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Abstract—In the past decade we have seen an active research
community proposing attacks and defenses to Cyber-Physical
Systems (CPS). Most of these attacks and defenses have been
heuristic in nature, limiting the attacker to a set of predefined
operations, and proposing defenses with unclear security
guarantees. In this paper, we propose a generic adversary
model that can capture any type of attack (our attacker is not
constrained to follow specific attacks such as replay, delay, or
bias) and use it to design security mechanisms with provable
security guarantees. In particular, we propose a new secure
design paradigm we call DARIA: Designing Actuators to
Resist arbItrary Attacks. The main idea behind DARIA
is the design of physical limits to actuators in order to
prevent attackers from arbitrarily manipulating the system,
irrespective of their point of attack (sensors or actuators)
or the specific attack algorithm (bias, replay, delays, etc.).
As far as we are aware, we are the first research team to
propose the design of physical limits to actuators in a control
loop in order to keep the system secure against attacks. We
demonstrate the generality of our proposal on simulations
of vehicular platooning and industrial processes.

Index Terms—Cyber-Physical Systems, Optimal Defense,
Security-by-Design.

1. Introduction

Securing computing systems that interact and change
the physical world is becoming a priority as cars, drones,
control systems, and medical devices become more con-
nected and controlled by software. In the past decades
there have been several confirmed attacks to control sys-
tems, including attacks to a sewage control system in
Australia [1], a nuclear enrichment facility in Iran [2], the
power grid of Ukraine [3], a steel mill in Germany [4], a
paper mill in Louisiana [5], and an unidentified industrial
control system in the Middle-East [6]. In all these cases
an attacker was able to partially compromise a system
and then launch control signals that drove these systems
to cause accidents and damage (e.g., the attacker of the
sewage system in Australia caused more than 750,000
gallons of untreated sewage water to be released into
parks, rivers, and hotel grounds causing loss of marine
life, jeopardizing public health, and costing more than
$200,000 in cleanup and monitoring costs).

In this paper we consider this threat model, where
an attacker has already partially compromised a system

(having access to a controller, sensor, or actuator) and tries
to drive the system to an unsafe state. While the research
community has been active in trying to detect and prevent
these attacks, we have found three major limitations of
previous work.

First, most of the threat and attack models in previous
work presented in security conferences assume that the
control signal of the attacker is specified a priori and
constrained to a few parametric models. For example, a
scaling attack [7] takes a compromised value ut (at time
t) and scales it with a constant value (γ) to produce the
attack at = γut, a bias attack [8], [9] takes a compromised
value u and adds a constant bias, such as decrease the
water level sensor by 1mm each second [8], producing
the attack time series at = ut − b. Abrupt-attacks take
the maximum possible value a signal can have [8]–[10]
(e.g., set a sensor to the highest level) [8], thus produc-
ing the attack signal at = maxu, delay attacks take a
compromised signal ut and delay it in time, giving the
attack time series at = ut−τ [7], and random attacks
replace the compromised signal with an attack at chosen
from a fixed random probability distribution [11], [12].
While all of the examples presented so far are from cyber-
security conferences, the literature in control systems has
very similar attacker models with replay attacks [13], [14]
(at = ut−τ ), or scaling attacks [15] (at = Tut, with
T a matrix). In contrast, in this paper we consider that
the attacker has full control of the attack signals, and is
not constrained to a parameterized attack; in particular, at
every single time t, the attacker can chose any arbitrary
value at ∈ A, where A is the space of all possible
physical values at can take. Letting the attacker select
any arbitrary value at any time is important because if the
defender constrains the attacker to follow a small subset
of parametric attacks like previous work, then defenders
cannot guarantee that their security solution will be valid
for all possible attack strategies.

Second, most of the previous work dealing with par-
tially compromised systems has focused on detecting at-
tacks [8]–[10], [16]–[18]. While there are several efforts
trying to protect these systems from attacks such as se-
curing in-vehicle car networks [19], [20], the problem of
how the physical dynamics of a control system evolve
when the system is under attack remains largely unad-
dressed. Perhaps the closest work to our proposed effort
is the use of resilient estimation in control systems, such
as adaptive cruise control [12], [21], where the idea is
to detect an estimation inconsistency and discard these
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measurements while predicting the future based on the
last known measurement. However, as shown by Urbina
et al. [16], there will always be attacks that can go
undetected if the attacker chooses the attack time series
to follow closely the expected behavior of the system.
In addition, these resilient estimators were evaluated with
parametric attacks such as a delay attack, or a denial-
of-service attack, and again, do not consider a powerful
adversary that can select an arbitrary value that avoids
detection. Finally, resilient estimation approaches work
only when the adversary compromises sensor data, but
if the adversary compromises a control algorithm, then
the estimation algorithm will work correctly and it won’t
prevent the adversary to drive the system to an unsafe
space.

Third, most previous efforts show specific examples
where under a set of example attacks, the system is able
to survive them. However, they do not offer formal proofs
of security that guarantee that no matter what strategy
the attacker selects (e.g., attacks outside of the examples
shown), the system will remain under safe operation and
will survive the attack.

In this paper we address these three limitations by
proposing a new design paradigm for securing control sys-
tems against arbitrary attackers. In particular we propose
DARIA: Designing Actuators to Resist ArbItrary Attacks
and show how it provides provable security guarantees.
We show that by properly designing the limits of an
actuator we can prevent the attacker from driving the
system to unsafe regions, no matter what strategy (bias,
delay, etc.) or point of entry (sensor, actuator, controller)
the attacker selects.

The basic idea behind our insight can be easily ex-
plained by an example: assume there is a valve with
operating range from 0 to 470 liters per second that lets
water into a tank. If an attacker compromises the control
signal and can use this valve to overflow the tank, then
we know the system is not safe. However, if by installing
a different valve with operating range from 0 to 330 liters
per second the adversary cannot overflow the tank, then
we can say that with the second valve the system is secure.
We take this intuitive idea and formalize it to propose
a rigorous design algorithm that can be proven secure
against a powerful adversary. As far as we are aware,
we are the first research team to propose the design of
physical limits to actuators in a control loop, in order to
keep the system secure against attacks. Our solution can
be implemented physically (in the actuator itself) or in
software.

In particular, we design an efficient algorithm that
gives an outer bound to the set of possible reachable
states by the adversary, and then, show how to design
the bounds in the actuators of a system to prevent the
adversary from reaching unsafe states.This procedure only
needs to be done at the design state of the CPS, and will
prevent any adversary which compromises the system at
any future point, from violating the safety limits of the
system. In addition, it does not matter if the adversary
compromises the sensor, actuator, or controller, as our
system is designed such that no actuation can drive the
system to unsafe regions.

The rest of the paper is organized as follows: In
Section 2 we introduce the main problem, the adversary

model, and the definition of security. We present the
security analysis and the mechanism to design safe CPS in
Section 3. In Section 4 we validate our approach in two
case-studies, a classical process control problem called
the quadruple tank process, and a vehicular platooning
scenario. We finalize the paper with discussions on Lim-
itations, Future Work, and Related work.

2. Problem Formulation

Physical processes can be represented by a set of
differential (or difference) equations that capture their
dynamic behavior. One of the most popular ways to model
these systems are linear time invariant systems [16]:

xt+1 = Axt +But (1)

where at each tth time sample, xt ∈ X is the vector of
size n that represents the system states (e.g., temperature,
velocity, pressure, etc.), ut ∈ U is the vector of size
m that represents the control inputs (e.g., valve position,
acceleration, steering angle, etc.). Matrices A ∈ R

n×n,
and B ∈ R

n×m indicate how the current states and control
action will affect the future states.

Most of the literature in control systems assumes
xt ∈ R

n and ut ∈ R
m; that is, they assume that the states

x and the control (and ultimately actuation) commands u
are unbounded and could take near infinite values [13],
[14], [22]. While this assumption is clearly impossible in
real life—a water valve cannot allow an infinite amount of
water to flow into a tank—the reason for this unbounded
assumption is twofold: First, allowing x and u to be
unbounded allows the simplification of the mathematical
analysis of the system and can allow researchers to obtain
clean mathematical expressions for the control algorithm
and for the behavior of the system; this assumption has
allowed proofs related to system controllability and ob-
servability [23] or the optimal estimation of states in a
stochastic system with a Kalman filter [24]. Second, for
most practical systems this assumption makes sense, as
Equation (1) usually represents the behavior of a system
close to their operational point, and the goal is to keep the
states xt close to the selected operational points, which
are selected to be 0 for practical purposes—therefore,
popular control algorithms (such as PID control) which
create control inputs ut proportional to xt will therefore
generate control values that remain small and bounded for
most practical scenarios.

While the general assumptions on the behavior of con-
trol systems are satisfied for most practical use-cases and,
therefore, they can be analyzed (without an adversary)
using unbounded states and unbounded control signals, the
existence of an adversary will break these assumptions.

2.1. New Adversary Model

In her National Computer Systems Security Award
Acceptance Speech in 1999, Dorothy Denning explained
succinctly how systems that are proven secure, are proven
under a specific adversary assumptions, and then gave ex-
amples of how the way to crack a system is to step outside
the box, to break the rules under which the protocol was
proved secure [25]. Over the years, system after system
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has been defeated by adversaries that break the assump-
tions of the model. The most recent high-profile example
is the case of attacks against key handshakes in WPA2 [26]
which were proven secure [27] under a model that did
not capture key installation. In an effort to increase the
confidence of a security proof, adversary models used in
formal proofs tend to be as general as possible [28]–[30],
e.g., by assuming adversaries to be any polynomial time
algorithm [29], [30] (without parameterizing the specific
attacker algorithm used to crack the system).

In this paper we attempt to bring a similar generic
adversary model so that we capture a powerful adversary
that has compromised a control signal and which will
have the ability to change it arbitrarily. Our attacker is
not constrained to follow specific attacks such as replay,
delay, scaling or bias attacks previously considered in the
literature. Using this general adversary model, we now
define what it means to be secure.

2.2. Definition of Security

Intuitively, a CPS is secure if there exists no attack
that can drive the system to an unsafe (dangerous) state.
We now define this statement formally:

Dangerous States. The set of dangerous states D
can be represented mathematically as the union of κ half
spaces of the form c�j x ≥ bj , as follows

D :=

{
x ∈ R

n

∣∣∣∣∣ ⋃κ

i=1
cTi x ≥ bi

}
. (2)

For example, if our states are x1 = temperature and
x2 = pressure, a dangerous state could be when the
temperature is greater than 100o F and pressure is greater
than 50 Pa. Therefore, we have two half-spaces, one
with c1 = [1, 0]�, b1 = 100 and the other with c2 =
[0, 1]�, b2 = 50.

Let at denote the control signals that can be manip-
ulated by the attacker (whether this is indirect with a
sensor compromise, or directly by attacking the actuator
or the control signal), then the CPS under attack has the
following dynamics:

xt+1 = Axt +Bat (3)

Definition 1. Secure CPS: We say that the CPS in Equa-
tion (3) is secure if and only if ¬∃(a0, a1, . . . aT )
for any arbitrary time duration T that satisfies the
following proposition: ∃t∗ such that xt∗ ∈ D and
∀t ∈ {0, . . . , T}at ∈ U .

The definition of security above states that there is
no attack sequence that causes the state of the system
(at any point in time) to reach the unsafe states D. The
attack sequence has to be in the bounded space of possible
actuation commands U , which depends on the physical
limits of the actuators—e.g., a valve can only allow water
at a certain flow rate, or vehicles can accelerate at a
maximum of (for example) 9.8m/s2. The attacker cannot
exceed these values.

We will show how to prove that a CPS is secure
in Section 3. In particular in the next section we will
introduce a sufficient condition to prove that a given CPS
is secure. If we cannot prove security of the system with

the current conditions, we then show that if there exists a
set U that will pass the sufficient condition, then we can
find it (and therefore we can prove that we can make the
CPS secure).

We will also show in the examples of the paper that the
above definition of security also works when the operation
of the system is given by the following equation:

xt+1 = Axt +B1ut +B2at (4)

where B1ut denotes the part of the system that is still
controlled by the defender, and B2at the part of the system
compromised by the attacker.

In the next section we will describe how our approach
solves the following two problems:

• Counterexamples: If the current configuration
of the CPS system is insecure, our attack de-
sign attempts to find a feasible attack sequence
a0, a1, . . . , uT that will drive the system to an
unsafe state at time T . We will show how this
approach can find attacks that are not intuitive,
and which would be very difficult for an attacker
to find without our formulation. One such example
will be presented in Section 4.2 where we show
that the feasible attacks require the attackers to
create an oscillation in the system.

• Security: We show how to efficiently find an ap-
proximation to the outer bounds of all possible
states that the attacker can drive the system to,
and then show how adjusting the bounds on the
control signal space U , we can iteratively find an
secure configuration of the CPS system.

3. Security Analysis and Design of Safe CPS

In order to test if a system represented by equation (3)
is secure according to Definition 1, we study the evolution
of the system after t time steps. To this end, we can exploit
the recursive structure of Equation (3) as follows:

x1 = Ax0 +Ba0

x2 = Ax1 +Ba1 = A(Ax0 +Ba0) +Ba1
...

xt = Atxt−1 +Bat−1 = Atx0 +
∑t−1

j=0
At−1−jBaj .

Thus, for any initial state x0, and the input sequence
a0, a1, . . . , at−1, the system states at any time t are:

xt = Ax0 +
∑t−1

j=0
At−1−jBaj . (5)

The second term in the right can be rewritten as

[At−1B,At−2B, . . . , A0B]

⎡⎢⎢⎣
a0
a1
...

at−1

⎤⎥⎥⎦
Let H = [At−1B,At−2B, . . . , A0B] and U =
[a0, . . . , at−1]

� be the complete input sequence up to time
t− 1. We can rewrite (5) as follows:

xt = Atx0 +HU . (6)

The above equation gives us the expected trajectory
of a system under attack. We now use that equation to
attempt to find feasible attacks.
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3.1. Feasible Attacks

In this section we discuss our first step in the security
analysis of a CPS. In particular we show how the attacker
can attempt to find a feasible attack; that is, an attack
signal that drives the system to one of the unsafe regions.
We will show how our problem formulation can find
attacks that are not intuitive. One such example will be
presented in Section 4.2 where we show that the feasible
attacks require the attackers to create an oscillation in the
system.

We assume the adversary wants to drive the system
states (e.g., temperature, velocity, pressure) to a desired
unsafe state xd ∈ D in at most T units of time. If there
is an attack vector U in Equation (6) that satisfies xd =
AT x0 +HU and that each ut is bounded by U then we
know the system is not secure.

The question is how can we find this attack in a large
search space. One of our insights is that we can formulate
this search problem (and all the other search problems
presented in this paper) as a semidefinite programming
problem [31]. Semidefinite programming is a relatively
new field that is growing in popularity because of the vari-
ous applications in operations research and engineering. In
semidefinite programming we search for a feasible solu-
tion subject to the constraint that an affine combination of
symmetric matrices is positive semidefinite. Such a con-
straint is nonlinear and nonsmooth, but convex, so positive
definite programs are convex optimization problems can
be solved with primal-dual interior-point methods [32].

In addition to performing a search to find a feasible
solution U , semidefinite programming allows us to define
an optional objective function (like most optimization
approaches) in case we want to find not only a feasible
solution, but the best feasible solution according to the
objective function. In general, finding feasible attacks
for a single state xd can be formulated as the following
optimization problem with objective function 0 (i.e., we
do not care about optimizing any objective, although that
can be changed to include an objective function).

Attack Discovery

min
U

0

s.t.

xd = AT x0 +HU (7)

uj ∈ U , for all j = 0, 2, . . . , T − 1

xT = xd

In order to solve this problem we use YALMIP [33],
a tool to formulate and solve complex optimization prob-
lems interfacing many external commercial and non-
commercial solvers. The particular solver we use in this
work is SDPT3 [34], which uses primal-dual path follow-
ing algorithms to solve semidefinite linear and quadratic
optimization problems. The idea behind this algorithm is
that at each iteration it tries to decrease the duality gap as
much as possible while keeping the iterates close to the
central path, which ensures that the algorithm converges
to a solution [35]. Another reason we chose SDPT3 over
other solvers is for its ability to solve a wide variety of
convex optimization problems, including the ones with

objective function of the form − log detP (which we will
use in Section 3.2) which can be solved more accurately
than with other solvers (e.g., the SEDUMI solver is unable
to exactly compute − log detP so it uses a linearized
approximate expression), and the ability to solve Linear
Matrix Inequalities, which we will use in the next section.

The characteristic of our proposed attacker model is
that they can generate any allowable attack sequence by
compromising directly the controller (gaining access to the
PLC or intercepting the control commands) or the sensors.
The only limitation of our attacker is given by the physics
of the actuation devices, e.g., min/max voltage, min/max
acceleration. This means that this is the strongest type of
attack.

While our problem formulation and its solution via
SDPT3 is sound, in the sense that any feasible solution
will show an attack that drives the system to an unsafe
space, our formulation is not complete. If we cannot find
an attack, this does not necessarily mean that the system
is secure. In the next section we solve this problem by
presenting a condition that can guarantee that a system is
provably secure (i.e., attacks that drive the system to an
unsafe space do not exist).

In particular, in the next subsection we will introduce
new tools to help us find approximations of the reachable
set, such that it is possible to determine if a system
is secure by solving an efficient search problem. If the
system is not secure, we will redesign it in order to
guarantee that it remains safe for any input sequence.

3.2. Security-by-Design

Our goal is now twofold: (1) to find conditions that
give a sufficient guarantee for security (no attack can
damage the system) and (2) to redesign the actuation
constraints in order to guarantee that no unsafe state is
feasible (i.e., the unsafe set does not overlap with the
reachable set). We start by finding sufficient conditions
for the nonexistence of attacks.

Definition 2. For a given initial state x0, the reachable set
R corresponds to the set of states x ∈ X that can be
reached starting from x0 by any arbitrary sequence
u0, u1, . . . , where each input is bounded by umin ≤
ui,t ≤ umax.

Notice that in Definition 2, the reachable set includes the
states that can be reached by infinite input sequences. As a
consequence, obtaining the exact reachable set for a given
system is computationally intractable; however, there are
tools from control theory to find ellipsoids that contain the
reachable set. The ellipsoid equation can be represented
using matrix and vectors operations. For example, suppose
we want to represent an ellipsoid in 2 dimensions, x1, x2.
A typical equation of an ellipse centered in zero and ro-
tated 45o is x2

1−x1x2+x2
2 = 1. The matrix representation

is then x�Px = 1, with P =

[
1 −0.5
−0.5 1

]
. Similarly,

we can represent any higher dimension ellipsoid by just
defining an adequate matrix P . Our goal is to find an
ellipsoid which encapsulates the entire reachable set. This
is what will give us the sufficient condition for security:
if our ellipsoid does not intersect with the unsafe region,
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then we know that there is not possible trajectory that can
reach the unsafe region.

We define these ellipsoids as:

E(P ) :=
{
x ∈ R

n | xTPx ≤ 1
}
, (8)

where P ∈ R
n×n is a positive-definite matrix.

We can define dE ∈ R as the signed distance between
the ellipsoid E(P ) and the half spaces of the form cix ≥ bi
for i = 1, . . . , κ that represent the dangerous states as
described in Section 2.2. Therefore, according to [36], we
have that

dE = min
i

(
|bi| −

√
c�i P

−1ci√
c�i ci

)
. (9)

If dE ≤ 0, then the ellipsoid overlaps with at least one
half space. On the other hand, dE > 0 implies that there
is no overlap.

If there exists at least one element of the dangerous
states D that is also contained in the reachable set R,
the system is not secure. Therefore, if we are able
to find an ellipsoid that does not overlap with the
dangerous states (i.e., dE > 0), since R ⊆ E(P ), we
can guarantee that the reachable set does not overlap
with the dangerous states either, and the system is
secure. We will introduce the mathematical formulation
and the optimization problem but the details of the proofs
can be found in Appendix A.

Before introducing our main result, we can concisely
write each actuator bound as |ui,t|2 ≤ γi for i = 1, . . . ,m.
To ensure the convexity of the optimization problem, the
entire set of actuator bounds U can be approximated to

an ellipsoid of the form Ũ = {u ∈ R
m : u�Ru ≤ m},

where R = diag
(

1
γ1
, . . . , 1

γm

)
, such that U ⊆ Ũ , where

the notation diag(a) for a vector a ∈ R
n refers to a n×n

diagonal matrix with the elements of a in its diagonal.
Now, the following Proposition allows us to compute

an ellipsoid that contains the reachable set for given
bounds R.

Proposition 1 (Reachable Set Approximation). For the
LTI system (1) with controllable pair (A,B), and
upper bounds γi ≥ 0, i = 1, . . . ,m collected in R,
if there exists an a ∈ (0, 1) for which the positive
definite matrix P is a solution of the following convex
optimization problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
P

− log detP,

s.t. P > 0, and[
aP −ATPA −ATPB
−BTPA 1−a

m R−BTPB

]
≥ 0,

(10)

then R ⊆ E(P ) and E(P ) has minimum volume.

The objective − log detP tries to minimize the volume
of the ellipsoid such that it is as close as possible to the
reachable set. Now, since our intent is to redesign the
bounds R to avoid dangerous states, we can formulate an
optimization problem incorporating the dangerous states
D according to the following Theorem:

Theorem 1 (Bound Design). Consider the LTI system (1)
with controllable pair (A,B) and a set of dangerous
states D defined by (2). If there exists an a ∈ (0, 1)

for which the positive definite matrix P is a solution
of the following convex optimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
P,R,λ

trace(R),

s.t. P > 0, R ≥ R0, and[
aP −ATPA −ATPB
−BTPA 1

m (1− a)R−BTPB

]
≥ 0,[

P −0.5λci
−0.5λcTi λbi − 1

]
≥ 0, i = 1, ...,m,

(11)
then the new actuator bounds γi := (1/[R]ii), i =
1, ...,m, enforce that the resulting reachable set R
does not intersect with the dangerous states D.

The proof of Theorem 1 can be found in Appendix A

Remark 1. In Proposition 1 and Theorem 1 there is an
unknown parameter a that enters nonlinearly with the
variable P that quantifies an approximation of the
reachable set. To side-step the nonlinearity that is
caused by the product aP , it is possible to perform a
grid-search or bisection over the parameter “a,” such
that the optimization is repeated a number of times for
different values of a. The solution, P , that corresponds
to the bounding ellipsoid with minimum volume is the
one that is ultimately kept.

To solve the optimization problem in Equation (11) we
use YALMIP with the SDPT3 solver. An example of the
code to find the optimal bounds is presented next:

Listing 1. Code to compute the optimal bounds
a = 0 . 9 9 ;
P= s d p v a r ( n , n , ’ symmet r i c ’ ) ;
R= s d p v a r (m,m, ’ d i a g o n a l ’ ) ;
L= s d p v a r ( 1 , 1 ) ;
Co=(P>=0);
Co=Co+(R>=0);
Co=Co + ( [ a *P−A’* P*A −A’* P*B ;

−B’* P*A (1−a )*R−B’* P*B] >=0);
f o r i =1 : k
Co=Co + ( [ P −0.5*L* c ( i , : ) ;

−0.5*L* c ( i , : ) ’ L*b ( i )−1]>=0)
end
s o l = o p t i m i z e ( Co , t r a c e (R) , ops )

Notice that we only need a few lines of code to formu-
late the entire optimization problem and find the optimal
solution. Also, notice that Theorem 1 is completely in-
dependent of time, given that the approximation of the
reachable set considers any attack sequence, even if it is
infinite.

Remark 2. Given that P is symmetric, and R is diag-
onal, the number of decision variables is given by
n(n+ 1)/2 +m, where m is the number of actuators
and n is the number of states of the system model.
Since the problem is convex and linear, infeasible
primal-dual path-following interior-point algorithms
(the one used by SDP3) can efficiently solve the
optimization problem in polynomial timeO(nL). [37],
[38]. Given that our optimization problem is solved
offline, the proposed methodology can therefore easily
handle large systems.
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3.3. Summary of our Proposal

We now summarize the main points of our proposal.
Figure 1 outlines our security analysis and then our se-
curity design to guarantee that the physical process will
behave in a safe manner, even in the presence of attacks.

Attack Discovery
Eq. (7)

feasible?

Reachable Set
Approximation
(Proposition 1)

distance?

SAFEBound Design
(Theorem 1)

UNSAFE?UNSAFE

no

dE > 0

dE ≤ 0

yes

Figure 1. Flowchart of methods proposed in this paper.

Attack Discovery: Our first analysis is to find if
there are feasible attacks to the system, as outlined in
Equation (7). Our search algorithms are sound in that a
solution is an attack which drives the system to an unsafe
space; however, our attack design is not complete, in the
sense that it does not guarantee that if an attack exists,
our algorithms will find it.

We use this attack design problem in the next section
as a baseline to compare the attacks our algorithm finds to
other attacks proposed in the literature, and show that our
attacks can be potentially more damaging and sometimes
counterintuitive (i.e., not easy to find). If we find an attack,
then it is clear that the system is unsafe in its current
design, and then we have to use Theorem 1 to design
bounds for the actuators.

Reachable Set Approximation (Proposition 1): If
we do not find an attack, we can use Proposition 1,
which uses our new method to compute the outer bound
approximation of the reachable sets. If we find that the
distance from our ellipsoid approximation to the unsafe
states is greater than zero, then we can formally conclude
that the system is safe, even under attacks.

While a positive distance guarantees that the system
is safe, a negative (or zero) distance, on the other hand
does not give us a guarantee that the system is unsafe.
Proposition 1 gives us an outer approximation to the
reachable states, but it is a conservative approximation that
guarantees that the behavior of the system cannot leave the
computed ellipsoid, but does not guarantee that all states
in the ellipsoid can be reached. As a result we cannot
prove the system is either safe or unsafe, and therefore
we have to take a look at Theorem 1 to design a new
system that will be secure.

Bound Design (Theorem 1): If the system is unsafe
(as determined by the attack design problem), or if we

cannot prove the system is safe (with Proposition 1), we
can turn to Theorem 1. By designing new bounds to the
actuators of the system, we can change the system to
formally prove the system is safe. Notice that this bound
design problem is always feasible (assuming we start in
a safe state) because the possibility of having all control
bounds equal to zero (forcing the system to not have any
external input) will maintain the system in a safe condition
at all times. Theorem 1 guarantees the largest limits that
keep our ellipsoid approximation from intersecting the
unsafe region.

In the next section we will show how we use these
three tools (attack discovery, outer bound approximation,
and the design of physical limits) to identify threats to the
system, and design new systems that are secure against
these powerful new attacks.

4. Case Studies

In this section we show how to apply our theoretical
results to practical problems.

4.1. Case Study 1: Quadruple Tank Process

The quadruple tank process [39] is a benchmark pro-
cess in control systems and more recently also in cyber-
security for control systems. The process consists of four
tanks, two pumps, and two water sensors as illustrated in
Figure 2. The main goal is to control the level of water

Tank 1 Tank 2

Tank 3 Tank 4

Water
Inlet

Water
Inlet

Pump 1 Pump 2

Level 
Sensors 

Figure 2. Quadruple Tank Scheme

in the lower two tanks by controlling the amount of water
injected by the pumps. What makes this process complex
is the cross interaction among the upper tanks, the lower
tanks, and the pumps. In particular, if Pump 1 increases
its water inlet flow (increase in v1), it will increase the
water level of Tank 1 and Tank 4; at the same time, since
the level of water in tank 4 is increasing, it will affect the
water flowing from Tank 4 to Tank 2. The same happens
with Pump 2 and Tanks 2,3 and 1.

The actuators are the pumps and the sensors report the
water level of Tanks 1 and 2, which we call y1, y2. Let g
represent gravity, Ai the cross section of Tank i, ai cross-
section of the outlet hole, and hi the water level of Tank
i. The control to Pump i is vi and the corresponding flow
is proportional to the control value kivi. The parameters
ρ1, ρ2 ∈ (0, 1) indicate the setting of the valve that
distributes the amount of water that each tank receives
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from the pumps. The flow to Tank 1 is ρ1k1v1 such that
the flow of Tank 4 is (1 − ρ1)k1v1. Similarly for Tanks
2 and 3. We can define h0

i as the desired water level for
each tank, and v0i the necessary voltage to maintain the
water level in h0

i . Let xi = hi − h0
i and ui = vi − v0i .

The process dynamics can be modeled with the fol-
lowing set of equations:

ẋ(t) = Fx(t) +Gx(t)

y(t) = Hx(t), (12)

where

F =

⎡⎢⎢⎣
− 1

T1
0 A3

A1T3
0

0 − 1
T2

0 A4

A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4

⎤⎥⎥⎦ ,

G =

⎡⎢⎢⎢⎣
ρ1k1

A1
0

0 ρ2k2

A2

0 (1−ρ2)k2

A3
(1−ρ1)k1

A4
0

⎤⎥⎥⎥⎦ , H =

[
kc 0 0 0
0 kc 0 0

]
,

Ti =
Ai

ai

√
2h0

i

g for i = 1, . . . , 4.

Because we are interested in cyber-physical systems
that are controlled by computers (not analog devices like
control systems used to operate some years ago) we need
to obtained the discrete time equation (1) with matrices
A,B by using the methodology in Appendix B with a
sampling period of τ = 0.4 s. The parameter values of
the process are given in the following table.

A1, A3 28 cm2

A2, A4 32 cm2

a1, a3 0.142 cm2

a2, a4 0.114 cm2

kc 0.5 V/cm
g 981 cm/s2

h0
1, h

0
2 12 cm

h0
3, h

0
4 (1.43, 8) cm

v01 , v
0
2 (8.6, 3.2) V

k1, k2 (3.33, 3.33) cm3/sV
ρ1, ρ2 (0.5, 0.3)

The goal of the attacker is to make at least one tank
overflow. Since the height of each tank is 20 cm, the
set of dangerous states can be represented according to
Equation (2) with four half spaces with the following
parameters:

c1 = [1 0 0 0], b1 = 20− h0
1 = 8 (13)

c2 = [0 1 0 0], b2 = 20− h0
2 = 8 (14)

c3 = [0 0 1 0], b3 = 20− h0
3 = 18.57 (15)

c4 = [0 0 0 1], b4 = 20− h0
2 = 12 (16)

(17)

which represent the cases where the water level reaches
the capacity of the tanks.

Now that we have identified the model, the unsafe
states and the desired operational points, we can solve the
optimization problem in Section 3.2 to find the optimal
constraints that we should impose to the pumps in order

to guarantee that no attack can drive the states to unsafe
states.

Experiment 1: Original Operating Range of
Pumps. We assume an adversary is able to launch a man-
in-the-middle attack between the PLC and the pumps as
previously demonstrated in a similar water tank control
system [40]. The attack starts starting at time ta = 150 s
by intercepting each fieldbus packet containing the control
commands, or sensor readings and modifies the payload.
We test four different types of attacks: i) Actuator bias
attack, where ui := ui + δi, with δ = [10,−10]; ii)
Actuator random attack, with ui ∼ N(0, 10), i.e., ui is
drawn from a normal distribution with mean 0 and vari-
ance 10; iii) Sensor scaling attack, where y := (t− ta)y,
such that the scaling factor increases with time; iv) our
Actuator optimal attack, where the objective is to cause
an overflow in Tank 1 and Tank 2 while minimizing the
attack visibility (i.e., trying to remain stealthy by keeping
the attack as small as possible).

The optimization problem for the optimal attack is
derived from the formulation in Equation (6)

min
a
O = ‖a‖

s.t.[
1 0 0 0
0 1 0 0

]
(AT x0 +Ha) =

[
8
8

]
− 8.6 ≤ a1,t ≤ 3.4 for all t = 0, 1, . . . , T − 1

− 3.2 ≤ a2,t ≤ 8.8 for all t = 0, 1, . . . , T − 1

(18)

where the objective function O = ‖a‖ minimizes the
attack input to reach the overflow of Tanks 1 and 2, and
T = 200. Notice that in this case we are only interested
in overflowing Tanks 1 and 2, so that we pre-multiply

equation (5) by

[
1 0 0 0
0 1 0 0

]
. The operational range of

each pump is 0−12, such that the constraints in our model
are 0− v0i ≤ ai,t ≤ 12− v0i for i = 1, 2.

Figure 3 illustrates the dynamic behavior of each water
level hi and the pump vi for the different attacks. Notice
that the first 3 attacks do not require any kind of knowl-
edge about the system and only the bias attack is able to
overflow Tank 1. The random attack and scaling attack
do not have a significant impact in the system. On the
other hand, our proposed optimal attack is able to find any
feasible attack trajectory to drive both tanks to overflow
in a very specific time while minimizing the change in
the control action. Figure 4 shows the approximation of
the reachable set with the original bounds according to
Proposition 1. Notice that the outer approximation over-
laps with the dangerous states such that it is not possible
to guarantee that the system is secure. In fact, the bias
attack and the optimal actuator cause the system to reach
the unsafe region causing some tanks to overflow. While
in this use-case we found a feasible attack without the
problem formulated in Section 3.1, in the next section we
will show that there are cases where designing an attack to
reach unsafe regions is not straightforward, and we need
to use the tools introduced for our counterexample attack.

Experiment 2: Optimal Defense. Now, applying
our proposed defense strategy, we can change the original
pumps by purchasing new pumps with a different operat-
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Figure 3. Water level hi and control input vi for the quadruple-tank process for 4 different attacks with the original actuation bounds. After 150 s,
an attack is launched and it has a duration of 200 s. Notice that only the bias attack and the optimal attack are able to overflow at least one of the
tanks.

ing range. To find the right operating range we need to
solve the optimization problem in Equation (11). Using
the code in Listing 1 we find R = diag(0.457, 0.37), such
that γ1 = 2.19 and γ2 = 2.7. As a consequence, the new
safe operating range correspond to −1.48 ≤ u1 ≤ 1.48,
and −1.65 ≤ u2 ≤ 1.65.

We now launch the same attacks as in Experiment
1, and the results are shown in Figures 5 and 6. In this
case, no attack is able to overflow the tanks, and our last
attack performed a counterexample search over various
time lengths T = 200, T = 500, T = 5000:

min
a
O = ‖a‖

s.t.[
1 0 0 0
0 1 0 0

]
(AT x0 +Ba) =

[
8
8

]
− 1.48 ≤ a1,t ≤ 1.48 for all t = 0, 1, . . . , T − 1

− 1.65 ≤ a2,t ≤ 1.65 for all t = 1, 2, . . . , T − 1

(19)

As expected, the solver was not able to find any feasible
solution because the system was designed to be secure.
Our new selected operating range for the pumps guarantee
that there is no control sequence that can drive the system
to dangerous states. Figure 6 shows the outer approxima-
tion of the secure reachable set. Notice that the ellipsoid
does not intersect with the unsafe states, such that we
can guarantee that the system is secure, and no attack can
drive the water level to overflow.

4.2. Case Study 2: Vehicular Platooning

In this case study, we consider a system of four coop-
erating autonomous vehicles that form a vehicular platoon
[41], as illustrated in Figure 7. In our system, the vehicles
use on-board sensors (e.g., lidar) to maintain a given
distance and the cooperate to form a platoon [42]. This
cooperative signal is modeled by an additive acceleration
term sent over wireless communication.

We use the model of one of the early papers studying
platooning security [43]. In their model, the dynamics of
the positions and velocities of the vehicles are described
with the following differential equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = v1
ẋ2 = v2
ẋ3 = v3
v̇1 = kp(x2 − x1 − d∗) + kd(v2 − v1) + βv1 + u1

v̇2 = −kp(x2 − x1 − d∗)− kd(v2 − v1)
+kp(x3 − x2 − d∗) + kd(v3 − v2) + βv2 + u2

v̇3 = −kp(x3 − x2 − d∗)− kd(v3 − v2)
+kp(x4 − x3 − d∗) + kd(v4 − v3) + βv3 + u3

v̇4 = −kp(x4 − x3 − d∗)− kd(v4 − v3) + βv4 + u4
(20)

where kp = 2 and kd = 1.5 are the proportional and
derivative gains of an on-board Proportional-Derivative
(PD) controller, which regulates the distance between
neighboring vehicles to be the desired distance d∗ = 2
m; β = −0.1 characterizes the loss of velocity as a result
of friction; and ui with i ∈ {1, 2, 3, 4} are feedforward
inputs (acceleration) added to each vehicle. In cooperative
cruise control settings, such feedforward inputs are used to
optimize the performance of the platoon by each vehicle
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Figure 4. Trajectories of the water level hi for the quadruple-tank process for 4 different attacks. The dashed ellipsoid represents the estimation of
the reachable set with the original actuation bounds and the unsafe region represents the overflow. Notice that the bias attack and the optimal attack
are able to overflow at least one of the tanks.

sharing its intended maneuvers, thus requiring the PD
control to only compensate for errors. In this setting, we
illustrate that if these inter-vehicle communications are
compromised it is possible for attackers to crash vehicles
they do not compromise. Furthermore, in this work we
consider imposing bounds on the allowable feedforward
inputs applied to the vehicles in order to ensure the safety
of the platoon, where safety is defined as avoiding crashes
between any vehicles.

The platoon is most concisely described by the relative
distances between each pair of adjacent vehicles, defined
as d12 = x2 − x1, d23 = x3 − x2, and d34 = x4 −
x3. We can introduce new relative distance error variables
e12 = d12 − d∗, e23 = d23 − d∗, and e34 = d34 − d∗ and
rewrite the Equation (20) in terms of seven state variables
x = [e12, e23, e34, v1, v2, v3, v4]

T such that

ẋ(t) = Fx(t) +Gu(t)

with input u = [u1, u2, u3, u4]
T , G = [04×3, I4]

T , and

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 1 0 0
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1
kp 0 0 β − kd kd 0 0
−kp kp 0 kd β − 2kd kd 0
0 −kp kp 0 kd β − 2kd kd
0 0 −kp 0 0 kd β − kd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where I4 is the 4×4 identity matrix. As in the prior exam-
ple, this continuous-time differential equation is sampled
at discrete units of time as discussed in Appendix B using
Equation (29) with time step τ = 0.1s to yield a discrete-
time linear time invariant dynamical system of the form
in Equation (1).

Potential attackers generally intend to disturb the ex-
isting coordination between the vehicles in the platoon.

In this study we assume that the communication to the
leading truck (vehicle 4) and the last truck (vehicle 1)
have been hijacked by the attackers, i.e., the attackers can
falsify (completely determine) the inputs u1 and u4.

We consider that the objective of the attacker is to use
vehicles 1 and 4 to cause a crash between the two other
interior trucks of the platoon (vehicles 2 and 3) while
avoiding a crash in the vehicles it has compromised.

Assuming the input with natural bounds γ1 = γ4 = 4
m/s2, a trivial strategy for the attackers is to use the max-
imum capacity of the inputs to accelerate vehicle 1 with
u1 = 4 m/s2 and decelerate vehicle 4 with u4 = −4 m/s2.
This “bias” attack will collapse the platoon, including
the distance between vehicles 2 and 3 because they are
sandwiched between vehicles 1 and 4. This strategy and
its outcome is depicted as Case 1 in Figure 8, crashing
the platoon in only 2 seconds. We can use Proposition
1 to compute an outer ellipsoidal approximation of the
reachable set (see Figure 9, left plot), which reinforces
that there are likely to be many reachable states that
correspond to a crash between vehicles of the platoon
(we build a reachable set using the feasibility optimization
proposed in this paper and see that indeed there are many
reachable states that fall within the dangerous states). We
found that the minimum volume ellipsoid corresponded to
a value of a = 0.9831.

Hoping to secure the system, we reduce the input
bounds to γ1 = γ4 = 2.3 m/s2. In this case, the simple
bias attack strategy of decelerating the leading vehicle
and accelerating the last vehicle does not work with these
lowered bounds, even if the attackers prolong the attack
(see Case 2 in Figure 8). Although the bias attack does
not cause a crash, it does not necessarily mean that the
system is safe. In fact, by looking at the reachable set
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Figure 5. Water level deviation hi and control input vi for the quadruple-tank process for 4 different attacks with the secure bounds obtained according
to Theorem 1. Notice that no attack can drive the tanks to overflow. Also, since we are guaranteeing that our system is secure, our counterexample
search is unfeasible (rightmost column).

corresponding to these reduced bounds (see Figure 9,
middle plot), we see that there are attack sequences that
can drive the system to reach the dangerous states (i.e.,
cause a crash). We can now use the optimization approach
to generate the attack and corresponding trajectory that
causes this crash between vehicles 2 and 3 (d23 = 0 m).

Attackers aim to reach e23 = −2 m which is equiva-
lent to a crash between vehicles 2 and 3 in t time steps.
The state of the system after t time steps can be computed
by equation (6). So we can define a feasibility problem:

min
U

0

s.t.

− 2 = [0, 1, 0, 0, 0, 0, 0]T (Atx0 +HU) (21)

uj ∈ U , for all j = 1, 2, . . . , t− 1

where U is the set of input signals satisfying the bounds
γ1 = γ2 = 2.3 m/s2 and x0 is the state of the system when
attack starts. In this scenario, we assumed that the platoon
has reached the desired distance before the attack and all
vehicles are moving with the same speed of 30 m/s. Thus,
the initial state is x0 = [0, 0, 0, 30, 30, 30, 30]T . Since
the attackers goal only focuses on the distance between
vehicles 2 and 3, we only set the equality constraint in our
feasibility problem such that d23 = 0 at final time step.

This feasibility problem was solved using YALMIP
and the SDPT3 solver and resulted in a series of inputs
{u0, . . . , ut−1} which can drive the system to crash in
t = 80 time steps (see Case 3 in Figure 8).

We now select the limits to make the system secure
by using Theorem 1. As discussed before, the attack-
ers attempt to make a crash between vehicles, so we

can define dangerous states as the areas in the state-
space where the distances become less than or equal
to zero (d12, d23, d34 ≤ 0 m) which is equivalent to
e12, e23, e34 ≤ −2 m. Hence, we can represent the dan-
gerous states as the union of three half spaces defined by
Equation (2):

c1 =
[
1 0 0 0 0 0 0

]
, b1 = −2

c2 =
[
0 1 0 0 0 0 0

]
, b2 = −2

c3 =
[
0 0 1 0 0 0 0

]
, b3 = −2

(22)

In this scenario, the attackers only have access to the
inputs u1 and u4, so the input matrix of the system will
be

G =

[
0 0 0 1 0 0 0
0 0 0 0 0 0 1

]T
(23)

We can now formulate the optimization problem described
by Equation (11). As all constraints are linear inequalities
and the objective function, which is the trace of diagonal
matrix R, is also convex, this optimization problem is
a convex programming problem [44]. We solved this
problem using SDPT3 which resulted in the following
bounds:

γ1 = γ2 = 1.58 m/s2 (24)

Using the same attack used in Case 3, but truncated by
the new designed bounds, it can be seen that the attack
is not successful (Case 4, Figure 8). In other words, with
these new bounds, achieving the crash between any pair
of vehicles is infeasible. For these bounds, the ellipsoidal
approximation of the reachable set no longer intersects
with the dangerous states (see Figure 9, right plot).
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Figure 7. A platoon of 4 vehicles controlled by two separate control
mechanisms. The first mechanism of control is a PD controller between
each pair of neighboring vehicles, regulating the desired distance be-
tween them. The second mechanism is a cooperative control system,
enabling the vehicles to communicate and can be used to assist stability
of the platoon. In our scenario, attackers target the cooperative control
system and gain access to inputs u1 and u4 to compromise vehicles 1
and 4 (shown in red).

5. Limitations and Future Work

In this paper we have presented a new security model
for cyber-physical systems that allows attackers to launch
completely arbitrary attacks and showed a way to design
a secure system to prevent these attacks. In practice this
added security will come at a cost: the control system
might perform as “optimally” as desired and might result
in more “sluggish” responses. While this was not an issue
for our use-cases, not all cyber-physical systems might
take these costs.

A way to make our approach more flexible would be to
change the operating range of the actuators as a response
to a detected attack. In this way our solution will only be
used in emergency cases where there are attack indicators.
The problem with this adaptive reconfiguration is that we
may be replacing a simple hardware physical constraint

with a logic one (e.g., if we implement these adaptive
constraints in software in the actuator itself) which might
be another target for a cyber-attack. Another possibility
would be to have different sets of actuators connected to
the system and activated with an analog signal sent by the
attack detection algorithm.

Another adaptive solution can be done by refining our
defenses dynamically in time, so if we are far away from
the unsafe states, we let the actuators act normally but if
we get closer to the unsafe space, we constrain the system
more. We plan to explore these alternatives in future work.

On the other hand, linear approximations of nonlinear
systems results in linear equations that are typically only
valid in a neighborhood of an operating point, and hence,
only describe the behavior of the actual system in that
vicinity. Despite these limitations, linearization is still one
of the most powerful tools for dealing with nonlinear
systems, and it is repeatedly used successfully to model
a wide variety of systems. In order to deal with multiple
operating points in nonlinear systems, it is possible to de-
fine our problem as a group of linear equations, each one
focused in a different operating point. As a consequence,
we can extend our proposed formulation considering a
system that switches among different linear subsystems
(a so-called hybrid control system).

6. Related Work

The security of Cyber-Physical Systems and Internet-
of-Things (IoT) devices has attracted significant atten-
tion in the past few years. There are various studies on
the security (and insecurity) of IoT and CPS devices
such as home automation, smart meters, drones, Internet-
connected cameras, etc. [45]–[48].
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Figure 8. Attackers manipulate the feedforward signals of vehicles 1 and 4 to cause a crash between vehicles 2 and 3, i.e., by making d23 ≤ 0.
When the actuators work with their natural bounds (γ1 = γ4 = 4 m/s2), attackers can perform a simple bias attack in which vehicle 4 (leading)
brakes and vehicle 1 (following) accelerates, both with the maximum capacity and it can be seen that the crash happens in only 2 seconds (Case
1). By lowering the bounds from 4 m/s2 to 2.3 m/s2, the bias attack strategy no longer works even if allowed to run for a longer time (Case 2).
However, by choosing the input signals intelligently (using the optimization approach described in this paper), the attackers are able to achieve a
crash between vehicles 2 and 3 (Case 3). Using the LMI tools presented in this study, we found new actuator bounds γ1 = γ4 = 1.58 m/s2 which
guarantee the safety of the platoon. When the same intelligent strategy of Case 3 is employed, but with actuators saturated at 1.58 m/s2, a crash
does not occur (Case 4).

The ability to sense and track new physical variables
has created novel security and privacy problems; for ex-
ample a malicious battery can infer private information
from mobile phones [49], a wearable watch can be used to
infer the passwords you type [50], and new voice-enabled
personal assistants can be attacked by e.g., sending voice
commands stealthily embedded in songs, which, when
played, can effectively control the target system through
automated speech recognition without being noticed [51].

In this paper we focus on systems whose physical
behavior can be changed by control commands. As men-
tioned in the introduction, most previous work assumes
fairly limiting attacks constraining the attack time se-
ries a(t) to follow predefined functions, such as scaling
attacks [7], bias attacks [8], [9], maximum abrupt at-
tacks [8]–[10], delay attacks [7], or completely random
attacks [11], [12]. In addition, the security analysis of
proposals show that the proposed mechanisms work to
mitigate those specific attacks, but do not show how
to prevent against other attacks not considered by the
authors.

In contrast, this work introduces a novel secure-by-
design mechanism (reducing the physical bounds of actu-
ators) and combine it with a new proposal to approximate
the reachable states of the system under (any) attack.
Our methods can provably guarantee security against any
attack signal.

The topic of safety and verification is also related to
our work. In particular, the concept of a barrier certificate
addresses the question of whether states are able to reach

a set of (e.g., dangerous) states [52]. The strength of the
barrier certificate method is that is generalizes easily to
hybrid and nonlinear systems, however, it has primarily
been used for validation/invalidation and does not have
immediate ways of being adapted for the purposes of
designing the system for safety or security. In addition,
it requires a barrier function to be supplied, which typi-
cally constructed from a combination of experience and
educated guess. If a barrier certificate can be found, we
can conclude the current scenario is safe; however, if a
barrier certificate cannot be found, the verification test is
inconclusive.

Safety controller synthesis, on the other hand, provides
a methodology to design a supervisory controller to en-
sure that the system avoids unsafe states [53]. However,
fundamental to the operation of this safety controller is
that it receives accurate observations from the system (i.e.,
it uses a supervisory controller that requires knowledge
about the system state), and therefore it relies on the ac-
curacy of sensors. In many cases, switching controllers are
designed as safety controllers to switch between different
controller modes to guarantee that the state stays in the
safe region. The switching logic, however, needs to trust
the sensors at every time step. In the context of attacks,
where observations of the state can be falsified, this key
condition may not be met—in contrast, our proposal can
deal with untrusted sensors (they are a way the attacker
can create the false attack signal).

In addition, the appealing aspect of our proposal–
redesigning the bounds on actuation–is that it is both ag-
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Figure 9. Projection of the 7-dimensional reachable set of the platoon into the space of state variables d12, d23, and d34 with natural bounds
γ1 = γ4 = 4 m/s2 (left), lowered bounds γ1 = γ4 = 2.3 m/s2 (center), and synthesized safe bounds γ1 = γ4 = 1.58 m/s2 (right). For visual
clarity, we only show the 3-dimensional reachable set in three dimensions and is the wire-frame volume in each plot. We project the following
objects (i.e., draw the shadow they would cast) onto the three orthogonal state planes: the reachable set (gray), the outer ellipsoidal estimations of the
reachable set (purple 2D ellipses), and the system’s trajectory under attack as given in Fig. 8, Cases 1, 3, and 4, respectively (green). The dangerous
states (d23 ≤ 0) boundary is shown by the red outlined plane; the red ellipse is the intersection of the ellipsoidal outer approximation of the reachable
set with the dangerous states boundary. It can be seen that using natural bounds, a significant part of the reachable set falls in the dangerous area
which means that there are inputs that attackers can use to cause a crash. Lowering the bounds from 4 m/s2 to 2.3 m/s2 still does not guarantee
the safety as there is a small intersection between reachable set and dangerous states which enables attackers to cause a crash by choosing the input
signals wisely. However, imposing the synthesized bounds of 1.58 m/s2, the ellipsoidal approximation of the reachable set is designed to be tangent
to the dangerous states. Hence, the platoon remains safe since there are not inputs that can lead to a crash.

nostic and invariant to everything that happens during the
entire feedback control loop, whereas the safety controller
synthesis is specifying a controller—an element in the
feedback loop—to regulate the system to maintain safety.

7. Conclusions

We have introduced a new formal framework to rea-
son about the security of cyber-physical systems. Our
goal is to provide new tools to enable provable security
guarantees of a control system irrespective of the attack
implementation. We hope our proposal can motivate more
work on attack-agnostic security solutions.

In particular we have shown how to design a CPS
to prove security for arbitrary attackers, and we have
also shown how to generate a feasible attack strategy.
Our automatic attack feasibility search can generate new
attacks that are surprising (and not easy to create). For
example in the cooperative cruise control example, we
found that the intuitive attack of accelerating as fast as
possible did not crash the middle cars (Figure 8 case 2),
but our automatically generated counterexample showed
that the attacker at the back of the platoon needed to first
accelerate, then break, then accelerate (Figure 8 case 3).
What the attacker is creating in the platoon is a shockwave
with the continuous oscillations that will destabilize the
platoon and crash the cars the attacker intended. This
novel attack was the result of our algorithm, and was not
predefined by us as a possible strategy.

Our approach for designing the safe operating range
of actuators in control systems was efficient and practical
in the two use-cases we studied. Having said that, con-
straining the operation of a system might not work for
all use-cases, in particular those that need fast response
times and cannot tolerate a more sluggish response. In

future work we plan to explore the trade-offs with respect
to performance, security, and their associated risks.
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Appendix A.
Proofs

Before introducing the proofs, we have to define the
following Lemma adapted from [54]:

Lemma 1. Let Vt be a positive definite function, V1 =
0, and [ut]2i ≤ γi, i = 1, . . . ,m. Let R =
diag( 1

γ1
, . . . , 1

γm
). If there exists a constant a ∈ (0, 1)

such that the following holds, then Vt ≤ 1:

Vt+1 − aVt −
(1− a)

m
u�t Rut ≤ 0. (25)

A.1. Proof of Proposition 1

For some positive definite matrix P ∈ R
n×n, let Vt =

xT
t Pxt in Lemma 1. Substituting (1) and this Vt in (25)

yields

νT
[
aP −ATPA −ATPB

−BTPA (1−a)
m R−BTPB

]
︸ ︷︷ ︸

Q

ν ≥ 0 (26)

where ν =
[
xT
t , uT

t

]T
. This inequality is satisfied if and

only if Q is positive semi-definite.

To ensure that the ellipsoid bound is as tight as
possible, we minimize (detP )−1/2 since this quantity is
proportional to the volume of xT

t Pxt = 1. We instead
minimize log detP−1 as it shares the same minimizer and
because for P > 0 this objective is convex [55] �.

A.2. Proof of Theorem 1

The first LMI in (11) serves to construct P such that
it outer bounds the reachable set of the system. This LMI
comes directly from Proposition 1.

In order to ensure that the reachable set R avoids the
dangerous states D, a geometrical constraint can be im-
posed which keeps the ellipsoid E(P ) out of the dangerous
states defined by half-spaces. This geometric constraint
should guarantee that all states which satisfy xTPx ≤ 1
also satisfy cTi x ≤ bi, i = 1, . . . ,m. The S-procedure
provides a way to combine these simultaneous inequalities
[55]: these geometrical constraints are satisfied if and
only if there exists a non-negative constant λ such that
(xTPx− 1)− λ(cTi x− bi) ≥ 0, which can be written as:[

xT 1
] [ P −0.5λci
−0.5λcTi λbi − 1

]
︸ ︷︷ ︸

V

[
x
1

]
≥ 0. (27)

The above inequality is satisfied if V ≥ 0. �

Appendix B.
Discretization of continuous-time system

Given a continuous linear time-invariant system of the
form:

ẋ = Fx+Gu, (28)

where x ∈ R
n is the state vector, u ∈ R

m is the input
vector, F ∈ R

n×n is the state matrix, and G ∈ R
n×m we

can find the discrete-time state space representation of the
form (1) as follows:

A = eFτ

B = F−1(eFτ − I)G,
(29)

where τ is the time step used for discretization.
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