (A2), and (A3), respectively,
and using the fact that p(m, j) = p(m I!) p(j) we get

r~~~~~~~MmJ 1Lv1(mj) p(mj j) +Vvo p(mUI) PG)
m =1

ml

=p(j+ l)vo > p(mlj+l)
m=1

+p(j- l) VI(m1-.)p(m1.-.1j- 1),
j=2,-..,q-l1;

ml

vI(m1)p(mII0l)p(3=p(2) vo 2 p(m 12);
m=q

vo I, p(mIQ) p(q) = Vl(Mq- ) P(Mq-l lq -1)p(q -1).
m=1

Hence, p(j) may be easily computed:

P(j)=H vl(m1)-I)p(mi1. o1)- p(m i)]

j=l,- -,q (All)
whereH is a normalization constant. We have, of course,

p(m j) = p(m j) p(j). (A12)
Step 4: Denote by p(l) the stationary probability that

there are I processes in the system. We have

p(l)=-)A (N- i+1)lu(i), I= O,1,** N
Gi=1

where G is a normalization constant. Hence, we get

N

-= I-1

and, from Little's formula [24]
W=I/[(N-I)X].

In order to estimate W' and W", we compute

g'(l)= n7f (N- i+ l)fu"(i);
i=1

g,(l) = XI H (N- i + l)/u'(i);
i=i

N
II= E lp (l);

1=1

W' =i'/[(N- ')X];

N
7 = 3 Ilp"(l);

1=1

W"=i"/[(N- i")X].

B. Step 1 of the Solution Procedure with Several Classes
ofProcesses
We denote by p(m,j, i) the stationary probability (in the

virtual time of a process) that a process has m pages in real
memory, that it current category is j, and that it is of class i;

m =, , ** mj;j=1, ** q; = ,-* ,,.We also denote
by p(m, ill) the stationary (virtual time) conditional probabil-
ity of the number of pages and the class of a process given its
current category, and by p(m 1j1 i) the stationary (virtual time)
conditional probability that a process has m pages in memory
given its current category and class. Finally, we let p(ilj) be
the stationary (in process virtual time) probability that the
process is of class i given that its current category is j.
With these notations we have

mj t
M >=3 m> p(m,i1j);

m=O i=1

t mi
fi= E E p(m, i1j) vii(m);

i=1 m=o

wj= >E p(m1,ilj)v1i(m1);
i=l

(Al6)

(A17)

(A18)

(A19)zi = L> oi [p(ilj) - p(O, ilj)];
i=1

(A13)

-t mi-1
Sj= :Voi E p(m,ilj) IZj j= 1,2, - --q.

i=i m =

(A20)
We have

p(m, ilj) = p(m Ij, i) p(ilj).
(Al4)

(A2 1)

A straightforward generalization of (A4) and (A5) yields

I m;
P(M G H= [vli(k) + voi] lvli(k - 1)

(Al5) G k=m+l

m = O 1, * *- , m1 (A22)

where Gi is a normalization constant.
Denote by p(j) the stationary (in process virtual time) prob-

ability that a process is of category j. It is not difficult to
show, summing the balance equations for p(m,j, i) over m =
O,* * mi and i = l,***, that

N
G' = 1 + > g'(l);

1=1

p'(1) =g (I)/G';

N
G"= 1 + > g"(l);

1=1

p"(I) = g (I)IG r';

(A23)P(j) =H 171 w_1. /(slzl), j = 1,- - *, q
1=2

where H is a normalization constant. It is not difficult to ob-
tain balance equations for the joint probability p(j, i) that a

329



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 3, MAY 1981

process is of category j and of class i. Using the fact that

p(j,i) = p(i)p(j), (A24)

together with (A23) one readily gets the balance equations for
p(ilj). Their solution may be obtained as follows. First we
compute p(ilIj) forj = 1:

p(ill) = -p1/{p(m 11, i)v1i(m l)+ voiJl - p(Ol Xi)}
Fi1

- i=l, ,#(A25)

where Fil is a normalization constant. Then, p(ilj) is ob-
tained for consecutive values of j, j = 2, q from the fol-
lowing recurrence relation:

gj(i) - h,(i) g1(k) - hj(k), i,k 1, 2, * (A26)

where

PwQp(I j){p(M Ij, i) VI i(Mi)
gji) +VOiv[l -p(O/j, i)]}/pi, (A27)

for j=2,--,q- 1;

plP(ilj) voi[l - p(Ol i)]/pi, forj ==q

hji) = sj zp(i jj- 1) p(mj_lIjj- 1, i)v Ij(m_I l)/pj,
forj=2,--,q; i=, ,.(A28)

The set of equations (A26) is easy to solve using the normal-
ization condition Y4 p(iIj) = 1, for j = 1, 2, ,q, and the
expressions for s; and z;, i.e., (Al9) and (A20).
We now summarize the solution of Step 1 with classes of

processes. First, we compute the p(m lj, i) [(A22)]. Next,
we recurrently compute the p(ilj) forj = 1, 2,- - - , q [(A25),
(A26)]. Finally we use p(mlj, i), p(ilj) together with (A21)
in (A16) through (A20) to obtain the inputs to following
solution steps [wi is in fact computed during the solution of
(A25), (A26)].
As a final point, note that one may be readily obtain the

average memory space actually used by an active user (in
virtual time), which we denote by m, as

q

m' E rjp(j), (A29)
j=l

where p(j) is given by (A23).

REFERENCES

[1] L. Belady and C. J. Kuehner, "Dynamic space sharing in computer
systems," Commun. Ass. Comput. Mach., vol. 12, pp. 282-288,
1969.

[2] P. J. Denning, "The working set model for program behavior,"
Commun. Ass. Comput. Mach., vol. 11, pp. 323-333, 1968.

[3] J. B. Morris, "Demand paging through utilization of working sets
on the MANIAC II," Commun. Ass. Comput. Mach., vol. 15,
pp. 867-872, 1972.

[4] C. BMtourne, C. Kaiser, S. Krakowiak, and J. Mossiere, "Process
management and resource sharing in the multiaccess system
ESOPE," Commun. Ass. Comput. Mach., vol. 13, pp. 727-733,
1970.

[5] H. Whitfield and A. S. Wight, "EMAS-The Edinburgh multi-
access system," Comput. J., vol. 16, pp. 331-346, 1973.

[6] P. J. Denning, "Trashing: Its causes and prevention," in AFIPS
Conf. Proc., Fall Joint Comput. Conf., 1968.

[7] P. Courtois, "Decomposability, instabilities and saturation in
multiprogramming systems," Commun. Ass. Comput. Mach.,
vol. 18, pp. 371-377, 1975.

[8] A. Brandwajn, J. Buzen, E. Gelenbe, and D. Potier, "A model
of performance for virtual memory systems," in Proc. ACM
SIGMETRICS Symp., Oct. 1974.

[91 D. Chamberlin, S. Fuller, and L. Liu, "An analysis of page alloca-
tion strategies for multiprogramming systems with virtual mem-
ory," IBMJ. Res. Develop., vol. 17, pp. 404-412, 1973.

[10] A. Brandwajn, "A model of a time-sharing system with two
classes of processes," in Gesellschaft fuer Informatik, vol. 5.
Dortmund: Springer-Verlag, Oct. 1975, pp. 547-566.

[11] P. J. Denning, K. C. Kahn, J. Leroudier, and D. Potier, "Optimal
multiprogramming," Acta Informatica, vol. 7, pp. 197-216,
1976.

[12] J. E. Neilson, "An analytic model of a multiprogrammed batch
time-shared computer," in Proc. Int. Symp. Comput. Perfor-
mance, Measurement and Evaluation, Harvard Univ., Cambridge,
MA, Mar. 1976, pp. 59-70.

[13] C. E. Landwehr, "An endogenous priority model for load control
in combined batch-interactive computer systems," in Proc. Int.
Symp. Comput. Performance Measurement and Evaluation,
Harvard Univ., Cambridge, MA, Mar. 1976, pp. 282-295.

[14] M. Reiser and A. G. Konheim, "Queuing model of a multipro-
grammed computer system with a jobqueue and a fixed num-
ber of initiators," in Modelling and Performance Evaluation of
Computer Systems. Ispra, Italy, Oct. 1976, pp. 319-334.

[15] J. M. Hine, I. Mitrani, and S. Tsur, "The use of memory alloca-
tion to control response times in paged computer systems with
different job classes," in Modelling and Performance Evaluation
of Computer Systems. Ispra, Italy, Oct. 1976, pp. 201-216.

[16] E. G. Coffman and T. A. Ryan, "A study of storage partitioning
using a mathematical model of locality," Commun. Ass. Comput.
Mach., vol. 15, pp. 185-190, 1972.

[17] A. L. Schoute, "Comparison of global memory management
strategies in virtual memory systems with two classes of pro-
cesses," in Modelling and Performance Evaluation of Computer
Systems. Ispra, Italy, Oct. 1976, pp. 389-414.

[18] Y. Bard, "The modeling of some scheduling strategies for an
interactive system," in Proc. Int. Symp. Comput. Performance
Modelling, Measurement, and Evaluation, Yorktown Heights,
NY, Aug. 1977, pp. 113-137.

[19] G. S. Graham and P. J. Denning, "On the relative controllability
of memory policies," in Proc. Int. Symp. Comput. Performance
Modelling, Measurement, and Evaluation, Yorktown Heights,
NY, Aug. 1977, pp. 411-428.

[20] M. Parent and D. Potier, "A note on the influence of program
loading on the page fault rate," in Modelling and Performance
Evaluation ofComput. Systems. Ispra, Italy, Oct. 1976.

[21] A. Brandwajn and B. Mouneix, "A study of a page-on-demand
system," Inform. Processing Lett., vol. 6, pp. 125-132, 1977.

[22] A. L. Scherr, An Analysis of Time-Shared Computer Systems.
Cambridge, MA: M.I.T. Press, 1967.

[23] V. A. Abell and S. Rosen, "Performance of an ECS-based time-
sharing subsystem," in Proc. Int. Symp. Comput. Performance,
Modeling, Measurement and Evaluation, Yorktown Heights, NY,
Aug. 1977, pp. 249-261.

[24] J. D. Little, "A proof of the queueing formula L = kW," Oper.
Res., vol. 9, pp. 383-387, 1961.

[25] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios,
"Open, closed and mixed networks of queues with different
classes of customers," J. Ass. Comput. Mach., vol. 22, pp. 248-
260, 1975.

[26] J. Leroudier and M. Parent, "Quelques aspects de la modelisation
des systemes informatiques par simulation a evenements dis-
crets," RAIRO Informatique, vol. 10, pp. 5-26, 1976.

[27] G. S. Fishman, "Statistical analysis for queueing simulations,"
Management Sci., vol. 20, pp. 363-369, 1973.

[28] K. M. Chandy, U. Herzog, and L. Woo, "Approximate analysis
of queueing network models," IBM Res. Rep. RC 4931, York-
town Heights, NY, July 1974.

[29] P. J. Denning and J. Buzen, "Operational analysis of queueing
networks," in Proc. 3rd mnt. Symp. Modelling and Performance
Evaluation of Comput. Syst., Bonn, Germany, Oct. 1977.

[30] H. D. Schwetman, "Hybrid simulation models: A speed-up

330



BRANDWAJN AND HERNANDEZ: MECHANISM FOR CONTROLLING MULTIPROGRAMMED MEMORY

technique combining analytic and discrete-event modeling,"
in Modelle fuer Rechensysteme, Workshop der GI. Bonn,
Germany: Springer-Verlag, Apr. 1977, pp. 226-237.

[31] A. Brandwajn, "Simulation de la charge d'un systeme conver-
sationnel," RAIRO Informatique, vol. 10, pp. 25-40, 1976.

[32] A. Brandwajn and J. A. Hernandez, "A study of a mechanism
for controlling multiprogrammed memory in an interactive sys-
tern," Ecole Nationale Superieure des Tel6communications,
Paris, Res. Rep. ENST-D-78008, May 1978.

[331 W. W. Chu and H. Opderbeck, "The page fault frequency replace-
ment algorithm," inAFIPS Conf Proc. Fall Joint Comput. Conf.,
vol. 41, 1972, pp. 597-608.

Alexandre Brandwajn received the Ingeuieur
'Civil des Telecommunications degree from the
Ecole Nationale Sup6rieure des T6l6communi-
cations, Paris, France, in 1971, and the Docteur-
Ingenieur and Docteur es-Sciences degrees from
the University of Paris VI in 1972 and 1975,
respeciey
While a Researcher at IRIA-Laboria, Roc-

quencourt, France, from 1971 to 1975, he
worked on operating system evaluation and
on solution methods for analytical models of

computer performance. In 1975 he joined the Ecole Nationale Sup6-
rieure des T61ecommunications where he was a Professor of computer
science. A full Professor there from 1977 to 1979, he directed a re-
search project in computer architecture aimed at the design of a dy-
namically adaptive system, while at the same time pursuing research
in the areas of analytical, and numerical methods for queueing models,
and fault tolerance techniques. He is currently with Amdahl Corpora-
tion, Sunnyvale, CA, where he is participating in the activities of the
Systems Performance Architecture Group.
Dr. Brandwajn is a member of the Association for Computing Ma-

chinery.

Jean-Alain Hemandez was born in Lyon,
France, on March 16, 1951. He received
the Ingenieur degree in 1974.
From 1974 to 1977 he worked in industry.

In 1977 he joined the Department of Com-
puter Science, Ecole Nationale Sup6rieure des
T6l6communications, Paris, France, where he
is currently an Associate Professor. His re-
search interest are in the areas of computer
structure, fault-tolerant computing, and high-
level languages.

,4^

11t .D

g.,,

S.di

.?. ., "I , 14, .

!. 7. i w,
II -1 x".. .

Sal .. I"1,x


