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ABSTRACT

In the last years there has been an increasing interest in the secu-
rity of process control and SCADA systems. Furthermore, recent
computer attacks such as the Stuxnet worm, have shown there are
parties with the motivation and resources to effectively attack con-
trol systems.
While previous work has proposed new security mechanisms for

control systems, few of them have explored new and fundamen-
tally different research problems for securing control systems when
compared to securing traditional information technology (IT) sys-
tems. In particular, the sophistication of new malware attacking
control systems–malware including zero-days attacks, rootkits cre-
ated for control systems, and software signed by trusted certificate
authorities–has shown that it is very difficult to prevent and detect
these attacks based solely on IT system information.
In this paper we show how, by incorporating knowledge of the

physical system under control, we are able to detect computer at-
tacks that change the behavior of the targeted control system. By
using knowledge of the physical system we are able to focus on the
final objective of the attack, and not on the particular mechanisms
of how vulnerabilities are exploited, and how the attack is hidden.
We analyze the security and safety of our mechanisms by explor-
ing the effects of stealthy attacks, and by ensuring that automatic
attack-response mechanisms will not drive the system to an unsafe
state.
A secondary goal of this paper is to initiate the discussion be-

tween control and security practitioners–two areas that have had
little interaction in the past. We believe that control engineers can
leverage security engineering to design–based on a combination of
their best practices–control algorithms that go beyond safety and
fault tolerance, and include considerations to survive targeted at-
tacks.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Network]: Security and Pro-
tection; B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids
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1. INTRODUCTION
Control systems are computer-based systems that monitor and

control physical processes. These systems represent a wide vari-
ety of networked information technology (IT) systems connected
to the physical world. Depending on the application, these control
systems are also called Process Control Systems (PCS), Supervi-
sory Control and Data Aquisition (SCADA) systems (in industrial
control or in the control of the critical infrastructures), Distributed
Control Systems (DCS) or Cyber-Physical Systems (CPS) (to refer
to embedded sensor and actuator networks).

Control systems are usually composed of a set of networked
agents, consisting of sensors, actuators, control processing units
such as programmable logic controllers (PLCs), and communica-
tion devices. For example, the oil and gas industry use integrated
control systems to manage refining operations at plant sites, re-
motely monitor the pressure and flow of gas pipelines, and control
the flow and pathways of gas transmission. Water utilities can re-
motely monitor well levels and control the wells pumps; monitor
flows, tank levels, or pressure in storage tanks; monitor pH, turbid-
ity, and chlorine residual; and control the addition of chemicals to
the water.

Several control applications can be labeled as safety-critical: their
failure can cause irreparable harm to the physical system being con-
trolled and to the people who depend on it. SCADA systems, in par-
ticular, perform vital functions in national critical infrastructures,
such as electric power distribution, oil and natural gas distribution,
water and waste-water treatment, and transportation systems. They
are also at the core of health-care devices, weapons systems, and
transportation management. The disruption of these control sys-
tems could have a significant impact on public health, safety and
lead to large economic losses.

Control systems have been at the core of critical infrastructures,
manufacturing and industrial plants for decades, and yet, there have
been few confirmed cases of cyberattacks. Control systems, how-
ever, are now at a higher risk to computer attacks because their

vulnerabilities are increasingly becoming exposed and avail-

able to an ever-growing set of motivated and highly-skilled at-

tackers.

No other attack demonstrates the threat to control systems as the
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Stuxnet worm [1, 2]. The ultimate goal of Stuxnet is to sabotage
that facility by reprogramming controllers to operate, most likely,
out of their specified boundaries [1]. Stuxnet demonstrates that
the motivation and capability exists for creating computer attacks
capable to achieve military goals [3].
Not only can Stuxnet cause devastating consequences, but it is

also very difficult to detect. Because Stuxnet used zero-day vul-
nerabilities, antivirus software would not have prevented the at-
tack. In fact, the level of sophistication of the attack prevented
some well known security companies such as Kaspersky to detect
it initially [4]. In addition, victims attempting to detect modifica-
tions to their embedded controllers would not see any rogue code
as Stuxnet hides its modifications with sophisticated PLC rootkits,
and validated its drivers with trusted certificates.
The main motivation behind this work is the observation that

while attackers may be able to hide the specific information tech-
nology methods used to exploit the system and reprogram their
computers, they cannot hide their final goal: the need to cause an
adverse effect on the physical system by sending malicious sensor
or controller data that will not match the behavior expected by a
supervisory control or an anomaly detection system.
Therefore, in this paper we explore security mechanisms that de-

tect attacks by monitoring the physical system under control, and
the sensor and actuator values. Our goal is to detect modifications
to the sensed or controlled data as soon as possible, before the at-
tack causes irreversible damages to the system (such as compro-
mising safety margins).
In the rest of the paper we first summarize the vulnerability of

control systems by discussing known attacks. We then discuss
the efforts for securing control systems solely from an information
technology perspective and identify the new and unique research
problems that can be formulated by including a model of the phys-
ical system under control. We then develop a new attack detection
algorithm and study the methodology on how to evaluate anomaly
detection algorithms and their possible response strategies.

2. THE VULNERABILITY OF CONTROL

SYSTEMS AND STUXNET
There have been many computer-based incidents in control sys-

tems. Computer-based accidents can be caused by any unantic-
ipated software error, like the power plant shutdown caused by a
computer rebooting after a patch [5]. Non-targeted attacks are
incidents caused by the same attacks that any computer connected
to the Internet may suffer, such as the Slammer worm infecting the
Davis-Besse nuclear power plant [6], or the case of a controller be-
ing used to send spam in a water filtering plant [7].
However, the biggest threat to control systems are Targeted at-

tacks. These attacks are the ones where the miscreants know that
they are targeting control systems, and therefore, they tailor their

attack strategy with the aim of damaging the physical system un-

der control. Targeted attacks against control systems are not new.
Physical attacks–for extortion and terrorism–are a reality in some
countries [8]. Cyber-attacks are a natural progression to physical
attacks: they are cheaper, less risky for the attacker, are not con-
strained by distance, and are easier to replicate and coordinate.
A classic computer-based targeted attack to SCADA systems is

the attack on Maroochy Shire Council’s sewage control system in
Queensland, Australia [9]. There are many other reported targeted
attacks [10–16]; however, no other attack has demonstrated the
threats that control systems are subject to as well as the Stuxnet
worm [1, 2]. Stuxnet has made clear that there are groups with
the motivation and skills to mount sophisticated computer-based
attacks to critical infrastructures, and that these attacks are not just

speculations or belong only in Hollywood movies.
Stuxnet intercepts routines to read, write and locate blocks on a

Programmable Logic Controller (PLC). By intercepting these re-
quests, Stuxnet is able to modify the data sent to or returned from
the PLC without the operator of the PLC ever realizing it [1].

Stuxnet was discovered on systems in Iran in June 2010 by re-
searchers from Belarus–from the company VirusBlokAda; how-
ever, it is believed to have been released more than a year before.
Stuxnet is a worm that spreads by infecting Windows computers.
It uses multiple methods and zero-day exploits to spread itself via
LANs or USB sticks. It is likely that propagation by LAN served as
the first step, and propagation through removable drives was used
to reach PCs not connected to other networks–therefore being iso-
lated from the Internet or other networks is not a complete defense.

Once Stuxnet infects a Windows computer, it installs its own
drivers. Because these drivers have to be signed, Stuxnet used
two stolen certificates. Stuxnet also installs a rootkit to hide it-
self. The goal of the worm in a Windows computer is to search
for WinCC/Step 7, a type of software used to program and monitor
PLCs. (PLCs are the embedded systems attached to sensors and
actuators that run control algorithms to keep the physical system
operating correctly. They are typically programmed with a ladder
logic program: a logic traditionally used to design control algo-
rithms for panels of electromechanical relays.)

If Stuxnet does not find the WinCC/Step 7 software in the in-
fected Windows machine, it does nothing; however, if it finds the
software, it infects the PLC with another zero-day exploit, and then
reprograms it. Stuxnet also attempts to hide the PLC changes with
a PLC rootkit.

The reprogramming is done by changing only particular parts of
the code–overwriting certain process variables every five seconds

and inserting rouge ladder logic–therefore it is impossible to pre-
dict the effects of this change without knowing exactly how the
PLC is originally programmed and what it is connected to, since
the PLC program depends on the physical system under control,
and typically, physical system parameters are unique to each indi-
vidual facility. This means that the attackers were targeting a very
specific PLC program and configuration (i.e., a very specific con-
trol system deployment).

Many security companies, including Symantec and Kaspersky
have said that Stuxnet is the most sophisticated attack they have
ever analyzed, and it is not difficult to see the reasons. Stuxnet uses
four zero-day exploits, a Windows rootkit, the first known PLC
rootkit, antivirus evasion techniques, peer-to-peer updates, and stolen
certificates from trusted CAs. There is evidence that Stuxnet kept
evolving since its initial deployment as attackers upgraded the in-
fections with encryption and exploits, apparently adapting to con-
ditions they found on the way to their target. The command and
control architecture used two servers if the infected machines were
able to access the Internet, or a peer to peer messaging system that
could be used for machines that are offline. In addition, the attack-
ers had a good level of intelligence about their target; they knew all
the details of the control system configuration and its programs.

The sophistication of this attack has lead many to speculate that
Stuxnet is the creation of a state-level sponsored attack. Since Iran
has an unusually high percentage of the total number of reported
infections of the worm in the world [1], there has been some spec-
ulation that their target was a specific industrial control system in
Iran [2], such as a gas pipeline or power plant.

We argue that a threat like the Stuxnet worm must be dealt with
defense-in-depth mechanisms like anomaly detection schemes. While
traditional anomaly detection mechanisms may have some draw-
backs like false alarms, we argue that for certain control systems,
anomaly detection schemes focusing on the physical system–instead
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of using software or network models–can provide good detection
capabilities with negligible false alarm rates.

3. NEWSECURITYPROBLEMSFORCON-

TROL SYSTEMS

3.1 Efforts for Securing Control Systems
Most of the efforts for protecting control systems (and in partic-

ular SCADA) have focused on safety and reliability (the protection
of the system against random and/or independent faults). Tradi-
tionally, control systems have not dealt with intentional actions or
systematic failures. There is, however, an urgent growing concern
for protecting control systems against malicious cyberattacks [6,
17–24].
There are several industrial and government-led efforts to im-

prove the security of control systems. Several sectors–including
chemical, oil and gas, and water–are currently developing programs
for securing their infrastructure. The electric sector is leading the
way with the North American Electric Reliability Corporation (NERC)
cybersecurity standards for control systems [25]. NERC is autho-
rized to enforce compliance to these standards, and it is expected
that all electric utilities are fully compliant with these standards by
the end of 2010.
NIST has also published a guideline for security best practices

for general IT in Special Publication 800-53. Federal agencies
must meet NIST SP800-53. To address the security of control sys-
tems, NIST has also published a Guide to Industrial Control Sys-
tem (ICS) Security [26], and a guideline to smart grid security in
NIST-IR 7628. Although these recommendations are not enforce-
able, they can provide guidance for analyzing the security of most
utility companies.
ISA (a society of industrial automation and control systems) is

developing ISA-SP 99: a security standard to be used in manufac-
turing and general industrial controls.
The Department of Energy has also led security efforts by estab-

lishing the national SCADA test bed program [27] and by devel-
oping a 10-year outline for securing control systems in the energy
sector [21]. The report–released in January 2006–identifies four
main goals (in order from short-term goals to long-term goals): (1)
measure the current security posture of the power grid, (2) develop
and integrate protective measures, (3) implement attack detection
and response strategies; and (4) sustain security improvements.
The use of wireless sensor networks in SCADA systems is be-

coming pervasive, and thus we also need to study their security.
A number of companies have teamed up to bring sensor networks
in the field of process control systems, and currently, there are
two working groups to standardize their communications [28, 29].
Their wireless communication proposal has options to configure
hop-by-hop and end-to-end confidentiality and integrity mechanisms.
Similarly they provide the necessary protocols for access control
and key management.
All these efforts have essentially three goals: (1) create aware-

ness of security issues with control systems, (2) help control sys-
tems operators and IT security officers design a security policy, and
(3) recommend basic security mechanisms for prevention (authen-
tication, access controls, etc), detection, and response to security
breaches.
While these recommendations and standards have placed signif-

icant importance on survivability of control systems (their ability
to operate while they are under attack); we believe that they have
not explored some new research problems that arise when control
systems are under attack.

3.2 Differences
While it is clear that the security of control systems has become

an active area in recent years, we believe that, so far, no one has
been able to articulate what is new and fundamentally different in
this field from a research point of view when compared to tradi-
tional IT security.

In this paper we would like to start this discussion by summariz-
ing some previously identified differences and by proposing some
new problems.

The property of control systems that is most commonly brought
up as a distinction with IT security is that software patching and
frequent updates, are not well suited for control systems. For
example, upgrading a system may require months of advance in
planning how to take the system offline; it is, therefore, econom-
ically difficult to justify suspending the operation of an industrial
computer on a regular basis to install new security patches. Some
security patches may even violate the certification of control sys-
tems, or–as previously mentioned–cause accidents to control sys-
tems [5].

Patching, however, is not a fundamental limitation to control sys-
tems. A number of companies have demonstrated that a careful
antivirus and patching policy (e.g., the use of tiered approaches)
can be used successfully [30, 31]. Also, most of the major control
equipment vendors now offer guidance on both patch management
and antivirus deployment for their control products. Thus there is
little reason for SCADA system operators not to have good patch
and antivirus programs in place today [32].

Large industrial control systems also have a large amount of
legacy systems. Lightweight cryptographic mechanisms to en-
sure data integrity and confidentiality have been proposed to se-
cure these systems [33, 34]. The recent IEEE P1711 standard is
designed for providing security in legacy serial links [35]. Having
some small level of security is better than having no security at all;
however, we believe that most of the efforts done for legacy systems

should be considered as short-term solutions. For properly secur-
ing critical control systems the underlying technology must satisfy
some minimum performance requirements to allow the implemen-
tation of well tested security mechanisms and standards.

Another property of control systems that is commonly mentioned
is the real-time requirements of control systems. Control systems
are autonomous decision making agents which need to make deci-
sions in real time. While availability is a well studied problem in
information security, real-time availability provides a stricter op-
erational environment than most traditional IT systems. We show
in this paper that real-time availability requirements depend on the
dynamics (fast vs. slow) of the physical system.

Not all operational differences are more severe in control sys-
tems than in traditional IT systems. By comparison to enterprise
systems, control systems exhibit comparatively simpler network
dynamics: Servers change rarely, there is a fixed topology, a sta-
ble user population, regular communication patterns, and a limited
number of protocols. Therefore, implementing network intrusion
detection systems, anomaly detection, and white listing may be eas-
ier than in traditional enterprise systems [36].

3.3 What is new and fundamentally different?
While all these differences are important, we believe that the ma-

jor distinction of control systems with respect to other IT systems
is the interaction of the control system with the physical world.

While current tools from information security can give necessary

mechanisms for securing control systems, these mechanisms alone
are not sufficient for defense-in-depth of control systems. When
attackers bypass basic security defenses they may be able to affect
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the physical world.
In particular, research in computer security has focused tradi-

tionally on the protection of information; but it has not consid-
ered how attacks affect estimation and control algorithms–and ulti-
mately, how attacks affect the physical world.
We believe that by understanding the interactions of the control

system with the physical world, we should be able to develop a
general and systematic framework for securing control systems in
three fundamentally new areas:

1. Better understand the consequences of an attack for risk as-

sessment. While there has been previous risk assessment
studies on cyber security for SCADA systems [18, 37–39],
currently, there are few studies on identifying the attack strat-
egy of an adversary, once it has obtained unauthorized ac-
cess to some control network devices. Notable exceptions
are the study of false data-injection attacks to state estima-
tion in power grids [40–45], and electricity markets [46]. We
need further research to understand the threat model in order
to design appropriate defenses and to invest in securing the
most critical sensors or actuators.

2. Design new attack-detection algorithms. By monitoring the
behavior of the physical system under control, we should be
able to detect a wide range of attacks by compromised mea-
surements. The work closest to ours are the study of false
data injection attacks in control systems [47] and the intru-
sion detection models of Rrushi [48]–this last work; how-
ever, does not consider dynamical models of the process con-
trol system. We need further research on dynamical system
models used in control theory as a tool for specification-
based intrusion detection systems.

3. Design new attack-resilient algorithms and architectures: we
need to design and operate control systems to survive an in-
tentional cyber assault with no loss of critical functions. Our
goal is to design systems where even if attackers manage to
bypass some basic security mechanisms, they will still face
several control-specific security devices that will minimize
the damage done to the system. In particular, we need to in-
vestigate how to reconfigure and adapt control systems when
they are under an attack to increase the resiliency of the sys-
tem. We are not aware of any other work on designing new
control algorithms or reconfiguration and control algorithms
able to withstand attacks, or that reconfigure their operations
based on detected attacks. There is previous work on safety
and fault diagnosis; however, as we explain in this paper,
these systems are not enough for detecting deception attacks
launched by an intelligent attacker with knowledge on how
to evade fault detection methods used by the system.

In the next sections we describe our ideas, experiments, and re-
sults for (1) risk-assessment, (2) false-data-injection detection, and
(3) automatic attack-response in process control systems. In each
section we first present a general theory for approaching the topic,
and then for experimental validation, we implement our ideas to the
model of a chemical reactor process.

4. RISK ASSESSMENT
Risk management is the process of shifting the odds in your favor

by finding among all possible alternatives, the one that minimizes
the impact of uncertain events.
Probably the best well known risk metric is the average loss

Rµ = E[L] ≈
�

i Lipi, where Li is the loss if event i occurs,

and pi is the probability that event i occurs. Other risk metrics try
to get more information about the probability distribution of the
losses, and not only its mean value (Rµ). For example the variance
of the losses Rχ = E[L2] − Rµ is very useful in finance since it
gives more information to risk averse individuals. This is particu-
larly important if the average loss is computed for a large period of
time (e.g. annually). If the loss is considered every time there is a
computer event then we believe the average loss by itself provides
enough risk information to make a rational decision.

In this paper we focus on attacks on sensor networks and the
effects they have on the process control system. Therefore pi de-
notes the likelihood that an attacker will compromise sensor i, and
Li denotes the losses associated with that particular compromise.
To simplify our presentation we assume that pi is the same for all
sensors, therefore our focus in the remaining of this section is to
estimate the potential losses Li. The results can then be used to
identify high priority sensors and to invest a given security budget
in the most cost-effective way.

4.1 Attack models
We consider the case when the state of the system is measured

by a sensor network of p sensors with measurement vector y(k) =
{y1(k), . . . , yp(k)}, where yi(k) denotes the measurement by sen-
sor i at time k. All sensors have a dynamic range that defines
the domain of yi for all k. That is, all sensors have defined mini-
mum and maximum values ∀k, yi(k) ∈ [ymin

i , ymax
i ]. Let Yi =

[ymin
i , ymax

i ]. We assume each sensor has a unique identity pro-
tected by a cryptographic key.

Let ỹ(k) ∈ R
p denote the received measurements by the con-

troller at time k. Based on these measurements the control sys-
tem defines control actions to maintain certain operational goals. If
some of the sensors are under attack, ỹ(k) may be different from
the real measurement y(k); however, we assume that the attacked
signals ỹi(k) also lie within Yi (signals outside this range can be
easily detected by fault-tolerant algorithms).

Let Ka = {ks, . . . , ke} represent the attack duration; between
the start time ks and stop time ke of an attack. A general model for
the observed signal is the following:

ỹi(k) =

�
yi(k) for k /∈ Ka

ai(k) for k ∈ Ka, ai(k) ∈ Yi

where ai(k) is the attack signal. This general sensor attack model
can be used to represent integrity attacks and DoS attacks. In
an integrity attack we assume that if attackers have compromised
a sensor, then they can inject any arbitrary value, therefore in this
case, ai(k) is some arbitrary non-zero value.

In a DoS attack, the controller will notice the lack of new mea-
surements and will react accordingly. An intuitive response for a
controller to implement against a DoS attack is to use the last sig-
nal received: ai(k) = yi(ks), where yi(ks) is the last measure-
ment received before the DoS attack starts.

4.2 Experiments
To test our attacks, we use the Tennessee-Eastman process con-

trol system (TE-PCS) model and the associated multi-loop PI con-
trol law as proposed by Ricker [49]. We briefly describe the process
architecture and the control loops in Figure 1. The original process
model is implemented in FORTRAN and the PI control law is im-
plemented in MATLAB. We use this code for our study.

The chemical process consists of an irreversible reaction which
occurs in the vapour phase inside a reactor of fixed volume V of
122 (m3). Two non-condensible reactants A and C react in the
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Figure 1: Architecture of the Simplified TE Plant.

presence of an inert B to form a non-volatile liquid productD:

A+ C
B

−→ D.

The feed stream 1 contains A, C and trace of B; feed stream 2 is
pure A; stream 3 is the purge containing vapours of A, B, C; and
stream 4 is the exit for liquid product D. The measured flow rates
of stream i is denoted by Fi (kmol h−1). The control objectives

are

- Regulate F4, the rate of production of the product D, at a
set-point F sp

4 (kmol h−1),

- Maintain P , the operating pressure of the reactor, below the
shut-down limit of 3000 kPa as dictated safety considera-
tions,

- MinimizeC, the operating cost measured in (kmol-of-product).
The cost depends linearly on the purge loss of A and C rel-
ative to the production rate of D. The cost considerations
dictate that the pressure be maintained as close as possible to
3000 kPa.

The production rate ofD, denoted by rD (kmol h−1) is

rD = k0y
v1
A3
yv2C3
P v3,

where yA3 and yC3 denote the respective fractions of A and C in
the purge and v1, v2, v3 are given constants.
There are four input variables (or command signals) available to

achieve the above control objectives. The first three input variables,
denoted as u1, u2 and u3, trigger the actuators that can change
the positions of the respective valves. The fourth input variable,
denoted as u4, is the set point for the proportional controller for the
liquid inventory. The input variables as used by the controller in
the following way:

• Production rate y4 = F4 is controlled using Feed 1 (u1) by
loop−1 controller,

• Pressure y5 = P is controlled using the purge rate (u3) by
loop−2 controller,

• Partial pressure of product A in the purge y7 = yA3 is con-
trolled using Feed 2 (u3) by loop−3 controller,

When u3 saturates, the loop−4 controller uses u1 to control the
pressure P . The controllers for all four loops in figure 1 are pro-

portional integral (PI) controllers.
In steady-state operation, the production rateF4 is 100 kmol h

−1,
the pressure P is 2700 KPa and the fraction of A in the purge is
47 mol%.

We study the security issues of control systems by experiment-
ing and simulating cyber attacks on sensor signals in the TE-PCS
model. Because operating the chemical reactor with a pressure
larger than 3000 kPa is unsafe (it may lead to an explosion or dam-
age of the equipment) We.assume that that the goal of the attacker
is to raise the pressure level of the tank to a value larger than 3000
kPa. We model an attacker that only has access to a single sensor at
a given time. We also assume Li > Lj , when an attack i can drive
the system to an unsafe state and an attack j cannot, and Li = Lj

if both attacks i and j either do not drive the system to an unsafe
state, or both can compromise the safety of the sytem.

From the experimental results, we found that the most effective
of these attacks were max/min attacks (i.e., when ai(k) = y

min
i or

ai(k) = y
max
j ). However, not all of the max/min attacks were able

to drive the pressure to unsafe levels. We now summarize some of
the results.

• By attacking the sensors, a controller is expected to respond
with incorrect control signals since it receives wrong infor-
mation from the compromised sensors. For example, by forg-
ing y7 as y

max
7 from t = 0 to 30, the controller believes there

is a large amount of component A in the tank.
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Figure 2: Integrity attack ymax
7 from t = 0 to 30. The system

remains in a safe state for attacks on y7.

From the experiments, we found that the plant system can go
back to the steady state after the attack finishes, as illustrated
in Fig 2. Furthermore, the pressure in the main tank never
reaches 3000 kPa. In general we found that the plant is very
resilient to attacks on y7 and y4. Attacks in the limit of the
sensing range (ymin and ymax) were the more damaging,
but they did not force the system into an unsafe state.

• By launching attack ymin
5 the controller turns down the purge

valve to increase the pressure and prevent the liquid products
from accumulating. We can see that the real pressure of the
tank (y5 in Fig 3(a)) keeps increasing past 3000 kPa and the
system operates in an unsafe state. In this experiment, it takes
about 20 hours (t = 10 to t = 30) to shut down (or cause
an explosion to) the plant. This long delay in causing an
effective attack may give defenders the advantage: for phys-
ical processes with slow-dynamics, it is possible that human
system operators may have enough time to observe unusual
phenomenon and take proper actions against the attack.

• We found out that in general DoS attacks do not affect the
plant. We ran the plant 20 times for 40 hours each and for
a DoS attack lasting 20 hours the pressure in the tank never
exceeded 2900kPa.
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Figure 3: Safety can be breached by compromising sensor y5
(3(a)). DoS attacks, on the other hand, do not cause any damage

(and they are easy to detect.) (3(b)).

We conclude that if the plant operator wants to prevent an attack
from making the system operate in an unsafe state, it should priori-
tize defenses against integrity attacks rather than on DoS attacks. If
the plant operator only has enough budget to deploy advanced se-
curity mechanisms for one sensor (e.g., tamper resistance, or TPM
chips), y5 should be the priority.

5. DETECTION OF ATTACKS
Detecting attacks to control systems can be formulated as an

anomaly-based intrusion detection problem [50]. One big differ-
ence in control systems compared to traditional IT systems, is that
instead of creating models of network traffic or software behavior,
we can use a representative model of the physical system.
The intuition behind this approach is the following: if we know

how the output sequence of the physical system, y(k), should react
to the control input sequence, u(k), then any attack to the sensor
data can be potentially detected by comparing the expected output
ŷ(k) with the received (and possibly compromised) signal ỹ(k).
Depending on the quality of our estimate ŷ(k) we may have some
false alarms. We revisit this problem in the next section.
To formalize the anomaly detection problem, we need (1) a model

of the behavior of the physical system, and (2) an anomaly de-
tection algorithm. In section 5.1 we discuss our choice of linear
models as an approximation of the behavior of the physical system.
In section 5.2, we describe change detection theory and the detec-
tion algorithm we use–a nonparametric cumulative sum (CUSUM)
statistic.

5.1 Linear Model
To develop accurate control algorithms, control engineers often

construct a representative model that captures the behavior of the
physical system in order to predict how the system will react to a
given control signal. A process model can be derived from first
principles (a model based on the fundamental laws of physics) or
from empirical input and output data (a model obtained by simu-
lating the process inputs with a carefully designed test sequence).
It is also very common to use a combination of these two mod-
els; for example, first-principle models are typically calibrated by
using process test data to estimate key parameters. Likewise, em-
pirical models are often adjusted to account for known process
physics [51, 52].
For highly safety-critical applications, such as the aerospace in-

dustry, it is technically and economically feasible to develop accu-
rate models from first principles [51]. However, for the majority of
process control systems, the development of process models from
fundamental physics is difficult.
In many cases such detailed models are difficult to justify eco-

nomically, and even impossible to obtain in reasonable time due to
the complex nature of many systems and processes. (The TE-PCS
system used in our experiments is one of the few cases available in
the literature of a detailed nonlinear model of an industrial control
problem; this is the reason why the TE-PCS system has been used
as a standard testbed in many industrial control papers.)

To facilitate the creation of physical models, most industrial con-
trol vendors provide tools (called identification packages) to de-
velop models of physical systems from training data. The most
common models are linear systems. Linear systems can be used to
model dynamics that are linear in state x(k) and control input u(k)

x(k + 1) = Ax(k) +Bu(k) (1)

where time is represented by k ∈ Z
+, x(k) = (x1(k), . . . , xn(k)) ∈

R
n is the state of the system, and u(k) = (u1(k), . . . , um(k)) ∈

R
m is the control input. The matrixA = (aij) ∈ R

n×n models the
physical dependence of state i on state j, and B = (bij) ∈ R

n×m

is the input matrix for state i from control input j.
Assume the system (1) is monitored by a sensor network with

p sensors. We obtain the measurement sequence from the observa-
tion equations

ŷ(k) = Cx(k), (2)

where ŷ(k) = (ŷ1(k), . . . , ŷp(k)) ∈ R
p, and ŷl(k) ∈ R is the

estimated measurement collected by sensor l at time k. MatrixC ∈
R

p×n is called output matrix.

5.2 Detection Methods
The physical-model-based attack detection method presented in

this paper can be viewed as complementary to intrusion detection
methods based on network and computer systems models.

Because we need to detect anomalies in real time, we can use
results from sequential detection theory to give a sound foundation
to our approach. Sequential detection theory considers the problem
where the measurement time is not fixed, but can be chosen online
as and when the measurements are obtained. Such problem formu-
lations are called optimal stopping problems. Two such problem
formulations are: sequential detection (also known as sequential
hypothesis testing), and quickest detection (also known as change
detection). A good survey of these problems is given by Kailath
and Poor [53].

In optimal stopping problems, we are given a time series se-
quence z(1), z(2), . . . , z(N), and the goal is to determine the min-
imum number of samples,N , the anomaly detection scheme should
observe before making a decision dN between two hypotheses: H0

(normal behavior) andH1 (attack).
The difference between sequential detection and change detec-

tion is that the former assumes the sequence z(i) is generated either
by the normal hypothesis (H0), or by the attack hypothesis (H1).
The goal is to decide which hypothesis is true in minimum time.
On the other hand, change detection assumes the observation z(i)
starts underH0 and then, at a given ks it changes to hypothesisH1.
Here the goal is to detect this change as soon as possible.

Both problem formulations are very popular, but security re-
searchers have used sequential detection more frequently. How-
ever, for our attack detection method, the change detection formu-
lation is more intuitive. To facilitate this intuition, we now briefly
describe the two formulations.

5.2.1 Sequential Detection

Given a fixed probability of false alarm and a fixed probability
of detection, the goal of sequential detection is to minimize the
number of observations required to make a decision between two
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hypotheses. The solution is the classic sequential probability ra-
tio test (SPRT) of Wald [54] (also referred as the threshold ran-
dom walk (TRW) by some security papers). SPRT has been widely
used in various problems in information security such as detecting
portscans [55], worms [56], proxies used by spammers [57], and
botnets [58].
Assuming that the observations z(k) under Hj are generated

with a probability distribution pj , the SPRT algorithm can be de-
scribed by the following equations:

S(k + 1) = log
p1(z(k))

p0(z(k))
+ S(k)

N = inf
n
{n : S(n) /∈ [L,U ]},

starting with S(0) = 0. The SPRT decision rule dN is defined as:

dN =

�
H1 if S(N) ≥ U
H0 if S(N) ≤ L,

(3)

where L ≈ ln b
1−a

and U ≈ ln 1−b
a

, and where a is the desired
probability of false alarm and b is the desired probability of missed
detection (usually chosen as small values).

5.2.2 Change Detection

The goal of the change detection problem is to detect a possible
change, at an unknown change point ks.Cumulative sum (CUSUM)
and Shiryaev-Roberts statistics are the two most commonly used
algorithms for change detection problems. In this paper we use the
CUSUM statistic because it is very similar to the SPRT.
Given a fixed false alarm rate, the CUSUM algorithm attempts to

minimize the time N (where N ≥ ks) for which the test stops and
decides that a change has occurred. Let S(0) = 0. The CUSUM
statistic is updated according to

S(k + 1) =

�

log
p1(z(k))

p0(z(k))
+ S(k)

�+

(4)

where (a)+ = a if a ≥ 0 and zero otherwise. The stopping time
is:

N = inf
n
{n : S(n) ≥ τ} (5)

for a given threshold τ selected based on the false alarm constraint.
We can see that the CUSUM algorithm is an SPRT test with L =

0, U = τ , and whenever the statistic reaches the lower threshold
L, it re-starts.
We now describe how to adapt the results of change detection

theory to the particular problem of detecting compromised sensors.
In the following, we use the subscript i to denote the sequence cor-
responding to sensor i.
One problem that we have in our case is that we do not know

the probability distribution for an attack p1. In general, an adaptive
adversary can select any arbitrary (and possibly) non-stationary se-
quence zi(k). Assuming a fixed p1 will thus limit our ability to
detect a wide range of attacks.
To avoid making assumptions about the probability distribution

of an attacker, we use ideas from nonparametric statistics. We do
not assume a parametric distribution for p1 and p0; instead, only
place mild constraints on the observation sequence. One of the
simplest constraints is to assume the expected value of the random
process Zi(k) that generates the sequence zi(k) under H0 is less
than zero (E0[Zi] < 0) and the expected value of Zi(k) under H1

is greater than zero (E1[Zi] > 0).
To achieve these conditions let us define

zi(k) := �ỹi(k)− ŷi(k)� − bi (6)

where bi is a small positive constant chosen such that

E0[�ỹi(k)− ŷi(k)� − bi] < 0. (7)

The nonparametric CUSUM statistic for sensor i is then:

Si(k) = (Si(k − 1) + zi(k))
+
, Si(0) = 0 (8)

and the corresponding decision rule is

dN,i ≡ dτ (Si(k)) =

�
H1 if Si(k) > τi
H0 otherwise.

(9)

where τi is the threshold selected based on the false alarm rate for
sensor i.

Following [59], we state the following two important results for
Eq. (8)-(9):

- The probability of false alarm decreases exponentially as the
threshold τi increases,

- The time to detect an attack, (Ni − ks,i)
+
, is inversely pro-

portional to bi.

5.3 Stealthy Attacks
A fundamental problem in intrusion detection is the existence of

adaptive adversaries that will attempt to evade the detection scheme;
therefore, we now consider an adversary that knows about our anomaly
detection scheme. We take a conservative approach in our models
by assuming a very powerful attacker with knowledge of: (1) the
exact linear model that we use (i.e., matrices A,B, and C), the pa-
rameters (τi and bi), and (3) the control command signals. Such
a powerful attacker may be unrealistic in some scenarios, but we
want to test the resiliency of our system to such an attacker to guar-
antee safety for a wide range of attack scenarios.

The goal of the attacker is to raise the pressure in the tank without
being detected (i.e., raise the pressure while keeping the statistic he
controls below the corresponding threshold τi).

We model three types of attacks: surge attacks, bias attacks and
geometric attacks. Surge attacks model attackers that want to achieve
maximum damage as soon as they get access to the system. A bias
attack models attackers that try to modify the system discretely by
adding small perturbations over a large period of time. Finally,
geometric attacks model attackers that try to shift the behavior of
the system very discretely at the beginning of the attack and then
maximize the damage after the system has been moved to a more
vulnerable state.

5.4 Surge Attacks
In a surge attack the adversary tries to maximize the damage as

soon as possible, but when the statistic reaches the threshold, it then
stays at the threshold level: Si(k) = τ for the remaining time of
the attack. To stay at the threshold, the attacker needs to solve the
following quadratic equation:

Si(k) +
�

(ŷi(k)− ỹi(k))2 − bi = τi

The resulting attack (for y5 and y4) is:

ỹi(k) =

�
ymin
i if Si(k + 1) ≤ τi
ŷi(k)− |τi + bi − Si(k)| if Si(k + 1) > τi

For y7 we use

ỹ7(k) =

�
ymax
7 if Sy7(k) ≤ τ7
ŷ7 + |τ7 + b7 − Sy7(k)| if Sy7(k) > τ7

5.5 Bias Attacks
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In a bias attack the attacker adds a small constant ci at each time
step.

ỹi,k = ŷi,k − ci ∈ Yi

In this case, the nonparametric CUSUM statistic can be written
as:

Si(n) =

n−1�

k=0

|ŷi(k)− ỹi(k)| − nbi

Assuming the attack starts at time k = 0 and assuming the at-
tacker wants to be undetected for n time steps the attacker needs to
solve the following equation:

n−1�

k=0

ci = τi + nbi

Therefore ci = τi/n+ b. This attack creates a bias of τi/n+ bi
for each attacked signal.
This equation shows the limitations of the attacker. If an attacker

wants to maximize the damage (maximize the bias of a signal), the
attacker needs to select the smallest n it can find. Because ỹi ∈ Yi

this attack reduces to an impulse attack.
If an attacker wants to attack for a long time, then n will be very

large. If n is very large then the bias will be smaller.

5.6 Geometric Attacks
In a geometric attack, the attacker wants to drift the value very

slowly at the beginning and maximize the damage at the end. This
attack combines the slow initial drift of the bias attack with a surge
attack at the end to cause maximum damage.
Let α ∈ (0, 1). The attack is:

ỹi(k) = ŷi(k)− βiα
n−k
i .

Now we need to find α and β such that Si(n) = τi.
Assume the attack starts at time k = 0 and the attacker wants to

be undetected for n time steps. The attacker then needs to solve the
following equation.

n−1�

k=0

βiα
n−k
i − nbi = τi

This addition is a geometric progression.

n−1�

k=0

βiα
n−k
i = βiα

n
i

n−1�

k=0

(α−1

i )k = βi
1− αn

i

α−1

i − 1

By fixing α the attacker can select the appropriate β to satisfy the
above equation.

5.7 Experiments
We continue our use of the TE-PCS model. In this section we

first describe our selection criteria for matrices A, B, and C for
the linear model, and the parameters bi and τi for the CUSUM
statistic. We then describe the tradeoffs between false alarm rates
and the delay for detecting attacks. The section ends with the study
of stealthy attacks.

5.7.1 Linear Model

In this paper we use the linear system characterized by the ma-
trices A, B, and C, obtained by linearizing the non-linear TE-PCS
model about the steady-state operating conditions. (See Ricker [49].)
The linear model is a good representative of the actual TE-PCS

model when the operating conditions are reasonably close to the
steady-state.

5.7.2 Nonparametric CUSUM parameters

In order to select bi for each sensor i, we need to estimate the
expected value of the distance |ŷi(k) − yi(k)| between the linear
model estimate ŷi(k) and the sensor measurement yi(k) (i.e., the
sensor signal without attacks).
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Figure 4: The paramenter of ADM: b. For y4, 9951 bs are
0.015. The mean value of by4 is 0.0642.

We run experiments for ten thousand times (and for 40 hours
each time) without any attacks to gather statistics. Fig 4 shows the
estimated probability distributions (without normalization).

To obtain bi, we compute the empirical expected value for each
distance and then round up to the two most significant units. We
obtain by4 = 0.065, by5 = 4.1, by7 = 0.042.

Once we have bi for each sensor, we need to find a threshold τi
to balance the tradeoff between false alarms and detection time.

False Alarm Rate.
We run simulations for twenty times without attacks and com-

pute the total number of false alarms for different values of τ (and
for each sensor). Fig 5 shows the results. Taking y4 as an example,
we notice that Sy4 alerts frequently if we set τy4 < 6.
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Figure 5: The number of false alarms decreases exponentially

with increasing τ . This results confirm the theory supporting
the nonparametric CUSUM algorithm.

In general, we would like to select τ as high as possible for each
sensor to avoid any false alarm; however, increasing τ increases the
time to detect attacks.

Detection Time.
To measure the time to detect attacks, we run simulations by

launching scaling attacks (ai(k) = λmyi(k)) on sensors y4, y5
and y7. Figs 6 and 7 shows the experimental results.

The selection of τ is a trade-off between detection time and the
number of false alarms. The appropriate value differs from system
to system. Because the large number of false alarms is one of the
main problems for anomaly detection systems, and because the TE-
PCS process takes at least 10 hours to reach the unsafe state (based
on our risk assessment section), we choose the conservative set of
parameters τy4 = 50, τy5 = 10000, τy7 = 200. These parameters
allow us to detect attacks within a couple of hours, while not raising
any false alarms.
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Figure 6: Detection time v.s. scaling attack. Note that for λmi =
1 there is no alarm.
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Figure 7: The time for detection increases linearly with increas-

ing τ . This results confirm the theory behind the nonparamet-
ric CUSUM algorithm.

5.7.3 Stealthy Attacks

To test if our selected values for τ are resilient to stealthy attacks,
we decided to investigate the effect of stealhty attacks as a function
of τ . To test how the attacks change for all threshols we parameter-
ize each threshold by a parameter p: τ testi = pτi. Fig. 8 shows the
percentage of times that geometric stealthy attacks (assuming the
attacker controls all three sensor readings) were able to drive the
pressure above 3000kPa while remaining undetected (as a function
of p).

Figure 8: Percentage of stealthy attacks that increase the pres-

sure of the tank above 3,000kPa as a function of scaling param-

eter p.

We implemented all stealth attacks starting at time T = 10
(hrs). We assume the goal of the attacker is to be undetected until
T = 30 (hrs). For example, Fig. 9 shows the results of attack-
ing all three sensors with a geometric attack. The nonparametric

CUSUM statistic shown in Fig. 10 shows how the attacker remains
undetected until time T = 30 (hrs).

We found that a surge attack does not cause significant damages
because of the inertia of the chemical reactor: by the time the statis-
tic reaches the threshold τ , the chemical reactor is only starting to
respond to the attack. However, since the attacker can only add
very small variations to the signal once it is close to the thresh-
old, the attack ceases to produce any effect and the plant continues
operating normally.
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promised.

Finally, we assume two types of attackers. An attacker that has
compromised y5 (but who does not know the values of the other
sensors, and therefore can only control Sy5(k)), and an attacker
that has compromised all three sensors (and therefore can control
the statistic S(k) for all sensors). We launched each attack 20
times. The results are summarized in Figure 11.

Figure 11: Effect of stealthy attacks. Each attack last 20 hours.

363



Our results show that even though our detection algorithm fails to
detect stealthy attacks, we can keep the the plant in safe conditions.
We also find that the most successful attack strategy are geometric
attacks.

6. RESPONSE TO ATTACKS
A comprehensive security posture for any system should include

mechanisms for prevention, detection, and response to attacks. Au-
tomatic response to computer attacks is one of the fundamental
problems in information assurance. While most of the research
efforts found in the literature focus on prevention (authentication,
access controls, cryptography etc.) or detection (intrusion detec-
tion systems), in practice there are quite a few response mecha-
nisms. For example, many web servers send CAPTCHAs to the
client whenever they find that connections resemble bot connec-
tions, firewalls drop connections that conform to their rules, the ex-
ecution of anomalous processes can be slowed down by intrusion
detection systems, etc.
Given that we already have an estimate for the state of the system

(given by a linear model), a natural response strategy for control
systems is to use this estimate when the anomaly detection statistic
fires an alarm. Fig 12 shows our proposed architecture. Specifi-
cally: for sensor i, if Si(k) > τi, the ADM replaces the sensor
measurements ỹi(k) with measurements generated by the linear
model ŷi(k) (that is the controller will receive as input ŷi(k) in-
stead of ỹi(k)). Otherwise, it treats ỹi(k) as the correct sensor
signal.

�

�������
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�����������

��� ����������

Computing Blocks

Figure 12: An Anomaly Detection Module (ADM) can detect

an attack and send an estimate of the state of the system to the

controller.

Introducing automatic response mechanisms is, however, not an
easy solution. Every time systems introduce an automatic response
to an alarm, they have to consider the cost of dealing with false
alarms. In our proposed detection and response architecture (Fig. 12),
we have to make sure that if there is a false alarm, controlling the
system by using the estimated values from the linear system will
not cause any safety concerns.

6.1 Experiments
The automatic response mechanism works well when we are un-

der attack. For example, Fig. (13) shows that when an attack is
detected, the response algorithm manages to keep the system in a
safe state. Similar results were obtained for all detectable attacks.
While our attack response mechanism is a good solution when

the alarms are indeed an indication of attacks, Our main concern in
this section is the cost of false alarms. To address these concerns we
ran the simulation scenario without any attacks 1000 times; each
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Figure 13: ỹ5 = y5 ∗ 0.5

Alarms Avg y5 Std Dev Max y5
0 2700.4 14.73 2757

Table 1: For Thresholds τy4 = 50, τy5 = 10000, τy7 = 200 we
obtain no false alarm. Therefore we only report the expected

pressure, the standard deviation of the pressure, and the maxi-

mum pressure reached under no false alarm.

time the experiment ran for 40 hours. As expected, with the pa-
rameter set τy4 = 50, τy5 = 10000, τy7 = 200 our system did
not detect any false alarm (see Table 1); therefore we decided to
reduce the detection threshold to τy4 = 5, τy5 = 1000, τy7 = 20
and run the same experiments again. Table 2 shows the behavior
of the pressure after the response to a false alarm. We can see
that while a false response mechanism increases the pressure of the
tank, it never reaches unsafe levels. The maximum pressure ob-
tained while controlling the system based on the linear model was
2779kPa, which is in the same order of magnitude than the normal
variation of the pressure without any false alarm (2757kPa).

In our case, even if the system is kept in a safe state by the au-
tomated response, our response strategy is meant as a temporary
solution before a human operator responds to the alarm. Based on
our results we believe that the time for a human response can be
very large (a couple of hours).

7. CONCLUSIONS
In this work we identified three new research challenges for se-

curing control systems. We showed that by incorporating a physi-
cal model of the system we were able to identify the most critical
sensors and attacks. We also studied the use of physical models
for anomaly detection and proposed three generic types of stealthy
attacks. Finally, we proposed the use of automatic response mech-
anisms based on estimates of the state of the system. Automatic
responses may be problematic in some cases (especially if the re-
sponse to a false alarm is costly); therefore, we would like to em-
phasize that the automatic response mechanism should be consid-
ered as a temporary solution before a human investigates the alarm.
A full deployment of any automatic response mechanism should
take into consideration the amount of time in which it is reasonable
for a human operator to respond, and the potential side effects of

Alarms Avg y5 Std Dev Max y5
y4 61 2710 30.36 2779

y5 106 2705 18.72 2794

y7 53 2706 20.89 2776

Table 2: Behavior of the plant after response to a false alarm

with thresholds τy4 = 5, τy5 = 1000, τy7 = 20.
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responding to a false alarm.
In our experiments with the TE-PCS process we found several

interesting results. (1) Protecting against integrity attacks is more
important than protecting against DoS attacks. In fact, we believe
that DoS attacks have negligible impact to the TE-PCS process. (2)
The chemical reactor process is a well-behaved system, in the sense
that even under perturbations, the response of the system follows
very closely our linear models. In addition, the slow dynamics of
this process allows us to be able to detect attacks even with large
delays with the benefit of not raising any false alarms. (3) Even
when we configure the system to have false alarms, we saw that the
automatic response mechanism was able to control the system in a
safe mode.
One of our main conclusions regarding the TE-PCS plant, is that

it is a very resiliently-designed process control system. Design of
resilient process control systems takes control system design ex-
perience and expertise. The design process is based on iteratively
evaluating the performance on a set of bad situations that can arise
during the operation of the plant and modifying control loop struc-
tures to build in resilience. In particular, Ricker’s paper discusses
the set of random faults that the four loop PI control is able to with-
stand.
We like to make two points in this regard: (1). The PI control

loop structure is distributed, in the sense that no PI control loop
controls all actuators and no PI loop has access to all sensor mea-
surements, and (2). The set of bad situations to which this control
structure is able to withstand may itself result from the one or more
cyber attacks. However, even though the resilience of TE-PCS
plant is ensured by expert design, we find it interesting to directly
test this resilience within the framework of assessment, detection
and response that we present in this article.
However, as a word of caution, large scale control system de-

signs are often not to resilient by design and may become prey to
such stealth attacks if sufficient resilience is not built by design in
the first place. Thus, our ideas become all the more relevant for op-
erational security until there is a principled way of designing fully
attack resilient control structures and algorithms (which by itself
is a very challenging research endeavor and may not offer a cost
effective design solution).
Even though we have focused on the analysis of a chemical re-

actor system, our principles and techniques can be applied to many
other physical processes. An automatic detection and response
module may not be a practical solution for all control system pro-
cesses; however, we believe that many processes with similar char-
acteristics to the TE-PCS can benefit from this kind of response.
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