
Real-Time Attack-Recovery for Cyber-Physical
Systems Using Linear Approximations

Lin Zhang1, Xin Chen2, Fanxin Kong1, Alvaro A. Cardenas3
1Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY

2Department of Computer Science, University of Dayton, Dayton OH
3Department of Computer Science and Engineering, University of California at Santa Cruz, Santa Cruz CA

lzhan120@syr.edu, xchen4@udayton.edu, fkong03@syr.edu, alvaro.cardenas@ucsc.edu

Abstract—Attack detection and recovery are fundamental
elements for the operation of safe and resilient cyber-physical
systems. Most of the literature focuses on attack-detection, while
leaving attack-recovery as an open problem. In this paper, we
propose novel attack-recovery control for securing cyber-physical
systems. Our recovery control consists of new concepts required
for a safe response to attacks, which includes the removal of
poisoned data, the estimation of the current state, a prediction
of the reachable states, and the online design of a new controller
to recover the system. The synthesis of such recovery controllers
for cyber-physical systems has barely investigated so far. To fill
this void, we present a formal method-based approach to online
compute a recovery control sequence that steers a system under
an ongoing sensor attack from the current state to a target state
such that no unsafe state is reachable on the way. The method
solves a reach-avoid problem on a Linear Time-Invariant (LTI)
model with the consideration of an error bound ε ≥ 0. The
obtained recovery control is guaranteed to work on the original
system if the behavioral difference between the LTI model and the
system’s plant dynamics is not larger than ε. Since a recovery
control should be obtained and applied at the runtime of the
system, in order to keep its computational time cost as low
as possible, our approach firstly builds a linear programming
restriction with the accordingly constrained safety and target
specifications for the given reach-avoid problem, and then uses
a linear programming solver to find a solution. To demonstrate
the effectiveness of our method, we provide (a) the comparison
to the previous work over 5 system models under 3 sensor attack
scenarios: modification, delay, and reply; (b) a scalability analysis
based on a scalable model to evaluate the performance of our
method on large-scale systems.

Index Terms—cyber-physical systems, security, sensor attacks,
recovery, real-time

I. INTRODUCTION

Cyber-Physical Systems (CPS) are engineered systems com-
bining computation, communications, and physical resources.
The integration of new technologies in the way we interact and
control physical systems has enabled new applications such as
autonomous vehicles, advanced manufacturing, and the smart
grid [1]–[3]. However, these advances also raise new security
issues that cannot be addressed with classical cyber security
mechanisms designed for information technology systems [4]–
[6].

One of the most pressing security risks in CPS is sensor
spoofing attacks. When a controller acts on sensor information
that is malicious, it can drive the physical system to unsafe
states. In addition to software attacks, sensor spoofing can

be done through transduction attacks, where the attacker
manipulates a physical property that affects the reading of the
sensor. For example, an attacker can exploit weaknesses in
wheel speed sensors and affect antilock braking systems [7],
or attack remotely a LiDAR sensor in vehicles to make them
perceive non-existent objects [8]. Classical software security
cannot prevent these attacks [9]–[13].

These new threats have motivated researchers to propose
novel defense mechanisms against sensor attacks. Most of
them fall into two categories: proactive resiliency and reactive
resiliency. The first category assumes the control system might
be under attack and attempts to minimize the impact from
attacks [11], [14]–[17]. The second category focuses on detect-
ing attacks by identifying anomalies between measurements
and expected (estimated) values. Attack detection can be done
using models of the system (i.e., system dynamics or trained
models) [12], [13], [18]–[20] or via sensor correlation [21]–
[24].

The vast majority of work to address this problem has
focused on attack detection, but the key question that has not
been addressed is how to respond to a detected attack. Even
the surveys on attack detection emphasize how little work has
been done in attack-recovery [18], [19]. In fact, a recent paper
studied 32 CPS security surveys, and found that while most
of them talk about attack-detection, only 8 of them described
any form of response to detected attacks [25]. The authors
conclude their paper by stating that “it is necessary that future
work addresses the main benefit of intrusion detection: i.e.,
after detecting an attack, what should we do?”

In this paper we attempt to fill this void by proposing a
formal-methods approach to compute a Piece-Wise Constant
(PWC) control input sequence that recovers the CPS to a target
state after a sensor attack is detected. Our work includes the
following major contributions:
(i) A new attack-recovery architecture consisting of a check-

pointer for keeping a finite set of historical states, esti-
mate reconstructor for conservatively estimating the cur-
rent system state, a deadline calculator for computing the
length of the recovery control sequence, and a recovery
control calculator to design the new control actions.

(ii) A formal method to conservatively estimate the current
and future states with a control stepwise error bound ε ≥
0 based on a Linear Time-Invariant (LTI) approximate

model of the plant dynamics. The resulting estimations
are guaranteed to contain the actual system states if the
LTI model is an ε-approximation of the plant dynamics.

(iii) A way to formulate the reach-avoid problem the recovery
controller has to design as a Linear Programming (LP)
restriction. The solution set of the LP problem is con-
tained in that of the reach-avoid problem, so a solution
to the LP problem is also a solution to the reach-avoid
problem, which is traditionally a hard problem to solve,
even for LTI models.

The new recovery control is guaranteed to work on the original
CPS if (a) it is applied immediately when the attack is
detected, (b) we have a good estimate of when the attack
started, and (c) the LTI model is an ε-approximation of the
plant dynamics. On the other hand, our approach does not
provide a guarantee on the success of finding a recovery
control in any situation.

We argue that our proposed architecture contains the neces-
sary blocks to design a safe recovery controller. In particular,
(1) we need a checkpointer to keeps a window of the historical
behavior of the system in order to remove false data for our
attack-recovery computations. (2) When an attack is detected,
we can no longer trust the information of the sensors, therefore
we also develop a novel estimate reconstructor, which uses the
historical data of the checkpointer to conservatively estimate
the current system state. (3) If we know the current state or a
conservative estimation of it, the next step is to find a feasible
amount of time to safely steer the system to a target state. This
is done by the deadline calculator which uses the method
in contribution (ii) to find a time deadline. (4) Finally, the
recovery control calculator uses the methods in contribution
(iii) to compute a recovery control.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents an overview of
our recovery framework. Sections IV and V provide the
details of each component in the framework. Section VI shows
the experimental evaluation of our approach. The paper is
concluded by Section VII.

II. RELATED WORK

Before security was a concern, control systems had to deal
with faults. Fault Detection, Isolation, and Reconfiguration
(FDIR) [26] is an area of control where anomalies are detected
using either a model-based detection system, or a purely data-
driven system; this part of the process is also known as Bad
Data Detection. Isolation is the process of identifying which
device is the source of the anomaly, and reconfiguration is the
process of recovering from the fault.

FDIR systems are good at detecting and eliminating faults
caused by nature or accidents, but they do not provide security
where faults are created by a strategic adversary. The main rea-
son for this is that these protection systems generally assume
independent, non-malicious failures, and in security, incorrect
model assumptions are the easiest way for the adversary
to bypass any protections [4]. For example, FDIR systems

have been bypassed in the power grid [27] and chemical
processes [28].

To fix the limitations of classical FDIR systems, there
has been a lot of work in the literature on how to detect
attacks on CPS. One of the areas that has been explored the
most is how monitoring sensor (and actuation) values from
physical observations, and control signals sent to actuators,
can be used to detect attacks; this approach is usually called
physics-based attack detection [18]. There are two classes
of anomalies, historical anomalies [29], [30], and physical
inconsistencies [31], [32].

Despite all this work on attack-detection, there has been
relatively few attempts to respond to alerts from an intrusion
detection system. Surveys on attack detection emphasize how
little work has been done in attack-recovery [18], [19]. In fact,
a recent paper studied 32 CPS security surveys, and found out
that while most of them talk about attack-detection, only 8 of
them described any form of response to detected attacks [25].

Although there are relatively few papers proposing attack-
response methods, the most popular approach to respond to an
attack is to ignore the spoofed sensors, obtain state estimates
for the missing sensors, and then use the original controller
to respond to the attack [9], [28], [33]. These papers however
miss important concerns for recovering a CPS under attack: (1)
using the original controller cannot guarantee that the system
will remain safe under attacks, in fact these papers do not
provide formal models to show why the recovery procedure
will be safe, (2) for safety-critical systems, the time in which
computations are performed is important in order to ensure
the correctness of the system [34], so we need to include
time deadlines for the recovery of the system, and (3) they
assume that the defender knows the exact physical model of
the system under attack; however this is rarely the case in
practical systems.

In this paper, we address the above concerns by introducing
(1) a formal method-based framework of recovery controller
that is activated to steer the system to a target state when
an attack is detected; (2) a deadline calculator that computes
the number of control steps for the later recovery task; (3)
a formalism that allows a pre-assumed largest behavioral
difference between the actual system and our formal model
which is an LTI system.

Although some of the reachability analysis techniques for
dynamical systems have been applied to online monitoring
the safety of CPS [35]–[38], there is no existing work to the
best of our knowledge recovering a CPS under a sensor or
actuator attack based on reachability. The work presented in
the paper uses the efficient support function method [39], [40]
to compute the reachable set overapproximations as well as
a recovery deadline based on the LTI approximation of the
CPS plant dynamics. Then an LP restriction is built for the
reach-avoid problem describing the recovery task.

Although LTI models are one of the simplest categories
of control systems, they are widely used in the analysis and
synthesis of dynamical systems including mobile robots [41]–
[43], medical devices [44], and aircraft systems [45], [46]

due to the efficient algorithms that can be applied to them.
Some recent studies on the attack-resilient state estimation
for CPS are also based on LTI models [47], [48]. Although
most of the practical systems are nonlinear, the behavior
of a stable nonlinear system in a short time period or a
bounded neighborhood of an equilibrium can often be well
approximated by an LTI system. This property gives birth
to lots of linearization and hybridization techniques [49]–[51]
that use linear models in the analysis of a nonlinear system.
The correctness guarantee provided by our approach requires
the existence of an LTI model which approximates the CPS
plant with a pre-assumed accuracy. Such a model could be
obtained as a linearization of the plant if its dynamics is
nonlinear, or a data-driven model if the plant is given as a
black box.

Our recovery framework can be seen as a variant of the
simplex architecture [52] dealing with a “complex” controller
and a “safety” controller.

III. RECOVERY OF CYBER-PHYSICAL SYSTEMS

This section presents the system model, the threat model,
and the design overview of our real-time recovery framework.

A. Scope of Our Work

As mentioned in the previous section, the work on attack
detection for CPS is extensive, therefore in this paper we
assume there is an attack detection system already in place,
and our goal is to take the alerts that are generated by this
intrusion detection system and respond to them in order to
recover the physical system under control. We also assume
that our intrusion detection system also gives us the time t0
when the attack started; (this can be done by finding the time
of a breakpoint of the time series of the residuals [18]).

B. Preliminaries

The CPS model considered in the paper is a physical
process–which is also called a plant–controlled by a computer
program or controller. The controller operates at every δ units
of time, where δ > 0 is called a control step. At the beginning
of every control step, the controller reads the state estimate
of the plant (represented by a set of real-valued variables
{x1, . . . , xn}), and using a control algorithm, the controller
computes the control signals {u1, . . . , um} which are sent
to the actuators. For brevity, we collectively represent the
variables x1(t), . . . , xn(t) by ~x(t) and u1(t), . . . , um(t) by
~u(t), at time t.

The variable(s) ~y(t) denotes the sensor measurement re-
ceived at the controller (which may be compromised) while
~y ′(t) is the real (true) value of the plant. ~x(t) denotes the state
estimate while ~x′(t) is the real state of the plant. ~u(t) denotes
the control input computed by the controller while ~u′(t) is
the real input to the plant. We assume that all state variables
are visible to sensors, and therefore we have that ~x = ~y and
~x′ = ~y′ in the rest of the paper.

Example III.1. DC motors are extensively used as actuators
in electric vehicles and prototype autonomous cars. A DC

Fig. 1. An Execution of the CPS example

motor is equipped with torque converter, transmission, shaft,
and wheels, and provides rotary motion. The following ODE
models the behavior of a DC motor[

ẋ1

ẋ2

]
=

[
− b
J

KT

J

−Ke

L −RL

] [
x1

x2

]
+

[
0
1
L

]
u

such that x1 denotes the angular velocity of the motor and
x2 denotes the armature current. The control input is denoted
by u which is the voltage applied to the motor, it is updated
every 0.02 seconds based on the current value of x1 by a PID
control scheme whose goal is to maintain the angular velocity
along a specific (reference) value which could be different in
different time periods. Fig. 1 illustrates an execution of the DC
motor from the initial state x1(0) = 0, x2(0) = 0, where the
parameters are set as R = 1, L = 0.5, KT = 0.01, b = 0.1,
J = 0.01, and Ke = 0.01. The blue dashed line in the figure
shows the reference values for x1.

Threat Model. In this paper, our threat model consists of a
CPS and an attacker who is able to modify the data sent from
the sensor to the controller. In such a sensor attack, the data
read from the sensor might not represent the actual plant or
system state, i.e., ~x(t) 6= ~x′(t) in Fig. 3, and the controller may
produce an inappropriate control input based on the wrong
state, so that a well-defined stability controller might become
unstable, or a safety controller might steer the system to an
unsafe state. Therefore, sensor attacks could lead to safety
problems, and our goal in the paper is to present a framework
to ensure the safety of CPS under sensor attacks.

The attack scenarios under our consideration are given as
follows: (i) Modification attack. This attack modifies sensor
data before it reaches the controller by adding or subtracting
some values. Our technique does not restrict the number of
dimensions can be compromised. For example, the value ~x(t)
can be set to be ~x′(t) + (100, . . . , 100)T , all dimensions
compromised, or to ~x′(t) + (0, . . . , 0, 100, . . . , 100)T , partial
dimensions compromised, starting from the beginning of the
attack. (ii) Replay attack. The attacker sends the data from a
previous time period to the controller. That is, ~x(t) = ~x′(t−s)
starting from the attack for some s > 0. (iii) Delay attack. The
attack intentionally delays the data sent to the controller, i.e.,
~x(t) = ~x′(t0) for a time period of d where t0 is the start

time of the attack, and then ~x(t) = ~x′(t − d) for t ≥ t0 + d.
The Denial-of-Service (DoS) attack is also included in this
category as the case that the delay is infinite.

Fig. 2. The CPS example under a modification attack

Example III.2. We show an example of modification attack
in Fig.2. Starting from the time t = 5, the sensor data sent to
the controller is modified by an attacker that adds a bias of 5
rad/s to x1. Then after a small time period, the PID controller
cannot maintain the motor angular velocity near the reference
value which is 4 rad/s.

C. Overview of the Real-Time Recovery Framework

Our proposed architecture for real-time recovery is pre-
sented in Fig. 3. Note that this architecture can be applied as
an extension to an existing CPS and neither the original plant
dynamics nor the control algorithm needs to be modified. The
framework consists of four components, shown by the shaded
boxes: (a) recovery controller, (b) estimate reconstructor,
(c) deadline calculator, and (d) checkpointer. The following
briefly describes the framework, we will provide details in
Sections IV and V.

We consider two operating modes of the system: normal
and recovery mode. As shown in Fig. 3, the attack detector
determines whether the system is under attack (as mentioned
at the beginning of this section, this part is outside the scope
of our paper). The detector can utilize existing attack-detection
mechanisms such as [12], [13], [18], [19]. Designing attack-
detection methods is one of the most prolific areas in CPS
security, but as noted in the introduction, most attack-detection
papers do not propose what to do after an alarm is raised.
This gap is the focus of this paper; in particular we propose
that when the detector discovers attacks, the system will be
switched to the recovery mode; otherwise, the system operates
in normal mode.
Recovery Mode. In the recovery mode, the recovery con-
troller will take over control of the system. This controller
computes a Piece-Wise Constant (PWC) control sequence that
is guaranteed to steer the system back to target state set before
a safety deadline. This computation uses the reconstructed
state estimate and safety deadline produced by the following
two components. The estimate reconstructor rebuilds the state
estimate at the time point when an attack is detected, which is

Fig. 3. Design Overview of real-time recovery. Recovery controller: Sec-
tion IV. Checkpointer: Section V-A. Estimate reconstructor: Section V-B.
Deadline calculator: Section V-C.

Fig. 4. Illustration of real-time recovery in the timeline.

also the start point the PWC control sequence starts from. This
reconstruction uses trusted data given by the checkpointer. The
deadline calculator calculates a safety deadline, which is a
conservative estimation for the latest time when the system
should be steered back to a target state set or the earliest
time when the system may reach the unsafe state set. Serious
consequences may occur if the system cannot be recovered by
the safety deadline.
Normal Mode. In the normal mode, the original controller is
used to control the system. Our framework does not modify
this controller and uses the checkpointer to record historical
data, i.e., state estimates ~x(t) and control inputs ~u(t). The
recorded data will be used by the estimate reconstructor to
rebuild the state estimate as mentioned above in the recovery
mode. The checkpointer guarantees that the recorded data are
kept for a window of time to accommodate the detection delay.
The data within the window may be already compromised and
thus temporarily treated as untrustworthy, while the data that
is outside the window are treated as trustworthy.

An illustration of the real-time recovery framework in the
timeline is shown in Fig. 4. The variable x(t) denotes the state
value of a safety-critical system state variable at the time t.
Any state in the unsafe set should not be reachable, they are
used to indicate catastrophic events such as crashing to the
ground when the system is a UAV, or the collision of two
vehicles when the system is a platoon of vehicles. The target

set is a neighbourhood of the reference states of the original
system controller. The complement of the unsafe set is the
safe set, however a system is only guaranteed to be currently
safe when it is in a safe state.

Consider Fig. 4, where a sensor attack starts at t0. First,
before t0, the system runs normally, i.e., uses the original con-
troller and checkpoints historical data regularly. The system
tracks the reference as shown by the black curve. Second, the
attack detector raises an alert, but not before a certain detection
delay, i.e., the time interval between the onset of an attack and
detection of it, [9], [13], [18]. Thus, the attack is discovered at
time t0 + ta, where ta denotes the detection delay. During the
delay, the system is affected by the attack so that it deviates
from the reference state and further drifts out of the target set,
as shown by the red curve. Third, after the attack is detected,
the system is switched to the recovery mode at time t0 + ta.
The recovery controller drives the system back to the target
state set before t0 + ta + td, where td is the safety deadline,
as shown by the blue curve. This controller also ensures that
no unsafe state is reached during the recovery process.

IV. REAL-TIME RECOVERY USING PWC CONTROL

In this section, we introduce an approach to compute a
PWC control sequence for recovering in real-time a CPS
under a sensor attack based on a Linear Time-Invariant (LTI)
approximation of its plant dynamics. We show that the prob-
lem of finding such a sequence can be encoded by Linear
Programming (LP), and the result is guaranteed to recover the
original system when a conservative safe set and target set is
considered on the LTI model.

Assume that the plant dynamics of the CPS are defined by
a function ~x′(t) = ϕ(~x(0)′, t, ~u′(t)), which is not necessarily
known in our approach, such that ~x′(t) denotes the system
state at the time t, and ~u′(t) is the control function. As we said,
we only consider the discrete states ~x′(0), ~x′(δ), ~x′(2δ), . . .
where δ > 0 is the control stepsize, and the control input in
each step is constant. Then an LTI approximation for the plant
dynamics is of the form

~xk+1 = A~xk +B ~uk+1 (1)

where ~xk is an approximation of ~x′(kδ), and ~uk+1 = ~u′(t)
such that t ∈ [kδ, (k+1)δ]. In other words, the LTI system (1)
simulates the original system discretely by a stepsize δ using
the same control inputs. We further call the LTI approximation
an ε-approximation, if its state difference from the original
dynamics by one step is bounded by some ε > 0, i.e., for any
state ~s in the system state space X , any control input ~c in the
control input range U , we have that

ϕ(~s, δ,~c) ∈ {A~s+B~c} ⊕ Bε (2)

where Bε is the origin-centered ball whose radius is ε, and
⊕ denotes the Minkowski sum, i.e., X ⊕ Y = {x + y |x ∈
X, y ∈ Y } for any sets X,Y . The recovery control is obtained
based on an ε-approximation of the original dynamics in our
approach.

Why aren’t we using an open-loop control only based on
the LTI approximation? Even an ε-LTI approximation can-
not ensure the approximation quality for a long-term run.
Lemma IV.1 indicates that the overall approximation error
accumulates along the number of steps and linear in ε.
Although we may limit the overall error bound by reducing ε,
the quality of a long-term run is still hard to improve due to
the size of |A|. Therefore, the LTI model is only considered in
the recovery work which is generally over a short time period.

Lemma IV.1. Given an initial state ~x0 and a k-step control
sequence ~u1, . . . , ~uk, we use ~x′i to denote the reachable state
of the original system at t = iδ for i = 1, . . . , k, and ~xi to
denote the reachable state of the LTI approximation after the
i-th step. Then we have that |~x′i − ~xi| ≤ ε ·

∑i−1
j=0 |A|j where

| · | denotes the maximum norm.

Proof. Since ~xi = A~xi−1 +B~ui and ~x′i ∈ {~xi}⊕Bε, we have
that

~x′i ∈{A~x′i−1 +B~ui} ⊕ Bε
⊆A({A~x′i−2 +B~ui−1} ⊕ Bε)⊕ {B~ui} ⊕ Bε
={A2~x′i−2 +AB~ui−1 +B~ui} ⊕ABε ⊕ Bε

⊆{Ak~x0 +

i−1∑
j=0

AjB~ui−j} ⊕
i−1⊕
j=0

AjBε = {~xi} ⊕
i−1⊕
j=0

AjBε

Hence, the difference between ~x′i and ~xi is bounded by ε ·∑i−1
j=0 |A|j .

To recover a CPS we need to find a sequence of control
inputs ~u1, . . . , ~uN which steers the system from the current
state, to a state in the given target set when the sensor attack
is detected. We say that the recovery is in real-time when the
problem further requires that N should be no greater than a
given deadline D.

There are three main challenges to solve the real-time
recovery problem for a CPS. (i) The exact state of the system
at the current time is unknown due to the sensor attack.
(ii) The shortest length N for the recovery control sequence
is unknown. Moreover, the existence of an N -step recovery
control does not imply the existence an (N +1)-step recovery
control, which means that we have to check the feasibility
from the case N = 1. (iii) The computation time for obtaining
the recovery control should be nearly same as the response
time of the system controller, since we assume that the result
will be applied immediately at the current step. We present
an approach to address the challenges (ii), (iii), and leave the
technique of estimating the current system state to the next
section.

We seek to focus only on a fixed length for finding a
recovery control in order to avoid checking all possible lengths
which is computationally expensive. To do so, we require
that the target set only contains maintainable state of the LTI
system, and the recovery control problem on LTI systems asks
to find a control sequence below a specific length steering the
system from a conservative estimation of the current state to
a maintainable target set while no unsafe state is reached.

Definition IV.1. A state ~s of a given LTI system in the form of
(1) is maintainable, if and only if there exists a control input
~c such that (I −A)~s = B~c, i.e., ~s = A~s+B~c.

Definition IV.2 (Recovery problem on LTI systems). Given a
start state ~x0, a safe set XS , a maintainable target set XT ⊆
XS , a LTI system in the form of (1), and a deadline D, the
recovery problem asks whether there exists a control sequence
~u1, . . . , ~uN where N ≤ D steering the system from ~x0 to a
state in XT while all reachable states on the way are in XS .

Lemma IV.2. If there is a solution for the recovery problem
with N < D, then there is also a solution with N = D.

Proof. Assume that ~u1, . . . , ~uN is a solution for the recovery
problem such that N < D. Then the reachable state ~xN
from ~x0 after applying the N control inputs must be in the
maintainable set XT , and therefore there exists a control
input ~u∗ which maintains the system in the state ~xN after
one step. Hence, the solution ~u1, . . . , ~uN can be extended by
concatenating D−N many ~u∗ control inputs, and the extended
sequence is a solution whose length is D of the recovery
problem.

Finding the control inputs. Lemma IV.2 allows us to only
focus on the case N = D in looking for a solution for the
recovery problem. We use the variable ~xi to denote the state of
the LTI system at the i-th step, ~ui to denote the control input
used in the i-th step, then the recovery run can be described
by the constraint

φ =(~xD ∈ XT) ∧
D∧
i=0

(~xi ∈ Xs) ∧
D−1∧
i=0

(~xi+1 = A~xi +B~ui+1)

and when XT and XS are defined by linear constraints, the
recovery problem can be solved by finding a solution for the
following LP problem:

Find ~x1, . . . , ~xD ∈ X , ~u1, . . . , ~uD ∈ U s.t. φ (3)

where X is the state space and U is the range of all possible
control inputs of the original system.

We use E = ε ·
∑D−1
j=0 |A|j to denote the maximum bound

of the difference between the original system and its LTI
approximation in D steps, and BE to denote the original-
centered ball of radius E , then the following theorem tells
us that if we are able to find a recovery control sequence on
the LTI system on more restrictive safe set and target set, then
the result is also a recovery control sequence for the original
system.

Theorem IV.1. Assume that X ′S is the safe set and X ′T is the
target set which is not necessarily maintainable of the original
system. If ~u1, . . . , ~uD is obtained from a solution of the LP
problem (3) such that XS ⊕BE ⊆ X ′S , XT ⊕BE ⊆ X ′T , then
the control sequence can also used to recover the original
system.

Proof. By Lemma IV.1, for i = 0, . . . , D, the difference
between the original system state ~x′i at the time t = iδ and the

state ~xi of its LTI approximation after the i-th step is bounded
by E , since ~x0, . . . , ~xD ∈ XS and ~xD ∈ XT , we have that
~x′0, . . . , ~x

′
D ∈ XS⊕BE ⊆ X ′S and ~x′D ∈ XT ⊕BE ⊆ X ′T , i.e.,

the control sequence also recovers the original system.

Fig. 5. Illustration of the system recovering from the sensor attack as shown
in Example III.2

Example IV.1. We show the effectiveness of our real-time re-
covery approach on the sensor attacks given in Example III.2.
Since the original system is linear, our LTI approximation
is directly obtained by evaluating the solution form of the
ODE, and therefore the approximation error is just the Tay-
lor approximation error of the matrix exponential. We more
conservatively shrink the safe set from 0 ≤ x1 ≤ 10 to
1 ≤ x1 ≤ 9, and the target set from 3.5 ≤ x1 ≤ 4.5
to 3.7 ≤ x1 ≤ 4.3. Our approach successfully recovers the
system to the target set while no state on the way is unsafe,
as shown in Fig. 5.

Extension to a set of start states. Since ~x0 is only an
estimation of the system state when a sensor attack is detected,
we should take into account that there may be an estimation
error. To do so, we consider a set X0 of start states which
is a ball centered at ~x0 and its radius is ξ > 0 which is
the assumption of the upper bound of the estimation error,
i.e., X0 = {~x0} ⊕ Iξ. The following theorem tells us that if
a recovery control sequence is found only for ~x0 but under
more restrictive safe set and target set, then it also works for
all start state in X0.

Theorem IV.2. Given that X0 = {~x0}⊕ Iξ is a conservative
estimation of the start state, XS is the safe set, XT is the
target set which is maintainable, and D is the deadline, then
a solution of the following feasibility problem is a recovery
control which works on all states in X0.

Find ~u1, . . . , ~uD ∈ U s.t.
D−1∧
i=0

(~xi+1 = A~xi +B~ui+1)

D∧
i=0

~xi ∈ (XS 	AiIξ) ∧ ~xD ∈ (XT 	ADIξ)

where 	 denotes the Minkowski difference, i.e., X 	 Y =⋂
y∈Y {x− y |x ∈ X}.

Fig. 6. The checkpointer uses the sliding window based checkpointing
protocol proposed by [9].

Proof. We show that all reachable states from X0 in D steps
are contained in the safe set XS and the final reachable set
is contained in the target set XT . For i = 0, . . . , D, ~xi =
Ai~x0 +

∑i−1
j=0A

jB~ui−j . When ~x0 is replaced by the set X0,
then the reachable set at the i-th step becomes

Xi=A
iX0 +

i−1∑
j=0

AjB~ui−j=A
i({~x0} ⊕ Iξ)⊕ {

i−1∑
j=0

AjB~ui−j}

={Ai~x0 +

i−1∑
j=0

AjB~ui−j} ⊕AiIξ = {~xi} ⊕AiIξ

In order to ensure Xi ⊆ XS , we only need to require that
~xi ∈ XS 	AiIξ holds. The proof of the correctness of using
the constraint ~xD ∈ (XT 	ADIξ) is similar.

For simplicity, we may consider using the polyhedral
or even box underapproximations for the set XS 	 AiIξ,
XT 	 ADIξ, and the problem in Theorem IV.2 becomes an
LP problem. In the next section, we introduce our approach to
construct a conservative estimation of the system state when
a sensor attack is detected.

V. SUPPORTING COMPONENTS FOR REAL-TIME
RECOVERY

In this section, we give a detailed description for the design
of other components in our real-time recovery framework.
We firstly show that we may use the checkpointing protocol
method presented in [9] to obtain the nearest trustworthy
sensor data, based on which a conservative estimation of the
start state of recovery can be obtained using a reachability
computation technique, and then a conservative deadline can
be computed using a safety verification method.

A. Checkpointing Protocol

Historical state estimates during the detection delay are not
trustworthy as they may be already compromised due to the
attack. Thus, using them can result in unsuccessful recovery.
To accommodate this, we apply the sliding window based
checkpointing protocol proposed by [9] in this paper. The
protocol provides trustful historical data (i.e., state estimates
and control inputs) that can be used for reconstructing the state
estimate at the time point when an attack is detected. We now
summarize this protocol.

The protocol uses a detection window to capture the detec-
tion delay, where the length of the window equals the delay.
The detection window slides forward as the time ticks. The
protocol checkpoints the system, i.e., the state estimate ~x(t)

and control input ~u(t), at every control step t. There are three
steps: buffer, store, and delete.
i) Buffer. Fig. 6 shows an illustrative example. The detection
window has a length of ta. State estimates within the window,
i.e., {~x(t0), . . . , ~x(t0 + ta)} in the time interval of [t0, t0 +
ta], are first buffered, because they may be already corrupted
and whether they are correct is still in question. Note that the
recovery controller starts from the time step when an attack
is detected. Thus, these state estimates cannot be used for
reconstructing the state estimate ~x(t0 + ta) if we detect an
attack at time t0 + ta.
ii) Store. State estimates that moved outside the detection
window are considered to be trustful. They are stored and
can be used for reconstructing the state estimate. As shown in
Fig. 6, estimate ~x(t0 − 1) lays outside the window, and thus
{~x(t0−1), ~u(t0−1)} is stored and trusted to rebuild estimate
~x(t0 + ta) if detecting an attack at the time.
iii) Delete. The stored estimates and control inputs are dis-
carded if they are no longer needed. {~x(t0 − 2), ~u(t0 − 2)} is
discarded in the example.

B. State Estimate Reconstruction

We show that a conservative estimation X0 for the starting
state for recovery can be obtained using a reachability com-
putation technique on an LTI ε-approximation of the CPS.

Assume that a sensor attack is detected ta seconds after
the attack begins at the time t0, and there are in total
Na = ta/δ control steps in between. Then, the sensor data
at time t0 is stored by the checkpointing protocol and it is the
nearest trustworthy data based on which we will compute a
conservative estimation for the actual system state at the time
t0 + ta. We assume that this trustworthy state is ~xa.

According to the property of ε-approximation, we have that
the actual system state at the time t0 + ta must be contained
in the setANa~xa +

Na−1∑
j=0

AjB~cNa−j

⊕
Na−1⊕
j=0

AjBε (4)

where ~c1, . . . ,~cNa
is the control inputs used in the past Na

steps. Since the computation of the above set only involves
linear operations such as linear transformation and Minkowski
sum, a box overapproximation X0 of it can be obtained from
using the support function method [53], that is, the upper and
lower bounds of the above set in the i-th dimension can be
evaluated as

~li
T

ANa~xa +

Na−1∑
j=0

AjB~cNa−j

+

Na−1∑
j=0

√
~li TAj(Aj)T~liε,

~li
T

ANa~xa +

Na−1∑
j=0

AjB~cNa−j

− Na−1∑
j=0

√
~li TAj(Aj)T~liε

respectively, such that ~li is the column vector whose i-th
component is 1 and the others are 0. We may use this box

Fig. 7. Start state estimation. Line segments: overapproximations of the
reachable set at the time t = t0+δ, . . . , t0+Naδ. The exact system execution
which is denoted by the red dotted curve is guaranteed to be contained in the
overapproximations at the discrete times.

as a conservative estimation for the start state in the recovery
problem. The main idea is illustrated in Fig. 7.
Support function. The support function of a set S ⊆ Rn
according to a vector ~l is defined by ρS(~l) = sups∈S{~l T s}.
The support functions on convex sets have the following
properties:

ρAS(~l) = ρS(AT~l), for convex set S
ρS1⊕S2

(~l) = ρS1
(~l) + ρS2

(~l) for convex sets S1, S2

and for Ωj = AjBε, we have that ρΩj
(~l) =

√
~l TAj(Aj)T~lε,

and hence we have the above two expressions for computing
the upper and lower bounds respectively in the i-th dimension
for X0.
Computational cost for X0. We assume that the system has
n state variables and m inputs. We need to compute the lower
and upper bounds in n dimensions for X0. Although ~xa,
and ~c1, . . . ,~cNa

can only be obtained online, we may pre-
compute the matrices ~l TAk, ~l TAkB and ~li TAk(Ak)T~liε for
some large number k offline. Hence, the most computational
expensive work in computing each bound is the one multipli-
cation of two n-dimensional vectors in computing ~li TANa~xa,
and the Na multiplications of two m-dimensional vectors in
computing

∑Na−1
j=0

~li
TAjB~cNa−j .

C. Estimating a Conservative Deadline

Catastrophic events are described by unsafe state sets in
the analysis of CPS, and it is essential to recover a system
before any dangerous state is reached. However, computing
the earliest time when a system reaches an unsafe condition
is not easy since we do not know the actual system state after
the sensor attack begins. Therefore, we seek to compute a time
earlier than the exact deadline for recovering the system, and
we will do so based on safety verification.

We compute the reachable sets for the LTI approximation
model starting from the nearest trustworthy sensor data that is
the state at the time t0. The conservative deadline will be the
time of the reachable set right before the first reachable set
which has nonempty intersection with the unsafe set, as it is
shown in Fig. 8.

Since a valid deadline should occur after the attack is
detected which is at the time t0 + ta and we assume that
the system is safe during the time interval [t0, t0 + ta], we

Fig. 8. Deadline estimation. Line segments: overapproximations of the
reachable set at the time t = t0 + δ, t0 + 2δ, The deadline is computed
as t = t0 + ta + 3δ.

start the reachability computation from the set (4) which is
denoted by Z0, and the reachable set at the i-th step is

Zi =

ANa+i~xa +

Na+i−1∑
j=i

AjB~cNa+i−j

⊕
Na+i−1⊕
j=0

AjBε

⊕


i−1∑
j=0

AjB~cNa+i−j

︸ ︷︷ ︸
Φi

.

When the unsafe set is defined by linear constraints, we
only need to iteratively compute the corresponding support
functions for Zi and check the safety until the first unsafe set
is detected.
Computation of Φi. The first part of Zi is known based on
the nearest trustworthy state ~xa, the step number Na between
the beginning and being detected of the attack, and the number
i. However, the future control inputs ~cNa+1, . . . ,~cNa+i which
are needed in computing Φi are unknown when the attack is
detected. To fill these unknown values in predicting the safety
of Zi, notice that our purpose is to find only a time such that
it is possible for the controller to prevent the system from
reaching any unsafe state before it, so using it is reasonable in
our recovery task, therefore we may simply fill these control
inputs by zero or the input used in the current step. We may
also obtain two deadlines from both of the methods and choose
the later one for our recovery work.
Safety checking based on support functions. Assume that
the safe set XS is defined by the set of states satisfying a
conjunction of linear constraints

∧q
p=1 a

T
p ~x ≤ bp, and the

unsafe set is its complement. Then the reachable set Zi is
unsafe if and only if there is some 1 ≤ p ≤ q such that the
upper bound of aTp Zi is greater than bp, which can be known
by verifying whether

aTpA
Na+i~xa +

∑Na+i−1
j=0 aTpA

jB~cNa+i−j

+
∑Na+i−1
j=0

√
aTpA

j(Aj)Tapε

?
> b.

Computational cost for Zi. The analysis here is similar to that
for X0. The matrices aTpA

k, aTpA
kB and aTpA

k(Ak)Tapε for
some large number k can also be computed offline in advance,
because the LTI system and the unsafe set are known a prior.
The most expensive task to check each safety constraint is to

perform one multiplication of two n-dimensional vectors in
computing aTpA

Na+i~xa, and (Na + i) multiplications for two
m-dimensional vectors in computing

∑Na+i−1
j=0 aTpA

jB~cNa−j .
It is possible to meet the following two extreme cases in

finding a deadline. (a) The deadline obtained is exactly the
current time. This could happen when the current system state
is very close to or already in the unsafe set. If it is the case then
our recovery task fails. (b) The estimation algorithm could not
find a violation of the safe set after checking a large number of
steps. This could happen if the current system state is far from
the unsafe set and there is no danger over a long time. Since
the deadline estimation is done online, it has to be efficient. To
avoid checking too many reachable sets, which is unnecessary,
we set up an upper limit Dmax for the number of i, when there
is no unsafe Zi for all 1 ≤ i ≤ Dmax, then Dmax is used as
the deadline.

Note that our recovery framework is not confined to certain
deadline calculation approaches but always applicable as long
as a safety deadline can be given, i.e., the deadline selected
should be valid for just one control sequence.

VI. EVALUATION

We implemented a prototype tool of our real-time recovery
framework as well as the simulators for our CPS benchmarks
in Python. We consider the following CPS models: vehicle
turning, RLC circuit, DC motor position, aircraft pitch and
quadrotor. The LTI model for the plant in each benchmark is
obtained from first linearizing and then discretizing the orig-
inal dynamics in a bounded state space which is sufficiently
large to contain the CPS executions, and ε used in recovery is
the overall error bound introduced by the LTI simplification.

For each CPS model, we consider three sensor attack sce-
narios: modification, delay and replay attacks. Our prototype
tool is tested in the following way. For each scenario, we set
a start time and a detection time for the sensor attack, the
CPS execution is simulated by the simulator. When an attack
is detected, our recovery controller is activated immediately
to compute a recovery control sequence, and the result will
be applied immediately to the simulator when it is obtained.
Although our approach does not consider the time cost of
computing a recovery control in theory, this runtime overhead
is included in our experiments.

For each scenario, we provide a comparison among the
following three system executions:
No recovery: the system run under the sensor attack without
recovery. The system may drift to an unsafe state.
Non-real-time recovery: the system run under the recovery
method presented in [9]. This method does not guarantee the
recovery deadline.
Real-time recovery: the system run under the real-time re-
covery approach presented in the paper.
The experimental results are presented in Fig. 9 and Table I.
In addition, we also evaluate the scalability of our approach
based on the study of a model of heating in a point of a rod
located at 1/3 of the length and recording the temperature

at 2/3 of the length [54]. The model can be described by a
linear differential equation with N ≥ 2 variables each of which
denotes the temperature in a position on the rod. With more
state variables, we have a more accurate model. The details
are given in the rest of the section.

We provide a detailed description of all intermediate com-
putation results in the first benchmark, but only give the
experimental settings and final results for the rest of the tests.
Vehicle turning. Our first case study is a simple system that
models the turning of a vehicle changing the speed of each
wheel differently [9]. The physical dynamics are modeled by
the ODE

ẋ = −25

3
x+ 5u

where x denotes the speed difference of the wheels and u
is the control input which is the difference of the voltages
applied to the motors controlling the two wheels. When the
vehicle is moving straight, both of x and u are zero. When
the car is turning right, the left wheel should be rotating faster
than the right one. Here, the value of u is updated by the PID
controller every 0.02 seconds with the coefficients KP = 0.5
and KI = 7 to maintain the speed difference to a reference
value which is 1 meter per second here. We consider the
behavior of the system start from the state x = 1, such that the
controller initially tries to make the vehicle move straight, i.e.,
steering the value of x to 0, and at the time t = 5 seconds,
turns the vehicle to right, i.e., steering the value of x to 1.
The performance of our recovery approach is evaluated in the
following attack scenarios.
Modification attack. The attack adds a value of −1.5 to the
sensor data sent to the controller in every step starting at time
t = 4, and we assume that it is detected at time t = 5.6
and our recovery approach tries to steer the system to the
target set x ∈ [0.8, 1.2] while avoiding reaching anywhere
outside of the safe set which is x ∈ [−2.75, 2.75]. We use a
linear discretization of the system ODE with the error bound
ε < 10−7. As suggested by Theorem IV.1 and IV.2, we
conservatively shrink the safe set to x ∈ [−2.7, 2.7] and target
set to x ∈ [0.9, 1.1]. The recovery start state estimation X0,
i.e., the conservative estimation of the system state at the time
t = 5.6, and the deadline is computed as 3 control steps. As
shown in Fig. 9(a), our approach successfully recovery the
system before the deadline while the method in [9] is not able
to do that.
Delay attack. The delay attack delays the transmission of the
sensor data to the controller by 1 second. We consider the
same start time, the time of detection, the safe set and the
target set as those in the modification attack scenario. The
estimation for X0 is the range of [2.31251209, 2.31251339],
and the deadline is estimated as 4 steps. A comparison of the
system executions is shown in Fig. 9(b).
Replay attack. The attacker replays the sensor data from the
time 0 to 6 with the other settings same as those in the
modification attack scenario. The estimation X0 is obtained
as [2.2345892, 2.23459051], and deadline is computed as 5
steps. Fig. 9(c) shows our recovery result.

(a) Vehicle turning & modification attack (b) Vehicle turning & delay attack (c) Vehicle turning & replay attack

(d) RLC Circuit & modification attack (e) RLC Circuit & delay attack (f) RLC Circuit & replay attack

(g) DC Motor Position & modification attack (h) DC Motor Position & delay attack (i) DC Motor Position & replay attack

(j) Aircraft Pitch & modification attack (k) Aircraft Pitch & delay attack (l) Aircraft Pitch & replay attack

(m) Quadrotor & modification attack (n) Quadrotor & delay attack (o) Quadrotor & replay attack

Fig. 9. Comparison of the system executions under three situations for each attack scenario. RED = No recovery. YELLOW = Non-real-time recovery
(previous work [9]). BLUE = Real-time recovery (our proposal). Dotted Black Line = Reference state.

Series RLC Circuit. We consider the model of a basic RLC
circuit consisting of a resistor, an inductor, and a capacitor
connected in series. The state of the model is described by
two variables x1: the voltage of the capacitor, and x2: the
current in the loop. The control input u is considered as the
voltage applied to the inductor. The dynamics of the system
are given by[

ẋ1

ẋ2

]
=

[
0 1

C

− 1
L −RL

] [
x1

x2

]
+

[
0
1
L

]
u.

We assume that the voltage u is updated by a PI controller
every 0.02 seconds with the coefficients KP = 5 and KI =
5, and it tries to maintain the voltage across the capacitor
to a reference value. Similar to the previous benchmark, we
consider three attack scenarios and use the start time t = 3
and the time of detection t = 4.3 in all of the scenarios. The
system is safe when the voltage x1 is between [0, 7], and the
target set under our consideration in all attack scenarios is
[2.9, 3.1] for x1.
Modification attack. The attacker subtracts the value 2.5 from
the sensor data sent to the controller.
Delay attack. The attacker delays the sensor data by 1 second,

that is 50 control steps.
Replay attack. The attacker replays the sensor data in the first
250 steps.

Fig. 9(d), 9(e), and 9(f) show the experimental results.
In Fig. 9(e), our real-time recovery control firstly steers the
capacitor voltage to a low value and then drives it back
to a value close to the reference before the deadline. This
phenomenon can also been seen in some of the other tests
and is caused by the LP solver which searches the control
inputs along the boundary of the solution set. However, the
recovery control still safely steers the system to a target state.

DC Motor Position. The following ODE describes the control
of the position of a DC motor. ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 − b

J
K
J

0 −KL −RL

 x1

x2

x3

+

 0
0
1
L

u
where x1 is the rotation angle, x2 is the angular velocity,
and x3 denotes the armature current. The other parameters
are the same as those in Example. III.1. The PD controller
with coefficients KP = 11 and KD = 5 updates the value of

u every 0.1 second to maintain the rotation angle x1 along a
reference angle. The start time in all attack scenarios is t = 6
and the detection time is 4 seconds later. The DC motor is
considered to be safe if x1 is between [−4, 4] while the target
set is x1 ∈ [−1.67,−1.47].
Modification attack. The attacker adds the value 2 to the sensor
data transmitted to the controller.
Delay attack. The attacker delays the sensor data by 1 second,
that is 10 control steps.
Replay attack. The attacker replays the sensor data in the first
6 seconds.
Aircraft Pitch. The model of aircraft pitch can be described
by the following 3-dimensional ODE ẋ1
ẋ2
ẋ3

 =

 −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

 x1
x2
x3

+

 0.232
0.0203

0

u
such that x1 denotes the angle of attack, x2 denotes the pitch
rate, and x3 denotes the pitch angle. The control input is the
variable u which is the elevator deflection angle. We use a PID
controller with the coefficients Kp = 14,Ki = 0.8,Kd = 5.7
which updates u every 0.02 second to maintain the value of x3

along a reference angle. The start time in all attack scenarios
is t = 3 and the time of detection is t = 4.46. The system is
safe when the pitch angle x3 is between [0, 2], and the target
set is x3 ∈ [0.68, 0.72].
Modification attack. The attacker adds 0.68 to the sensor data
that transmitted to the controller.
Delay attack. The attacker delays the sensor data by 1 second.
Replay attack. The attacker replays the sensor data in the time
interval of [1, 2].
Quadrotor. We consider a linear quadrotor model described
in [55]. The system consists of 12 state variables: (x, y, z)
denotes the (relative) position, (φ, θ, ψ) denotes the angles of
pitch, yaw and roll respectively, (u, v, w) and (p, q, r) are the
velocity and angular velocity of the quadrotor. The controller
produces 4 inputs which are ft: total thrust, and [τx, τy, τz]

T :
control torques caused by differences of rotor speeds. We con-
sider a discrete PD controller with the coefficients KP = 0.1
and KD = 0.6 to maintain the altitude of the quadrotor at
z = 4 by a time stepsize of 0.02 seconds. The attack scenarios
are given as below. The start time in all scenarios is t = 12
and the detection time is 1.1 seconds later. The quadrotor is
considered to be safe if its altitude is between [−1, 8]. We use
the target set [3.9, 4.1] for the altitude.
Modification attack. The attacker subtracts all values from the
sensor data by 2. Delay attack. The attacker delays the sensor
data by 1 second. Replay attack. The attacker starts to replay
the sensor data from t = 0 to 5.

Similar to most of the formal verification and synthesis tech-
niques on CPS, our real-time recovery approach also assumes
that a set of control inputs can be calculated immediately
based on the current sensor data. The reason to do so is
the hardness of knowing the time cost of a controller due
to the highly uncertain hardware performance. However such
an assumption can never be perfectly achieved in practice.

Therefore, in Table I, we present the intermediate time costs
as well as the total time cost of computing a recovery control
for each attack scenario. We also show the ratios of the time
cost to the control stepsize, and most of them are below 50%.
As shown by the simulation results, all of the scenarios are
successfully recovered by our method.
Scalability Analysis. We investigate the scalability of our
approach based on a scalable heating model which is presented
in [54]. The model describes heating in a point of a rod located
at 1/3 of the length and recording the temperature at 2/3
of the length. The temperatures of the selected points on the
rod is described by a linear differential equation of the form
~̇x = A~x+Bu such that

A =
α

h2


2 −1
−1 2 −1

.
−1 2 −1

−1 2


B is a column vector whose (n/3)-th component is 1 and
others are zero, where n is the scale of A. We consider
the scales n = 25, 30, 35, 40, 45 and design a PID controller
whose stepsize is 0.2 seconds for each of them to heat the
point at 1/3 of the length from 0°C to 15°C, and produces
similar behaviors. Since our focus is on the scalability test, we
only consider one attack scenario in which the attack starts to
subtract the recorded temperature value at 2/3 of the length by
50 at the time t = 0, and it is detected at the time t = 20. Our
recovery task is to drive the temperature at 1/3 of the length
to the target degree range [7, 25] within the safe temperature
range [0, 40]. We bound the maximum recovery steps by 10.
Table II shows the intermediate and the total time costs for
computing the recovery control sequences. It can be seen that
even for 45 state variables, our method still costs only ∼ 50%
of the time period of the control stepsize to obtain a 10-step
recovery control.

VII. CONCLUSIONS

In this paper, we proposed a new attack-response architec-
ture, and a set of algorithms supported by formal methods to
perform a timely and safe recovery of a CPS after an attack
has been detected. We provided a formal analysis of our algo-
rithms, and in addition we evaluated the performance based on
various attack scenarios and also performed a scalability test.
The use-cases we analyze, show how our methods are able
to recover the attacked-system in a timely and safe manner,
outperforming previous related work.

There are several possible extensions for future work. For
example, in our analysis and simulations, we assumed a worst-
case scenario where all sensors were compromised, but our
system can perform better if only a subset of the sensors is
compromised, and the intrusion detection system tells us which
specific sensors are the ones we need to remove. Another
possible extension is our work on reachability analysis. We
will investigate the use of Linear Time-Varying models in

TABLE I
TIME COSTS OF COMPUTING THE RECOVERY CONTROLS. THE TIME UNIT
IS MILLISECOND. LEGENDS: #1: VEHICLE TURNING, #2: RLC CIRCUIT,
#3: DC MOTOR POSITION, #4: AIRCRAFT PITCH, #5: QUADROTOR, A:
ATTACK TYPE, δ: CONTROL STEPSIZE, k: # OF STEPS IN THE RECOVERY

CONTROL, X0 : TIME COST OF ESTIMATING X0 , TD : TIME COST OF
CALCULATING THE DEADLINE, TF : TIME COST OF FORMULATING THE LP

PROBLEM, TS : TIME COST OF SOLVING THE LP PROBLEM, %: RATIO OF
THE TOTAL TIME COST TO THE TIME PERIOD OF A CONTROL STEPSIZE.

B δ A k X0 TD TF TS Total %

#1
M 3 0.35 0.29 0.07 0.03 0.74 3.71%

20 D 4 0.34 0.35 0.06 0.02 0.77 3.84%
R 5 0.34 0.41 0.07 0.03 0.85 4.24%

#2
M 9 0.34 0.67 0.22 0.07 1.30 6.52%

20 D 18 0.34 1.62 0.41 0.14 2.49 12.46%
R 8 0.31 0.65 0.12 0.06 1.14 5.69%

#3
M 20 0.53 1.59 1.00 0.28 3.40 3.40%

100 D 20 0.28 1.54 1.70 0.29 3.81 3.81%
R 11 0.33 0.90 0.41 0.12 1.76 1.76%

#4
M 21 0.34 2.02 0.97 0.31 3.64 18.21%

20 D 21 0.36 2.02 1.50 0.29 4.17 20.86%
R 17 0.35 1.43 0.75 0.21 2.74 13.69%

#5
M 20 0.53 1.81 7.52 1.14 11.0 55.01%

20 D 20 0.43 1.75 7.38 1.14 10.70 53.55%
R 14 0.50 1.48 3.49 0.59 6.06 30.28%

TABLE II
SCALABILITY EVALUATION. THE TIME UNIT IS MILLISECOND. LEGENDS:

n: # OF VARIABLES, OTHERS: SAME AS THOSE IN TABLE I.

n X0 TD TF TS Total %

20 0.57 0.96 17.37 4.99 23.89 11.94%
25 0.57 0.99 41.26 6.95 49.77 24.88%
30 0.63 1.03 59.59 8.00 69.25 34.62%
35 0.66 1.11 74.64 10.22 86.63 43.32%
40 0.74 1.17 81.77 13.15 96.83 48.42%
45 0.75 1.28 86.68 17.23 105.94 52.97%

our recovery framework. Such models are able to better
approximate nonlinear dynamics even in a large state space.

Attack detection and recovery are essential for maintaining
safety and resilience in cyber-physical systems. While the
work on attack detection is extensive, work on attack recovery
has received comparatively little attention. In order to fully
realize the promise of various intrusion detection efforts, we
need to provide safe and secure attack-response mechanisms
that are activated automatically after an alert. We hope that
our work will motivate more research in this area.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
constructive comments and thank the anonymous shepherd for
being with us along the revision process. This work was sup-
ported in part by NSF CCF-1720579, NSF CCF-2028740, NSF
CNS-1931573 and the U.S. Air Force Research Laboratory
(AFRL) under contract number FA8650-16-C-2642.

REFERENCES

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in Design Automation Conference
(DAC). IEEE, 2010, pp. 731–736.

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE, 2011, pp. 163–168.

[3] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899–922, 2016.

[4] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards sur-
vivable cyber-physical systems,” in The 28th International Conference
on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2008,
pp. 495–500.

[5] N. Adam, “Workshop on future directions in cyber-physical systems
security,” in Report on workshop organized by Department of Homeland
Security (DHS), 2010.

[6] M. Wolf and D. Serpanos, “Safety and security in cyber-physical systems
and internet-of-things systems,” Proceedings of the IEEE, vol. 106, no. 1,
pp. 9–20, 2017.

[7] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer,
2013, pp. 55–72.

[8] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on
automated vehicles sensors: Experiments on camera and lidar,” Black
Hat Europe, vol. 11, p. 2015, 2015.

[9] F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018, pp. 22–
31.

[10] F. Kong, O. Sokolsky, J. Weimer, and I. Lee, “State consistencies
for cyber-physical system recovery,” in Workshop on Cyber-Physical
Systems Security and Resilience (CPS-SR), 2019.

[11] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee,
and G. J. Pappas, “Robustness of attack-resilient state estimators,” in
ACM/IEEE 5th International Conference on Cyber-Physical Systems
(ICCPS). IEEE Computer Society, 2014, pp. 163–174.

[12] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 801–816.

[13] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium (USENIX Security 20),
2020.

[14] R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient sensor fusion for
safety-critical cyber-physical systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 15, no. 1, p. 21, 2016.

[15] B. Ao, Y. Wang, L. Yu, R. R. Brooks, and S. Iyengar, “On precision
bound of distributed fault-tolerant sensor fusion algorithms,” ACM
Computing Surveys (CSUR), vol. 49, no. 1, p. 5, 2016.

[16] P. Lu, L. Zhang, B. B. Park, and L. Feng, “Attack-resilient sensor fusion
for cooperative adaptive cruise control,” in 21st International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 3955–
3960.

[17] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee,
“Design and implementation of attack-resilient cyberphysical systems:
With a focus on attack-resilient state estimators,” IEEE Control Systems
Magazine, vol. 37, no. 2, pp. 66–81, 2017.

[18] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–36, 2018.

[19] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, pp. 1–29, 2014.

[20] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “Roboads:
Anomaly detection against sensor and actuator misbehaviors in mobile
robots,” in 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2018, pp. 574–585.

[21] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2016, pp. 130–139.

[22] A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection,” SAE Technical
Paper, Tech. Rep., 2017.

[23] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” 57th Design Automation
Conference, 2020.

[24] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International
Conference on Information Assurance and Security. IEEE, 2010, pp.
92–98.

[25] J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantar-
cioglu, “Security and privacy in cyber-physical systems: A survey of
surveys,” IEEE Design & Test, vol. 34, no. 4, pp. 7–17, 2017.

[26] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection,
isolation, and reconfiguration methods,” IEEE transactions on control
systems technology, vol. 18, no. 3, pp. 636–653, 2009.

[27] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 14, no. 1, p. 13, 2011.

[28] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proceedings of the 6th ACM symposium
on information, computer and communications security, 2011, pp. 355–
366.

[29] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel, “Through
the eye of the plc: semantic security monitoring for industrial processes,”
in Proceedings of the 30th Annual Computer Security Applications
Conference. ACM, 2014, pp. 126–135.

[30] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-physical system,”
IEEE Symposium on Security and Privacy, 2018.

[31] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Lim-
iting the impact of stealthy attacks on industrial control systems,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1092–1105.

[32] K. Paridari, N. O’Mahony, A. E.-D. Mady, R. Chabukswar,
M. Boubekeur, and H. Sandberg, “A framework for attack-resilient
industrial control systems: Attack detection and controller reconfigu-
ration,” Proceedings of the IEEE, vol. 106, no. 1, pp. 113–128, 2018.

[33] R. Ma, S. Basumallik, S. Eftekharnejad, and F. Kong, “Recovery-based
model predictive control for cascade mitigation under cyber-physical
attacks,” in 2020 IEEE Texas Power and Energy Conference (TPEC).
IEEE, 2020, pp. 1–6.

[34] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time systems, vol. 28,
no. 2-3, pp. 101–155, 2004.

[35] T. T. Johnson, S. Bak, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” ACM Trans. Embedd. Comput. Syst.,
vol. 15, no. 2, p. 29, May 2016.

[36] X. Chen and S. Sankaranarayanan, “Decomposed reachability analysis
for nonlinear systems,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE Press, Nov 2016, pp. 13–24.

[37] ——, “Model-predictive real-time monitoring of linear systems,” in
IEEE Real-Time Systems Symposium (RTSS). IEEE Press, 2017, pp.
297–306.

[38] H. Yoon, Y. Chou, X. Chen, E. Frew, and S. Sankaranarayanan, “Predic-
tive runtime monitoring for linear stochastic systems and applications to
geofence enforcement for UAVs,” in Proceedings of Runtime Verification
2019, ser. Lecture Notes in Computer Science, B. Finkbeiner and
L. Mariani, Eds., vol. 11757. Springer, 2019, pp. 349–367.

[39] C. Le Guernic and A. Girard, “Reachability analysis of linear systems
using support functions,” Nonlinear Analysis: Hybrid Systems, vol. 4,
no. 2, pp. 250 – 262, 2010.

[40] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV), ser. Lecture Notes
in Computer Science, vol. 6806. Springer, 2011, pp. 379–395.

[41] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive,
high-level robot control,” IEEE Robotics Automation Magazine, vol. 18,
no. 3, pp. 65–74, 2011.

[42] S. Magdici and M. Althoff, “Adaptive cruise control with safety guaran-
tees for autonomous vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
5774 – 5781, 2017, 20th IFAC World Congress.

[43] C. Fan, U. Mathur, S. Mitra, and M. Viswanathan, “Controller syn-
thesis made real: Reach-avoid specifications and linear dynamics,” in
Proceedings of the 30th International Conference on Computer Aided
Verification (CAV), ser. Lecture Notes in Computer Science, vol. 10981.
Springer, 2018, pp. 347–366.

[44] T. Kushner, D. M. Bortz, D. M. Maahs, and S. Sankaranarayanan, “A
data-driven approach to artificial pancreas verification and synthesis,”
in 9th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS). IEEE Computer Society / ACM, 2018, pp. 242–252.

[45] B. Lu, “Linear parameter-varying control of an f-16 aircraft at high angle
of attack,” Ph.D. dissertation, North Carolina State University, 2004.

[46] M. Sato, “Robust model-following controller design for LTI systems
affected by parametric uncertainties: a design example for aircraft
motion,” International Journal of Control, vol. 82, no. 4, pp. 689–704,
2009.

[47] I. Jovanov and M. Pajic, “Relaxing integrity requirements for attack-
resilient cyber-physical systems,” IEEE Transactions on Automatic Con-
trol, vol. 64, no. 12, pp. 4843–4858, 2019.

[48] A. Khazraei and M. Pajic, “Attack-resilient state estimation with inter-
mittent data authentication,” 2020.

[49] E. Asarin, T. Dang, and A. Girard, “Hybridization methods for the
analysis of nonlinear systems,” Acta Inf., vol. 43, no. 7, pp. 451–476,
2007.

[50] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of nonlin-
ear systems with uncertain parameters using conservative linearization,”
in Proceedings of the 47th IEEE Conference on Decision and Control
(CDC). IEEE, 2008, pp. 4042–4048.

[51] T. Dang, O. Maler, and R. Testylier, “Accurate hybridization of nonlinear
systems,” in Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control (HSCC). ACM, 2010, pp.
11–20.

[52] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a:
secure system simplex architecture for enhanced security of cyber-
physical systems,” arXiv preprint arXiv:1202.5722, 2012.

[53] C. Le Guernic, “Reachability analysis of hybrid systems with linear
continuous dynamics,” Ph.D. dissertation, Université Joseph Fourier,
2009.

[54] Y. Chahlaoui and P. Van Dooren, “A collection of benchmark examples
for model reduction of linear time invariant dynamical systems,” SLICOT
Working Note, 2002.

[55] F. Sabatino, “Quadrotor control: modeling, nonlinear control design, and
simulation,” Master’s thesis, KTH Royal Institute of Technology, 2015.

