
ENABL: A Modular Authoring Interface for

Creating Interactive Characters
April Grow

Abstract
 The authoring of interactive digital characters is a complicated and multidisciplinary task

which requires some level of expertise in psychology, artificial intelligence, computer graphics,

as well as many other fields depending on the purpose of the agent. Demand for high-quality

agents is enormous: current research involves interactive agents for many topics including

education, medicine, human caregiving, interactive drama, and video games. However, experts

able to author these agents are few in number, and supply is falling far short of demand. This

work aims to develop a publicly releasable authoring environment for an existing reactive

planning behavior language (ABL: A Behavior Language), which significantly reduces the

authoring complexity and burden in creating interactive digital characters. By reifying existing

coding practices and patterns by expert authors into an authoring environment, authors with

some programming background will be able to create interactive characters for any field or

subject matter much more quickly and easily than with the programming language alone.

Ultimately, the breadth and depth of interactive experiences involving agents will vastly

increase, which may revolutionize current approaches to education, video games, and many

other fields.

Introduction
Creating robust, believable, and interactive characters is extremely challenging.

Because we experience and interact with human-like behavior throughout our daily lives, every

person has some idea of what is (or is not) acceptable behavior. We are all equipped to critique

artificial behavior, but designing artificial behavior is much more difficult. Artificial intelligence

(AI) is an entire field devoted to modeling this behavior through a multitude of approaches and

purposes, and there are many challenging AI problems at the core of creating interactive

characters (natural language processing, navigation, and reasoning, for example).

Let us examine an example dramatic character performance pipeline to better

understand the challenge that authoring the pipeline entails. An agent, with sensory information

from its environment, uses some mechanism to figure out what to do (the focus of this

document will be on reactive planning as this method). What the agent is capable of doing is

represented as some possibility space, such as a behavior tree. The behavior(s) that are

chosen by the planner are realized in some 2D or 3D engine, likely via a library of canned

animations. Finally, the user, the environment, or another agent offers some input to the agent‟s

sensory system and the cycle begins again. The author of the agent must guide the agent(s)

through this pipeline while attempting to juggle a large set of behavioral expectations for the

agent (which we describe in detail later as believability and dramatic constraints). The whole

path can be summarized in Figure 1.

We define the term authorial

complexity as the challenge of creating

each behavior, which potentially

interfaces with every other previous

behavior. The collection of all these

behaviors together represents the

authorial burden, a concept used to

describe the total authoring task of the

whole agent. As the agent becomes

more robust with richer world state,

agent states, longer and more complex

histories, and a wide range of possible

animations, incorporating a new intent

or behavior becomes extremely

complex, as that new behavior may

interface or interact with all the

previous behaviors. The author may choose not to meet this challenge by actively choosing not

to interface with existing behaviors, fail to meet the challenge by not deeply interfacing with the

existing elements, or fail by interfacing with them in nonsensical ways.

To reduce the authoring challenge, the combinatoric interface of intents, behaviors, and

animations must be made more manageable, structured, and modular. The author proposes to

analyze and break down the authoring challenge into separate modules and examine how those

modules relate to the different aspects of agent authoring. The results of this analysis will then

inform and guide the creation of a concrete authoring interface for ABL that addresses,

supports, and alleviates as many of the authoring challenge components as possible.

 Primary Research Question

● Can modularity reduce the authorial complexity of creating dramatic, embodied, and

interactive agents?

Authorial complexity is seen as the primary barrier standing in the way of creating more

dramatic agents, as well as more agents in general. Whether the complexity takes too much

time to debug and update, or whether the complexity simply becomes logically impenetrable,

both are unacceptable problems that must be overcome. The modular approach proposed and

planned in this document aims to drastically shorten the debugging time and reduce the points

of interaction between behaviors to a tractable level.

Secondary Research Questions

● How can dramatic agent authorial complexity be reduced through modularity?

The nature of the authorial burden is directly tied to the task the author has to complete. If the

author must create or interweave dramatic story management, agent planning, behavior

selection, and animation, trying to create and debug them all simultaneously is a mess

(although they will all be connected in the final product). Visualization modules proposed in this

document chop up debugging into specific, targeted tasks that each have a focused interface.

Figure 1: High-level summary of agent architecture
elements that the author must keep track of.

The task-focused modules allow us to create targeted tools for the author‟s use, and we

propose them as the most productive approach to answering how modularity can reduce

complexity.

● What benefits do working with modular authorial patterns and interfaces provide to

authors?

 Our evaluation proposes a slew of iterative user studies to judge the possible benefits to

debugging time, author‟s mental models of the system, and agent complexity. Although

authoring experiences have been notoriously difficult to describe, let alone evaluate, we look

toward decision trees applied to interactive narrative as a starting place for qualitative and

quantitative evaluation. We also plan to apply task-based usability testing to the interfaces in

order to judge how novice, intermediate, and expert authors may benefit from the authoring

interface (also referred to throughout this document as an authoring tool).

 The distinction of embodied, interactive, and dramatic characters is crucial to make, as it

sets a relatively challenging lower bar of acceptable output from both the foundational AI

architecture and the authoring support tool. By “dramatic,” we ascribe to Mateas‟ view that

dramatic agents extend the concept of believable agents with the addition of story

considerations. The resulting characters must be able to react to other characters (interactive)

and perform the authored behaviors in a perceptible manner (embodied) in order to satisfy the

author. The authoring tool makes no claims about ensuring the dramatic quality of the authored

behaviors, as that level of authoring is in the hands of the human programmer and their

scenario goals. However, the characters must be capable of dramatic performance, including

such elements as personality, emotions, reactivity, social considerations, and story. While

interactivity frames the character‟s potential inputs and embodiment frames its outputs, dramatic

performance provides the author the means to express their character‟s goals as richly as

possible. It is this focus on rich, complex, dramatic agents that have led us to select ABL as the

target architecture on which to build our authoring interface.

 First, the proposed research will be positioned in the space of existing AI agent

architectures and a more detailed rationale will be given for the author‟s choice of ABL as a

foundation. Previous projects involving ABL will also be examined for coding idioms, implicit

rules, and best practices that can be reified within an authoring environment. In the proposed

work, general authorial patterns will be extracted from the related and previous work. To

demonstrate these patterns, the authoring environment will then be presented in great detail in

the context of ABL, assembling all the presented guidelines into an actionable piece of software.

The following evaluation section will use previous analysis of complex behavior-tree -based

analysis to examine the outputs of a long, on-going, iterative plan for many usability testing case

studies. Finally, a schedule will outline the future creation of the authoring tool and the planned

case studies within the span of the author‟s career as a PhD candidate.

 Contribution

 The general contribution of this work is a detailed analysis of the dramatic agent

authoring process, proposals to aid the authoring process, as well as a modular authoring

design pattern that can be applied to any agent architecture (and likely other complex

architectures). The proposals and design pattern are supported by previous work examining

expert author best practices from multiple architectures, not just ABL. To verify the proposals

and design pattern, they will be applied to the ABL framework. Detailed documentation of the

application process will be published as a guide for other architectures looking to modularize

their authoring approach. Evaluation methodologies will then be applied from interactive

narrative to agent architectures, a novel application strategy which will result in a much more

detailed analysis of agent quality than previously seen for dramatic agents.

Related Work

Virtual Characters

 Because virtual characters have such a broad definition and are used in so many

applications, the applicable useful research is very broad. The following sections help both

focus this advancement‟s use of the term “virtual character” and its related keywords, while also

learning lessons from other closely related fields (such as robotics). These fields contain many

areas of overlap in their design and authoring challenges, and thus contain many relevant

lessons, but their subject matter may not fit exactly with the type of agents we are focusing on in

this paper.

Reactive, Interactive, Dynamic, Procedural, Social, Autonomous

 There are a number of similar keywords that are used to represent the idea of agents,

supported by some form of AI, that respond to input with some detectable or discernable output.

Humans are enchanted by behavior that appears to recognize and acknowledge us, especially

in inanimate machines. The Senster was an early example of this reactivity, and it elicited awe

from its beholders with very simple, yet life-like, behaviors (Ihnatowicz 1986). ELIZA, a famous

(or infamous) conversational agent, captured the hearts and minds of many users despite its

simplicity, much to the dismay of its author, Weizenbaum (Weizenbaum 1979).

However, expectations in the quality and complexity of these agents have progressed

much more quickly than their technology. Compare a quick survey of the Believability section

below with the current state of agent AI in popular media, and the huge gulf between them

becomes apparent. In Figure 2, we see an example of agent AI horribly breaking immersion

because the player‟s side-kick was not given the intelligence to operate within the confines of

different combat scenarios. Instead, the rules of the world simply do not apply to her: her noisy

actions elicit no response from the sound-activated enemies. The goal of this document is to

help begin to bridge the gap between expectations and technology. Authoring more behaviors

that maintain world coherence, for example, would then not be such a daunting task. In order to

bridge the gap of agent AI and audience expectations, it is a fundamental requirement for the

agents in this document to be interactive with other agents and humans.

Figure 2: A comic by Penny Arcade about agent AI breaking immersion in The Last of Us. Enemy "clickers"
are responsive to noise, but your sidekicks will blather on and make a ton of noise, eliciting no response.

Other example examples of glaringly broken AI include agents running into walls or standing up out of cover
(or in the way of the player) in a fire fight.

Embodied

 This paper focuses on virtual agents with virtual bodies, but “embodied” applies to

agents that have been given non-virtual bodies as well, and follows the interactionist AI school

of thought (Agre 1997). Agre‟s “mutual constraint between machinery and dynamics” is a

powerful design concept that helps authors constrain and conceptualize the scenario they are

authoring:

For example, an agent that always puts its tools back where they belong my need simpler

means of finding those tools than an agent that leaves them lying about. (Agre 1997)

Embodied agents help restrain the authoring of behaviors to those that are useful in the

immediate sense and contextualized by their environment.

Rea (Cassell et al. 1999), Façade (Mateas & Stern 2005), and Ada and Grace (Swartout

et al. 2010) are examples of embodied agents created for different purposes. Rea is an

anthropomorphized interface to a real estate database who focuses on one-on-one interaction

with a single user. Ada and Grace are a pair of agents that interact with each other and

potentially many humans in order to engage visitors at the Museum of Science in Boston and

“increase their knowledge and appreciation of science and technology” (Traum, et al. 2012).

Façade includes agents Grace and Trip enacting a single-act drama about marriage troubles in

which the user has the opportunity to help them keep their marriage intact (Mateas & Stern

2005). The environments of these agents help build the user‟s expectations of the agent‟s

behaviors.

Intelligent

 Deciding or determining whether something has intelligence in the context of AI has

been a tricky question since the Turing test (Turing 1950). The Turing test operationalized

intelligence as the system being indistinguishable from a human in a decontextualized

conversational context. In contrast, we are interested in a human interactor, the user, being

able to ascribe intelligence to the agent in a particular, artistically heightened, context.

The nature and depth of an agent‟s interactive components may momentarily give the illusion of

intelligence, which Noah Wardrip-Fruin has called the ELIZA Effect (Wardrip-Fruin 2009).

However, the ELIZA Effect illusion cannot be sustained by simple or overly transparent forms of

AI. What authored agents should strive to achieve is instead Wardrip-Fruin‟s SimCity Effect: the

agent supporting incremental exploration of its behavior model by the player (Wardrip-Fruin

2009). This Effect would help make agent behaviors appear logical and intelligent to the player.

Believable

 After the illusion of intelligence faded from early agents, interested parties from a wide

variety of disciplines attempted to prevent future illusions from falling quite so quickly by making

agents more believable. There are many opinions on what makes up a believable agent, which

are summarized in the following Table 1, roughly categorized by high-level concepts often seen

among many authors.

Concept Flavor &
Proponent

Details, Examples, and Argument

Emotion Consistency &
variability (Ortony
2002)

Agents should make a variety of consistent emotional
responses to stimulation.

 Appropriately timed &
clearly expressed
(Bates 1994)

Agents should perform behaviors that express emotional
states (Bates, Loyall, & Reilly 1994). Expressions of these
emotions should be true to the character‟s Personality (Loyall
1997)

 Empathy (Hayes-Roth
& Doyle)

Bodily changes that follow the perception of an exciting fact.
The feelings the body undergoes from the result of change.

Personality Piecemeal traits
(Ortony 2002)

Contributes to coherence, consistency, and predictability in
emotional reactions and responses.

 Personality-Rich
Agents (Reilly & Scott
1997)

A high-level term that describes how emotions, agent
competence, quirks, relationships, and attitudes should vary
between agents to make them feel unique.

 Expressing
Individuality or
Characteristics (Loyall
1997)

Captures the idea of “character” or “individuality” when
describing memorable characters in other media.

 Persona (Hayes-Roth
& Doyle)

Multi-faceted individual qualities that affect not just an agent‟s
function, but the performance of their function.

 Recognizable (Perlin &
Goldberg 1996)

Perlin & Goldberg specifically mention that agents do not to
be realistic, but their personalities should be recognizable and
consistent.

Reactive/
Responsive

Situated Liveliness
(Lester & Stone 1997)

Agents show that they are alert and perceive the world
around them.

Self
Motivation

Proactive Engagement
(Loyall 1997)

Agents don‟t just react/respond to stimuli, but also engage in
action “of their own accord.”

 Illusion of Life (Loyall
1997)

Agent‟s motivated actions must appear to be driven by logical
goals, bounded by physical and social constraints.

 Motivational State
(Blumberg 1996)

“Convey intentionality and motivational state in ways we
intuitively understand”

Change with
Experience

Robustness (Reilly &
Scott 1997)

Agents able to stay “in character” throughout social
interactions and history with other agents.

 Growth (Loyall 1997) Over the course of media, characters change, even if just
arbitrarily. These are long-term reactions to stimuli that are
still in-line with the agent‟s personality.

 Adaption (Blumberg
1996)

“Learning new strategies to satisfy goals.”

 Remembering (Hayes-
Roth & Doyle)

Internal changes result from experience, which lead to
observable changes in future behavior

Social Relationships &
Attitudes (Reilly &
Scott 1997)

Wildly fluctuating expressions of social state depending on
the interactions between agents. (Ex: hatred, friendship, trust)

 Roles and Constraints
(Reilly & Scott 1997)

Definitions of socially acceptable behavior and how to handle
deviants of these expectations, dependent on social status.

 Social Relationships
(Loyall 1997)

Necessary when multiple agents interact, especially over
time. Is expressed via emotions and behaviors, and colored
by personality.

 Social Relations
(Hayes-Roth & Doyle)

Contextualizes and informs interactions with others.
Expresses social status, authority, and roles, even
inconsequential actions. Can apply to non-humans, such as
pets.

Predictable Predictability (Ortony
2002)

Ortony suggests that users should be able to expect and
predict how an agent should act (See Personality Entry)

 Consistency (Loyall
1997)

All previous entries of emotions, reactions, motivated
behaviors, social interactions, etc must be consistent with the
character's personality, history, and relationships.

 Idiosyncratic &
Appropriate (Hayes-
Roth & Doyle)

Inconsistencies in human behavior and the idiosyncrasies of
individuals draw our interest. We should expect appropriate
and coherent behavior, but not be able to predict patterns.

Coherence Contextuality,
Continuity, &
Temporality (Stone &
Lester 1996)

Behaviors must be contextualized by the agent‟s environment
and maintain consistency with all the above dimensions,
especially history. Behaviors should be visually coherent to
the user.

Table 1: A summary of concepts and elements that different authors have suggested are necessary for a
believable agent. Thanks to (Gomes et. al. 2013) and (Isbister & Doyle 2002) for the help in aggregating some
of these.

Certainly we‟d love to accomplish all of these goals with authored agents. For the purposes of

this document, we are not claiming that agents authored by these frameworks are more

believable, or objectively satisfy any of these descriptions. Our goal is to support a framework

that is capable of expressing whatever of these believability metrics the author wishes to strive

for. Isbister & Doyle observes: “Choices about the appearance, personality, and behaviors of

the agent are frequently made on the basis of an introspective examination of personal

preferences…” (Isbister & Doyle 2002). Expressed another way, the author should have the

power to express whatever personal preferences they desire, because their authoring choices

will largely stem from those personal preferences. The brunt of the work required to create a

believable character falls to the author, not the system, after all. The system should be capable

of expressing a believable character, and thus support as many of these facets of believability

as possible.

 So how can an authoring tool support these facets of believability? One approach is to

build theories of emotions, personalities, moods, and social structures into the architecture.

FAtiMA is one such example, and it is built upon the OCC Theory of Emotion (Dias,

Mascarenhas, & Paiva 2011). However, the architecture adheres to the theory so strongly that

the author can no longer choose to follow a different theory: the affective state and appraisal

model are inescapable. The authors of FAtiMA have moved toward a more modular approach to

building additional systems on top of the FAtiMA Core, but what makes FAtiMA FAtiMA is the

OCC Theory of Emotion.

 Another approach to support authoring believable characters is to make the entire

system modular: one module works off the OCC theory and another supports Paul Ekman‟s

fundamental six emotions (Ekman & Friesen 2003); or one module uses the Big 5 personality

model (Digman 1990) while another uses Myers-Briggs‟ types (Myers 1962). So long as there

are clear dependencies and interface points defined (as with any code library), an agent author

could pick between them. Ultimately, all of these potential agent features should be

modularized in this fashion, which is why part of the propose work of this document is a library

of modular behaviors.

Dramatic

 As stated in the introduction, the virtual characters must be capable of dramatic

performance, and, wherever possible, the authoring system should support the author in

realizing their dramatic character and scenario designs. In the style of Mateas and Bates,

interactive dramatic performance in the context of this document is the combination of

interactive freedom and a flexible, compelling, dramatic structure (Bates 1992; Mateas 2002).

More concretely, if you take the last table from Believability and add in an additional section

related to story, that new table would represent elements of a dramatic agent (Table 2).

Concept Flavor &
Proponent

Details, Examples, and Argument

Story Premise (Egri, 1960) “a proposition antecedently supposed or proved; a basis of
argument. A proposition stated or assume as leading to a
conclusion” (Egri, 1960). The theme, goal, root-idea of the
plot that all action must serve or progress in some way.

 Plot Points “important moments” in a story (Weyhrauch 1997). Makes up
the dramatic arc, approximately, or a “plot graph” (Kelso,
Weyhrauch, and Bates 1993).

 Dramatic Beat “the smallest unit of dramatic action” (Reidl & Stern 2006
summarizing McKee 1997). In Façade, these were story
pieces on the scale of tens of seconds (Mateas 2002).

 Dramatic Arc (Aristotle
330 BC)

A pattern of rising and falling tension as issues are resolved
or raised along the course of a story.

Table 2: A summary of points made by Mateas in the Oz-Centric Review of Interactive Drama and Believable
Agents (1999) which was rehashed in his dissertation (2002).

It just so happens that projects involving dramatic agents tend to include some form of drama

manager (Mateas 1999; Mateas & Stern 2005b). We don‟t intend to imply that every AI agent

architecture should have a dedicated drama management system, but that some higher-level

controlling or organizational concepts helps authors modularize their behaviors and create

richer scenarios. Story is simply another module authors should be able to employ in service to

their agents or scenario design. Examples of these higher-level organizational concepts in the

context of ABL can be seen in the later Idioms section in the related work as Managers (Weber

et. al. 2010) and higher-level beat behavior organization (Mateas & Stern 2004). A full list of

planned supported idioms can be found near the end of the proposed work section (Table 4).

From this point onward, whenever we refer to “dramatic agents,” we mean agents that attempt

to implement (or plan to attempt to implement) the elements of believable and dramatic agents

outlined in the previous two Tables (1 & 2).

Design

 Having the intent to make an awesome dramatic agent is all fine and good, but whether

the agent actually fulfills these goals is reliant upon the author designing an agent that has all

these capabilities. We have briefly described ways to support the design of elements related to

believability and drama, but other designers have taken different approaches to general agent

design. For example, Sosa and Gero create and use a design situation methodology to organize

individual and cultural possibilities for a scenario (Sosa & Gero 2003). Shapiro et. al., in their

social simulation, used improv and live action to help conceptualize details of their scenario for

their graphics and AI authors (Shapiro et. al. 2013). Belief-Desire-Intention (BDI) agents have a

design methodology of satisfying the categories of belief, desire, and intent for their agents in

order to be fully realized (Rao & Georgeff 1995). Having a quantifiable checklist of authorial

tasks grounded in theory can be a useful design approach. Creative requirements engineering

is another approach to aid technical brainstorming of agents and their environments (Maiden,

Gizikis, & Robertson 2004).

There are additional constraints on the scenario based on its purpose and goals as well,

usually made to demonstrate the unique features of the parent architecture or to satisfy more

rigorous agent requirements. Wooldridge and others are fond of using mathematical formalisms

and logic to describe agents and their environments such that properties of their performance

can be deduced and verified (van der Hoek & Wooldridge 2012). However, novice or

intermediate authors are not likely trained in formal logic, and so exposing this level of system

detail would likely confuse authors and interfere with their creative process. Alternatively, if

these formalisms were placed “under the hood” of the authoring tool, they could help the

authoring tool reason about the authored agent state space in order to find logical failures or

visualize inconsistencies with the author‟s mental model (Wooldridge & Dunne 2005). Some of

our proposed work regarding offline analysis of an author‟s behavior dependency tree and play

traces are directly inspired by logical reasoning.

 Joanna Bryson designed a developmental methodology specifically for aiding authors in

the agent design process, entitled Behavior Oriented Design or BOD, and used it as a

governing philosophy in designing the POSH system (Bryson 2003). Inspired by Object-

Oriented Design (OOD), BOD explicitly supports a rapidly iterative design cycle and helps

authors decompose high-level concepts into concrete behaviors. These concrete behaviors are

categorized into three major categories: action patterns (a sequence of primitives that always

follow each other), competences (depend on context to manage preconditions), and drive

collections (which are constantly being checked). These categories roughly represent

(hierarchically) low-, medium-, and high-level behavior selection mechanisms respectively, and

examining the complexity of each element is a quick way to determine when authoring

complexity is becoming too overwhelming. The clean separation of tasks, behavior hierarchy

levels, and approach to implementation is an extremely attractive philosophy to follow. We aim

to espouse this philosophy and use it to guide our authors in module design, creation, and

iteration in our proposed work and in setting up our evaluations.

Dynamic Reactive Planning

Behavior Trees

Given the agent specifications and design goals described above, behavior trees have

historically given the most bang for the authoring buck. Originally introduced by R. Geoff

Dromey and described as Genetic Software Engineering (Dromey 2001), he redefined them as

Behavior Trees to avoid confusion with genetic programming (a procedural content generation

technique):

A Behavior Tree is a formal, tree-like graphical form that represents behavior of individual

or networks of entities which realize or change states, make decisions, respond-to/cause

events, and interact by exchanging information and/or passing control… They provide a

direct and clearly traceable relationship between what is expressed in the natural

language representation and its formal specification. (Dromey 2003)

Given the previous squishy descriptions of what makes up a believable agent and how

complicated fitting all those features into one agent can be, using behavior trees rooted in the

expression of natural language makes sense: keep the authoring as simple as possible because

the constructs are super complex!

The behaviors in behavior trees can be abstract, concrete, or anything the author

desires, and the architecture of behavior trees is very scalable compared to most other

decision-making mechanisms (Lindsay 2010; Powell 2010)]. Wen & Dromey built out functional

behavior trees and a software tool, BECIE, to simulate a Universal Turing Machine and test its

scalability (Wen & Dromey 2009). Although behavior trees originated as a formal graphical

modeling system, they have since been appropriated by many academics and industry

professionals for agent design in less formal manners (Champandard 2007, Simpson 2014)..

Example comercial instances of confirmed, large-scale behavior trees include Halo 2 (Isla 2005)

and Spore (Hecker 2009).

Hap

 Hap is a reactive, goal-directed agent architecture developed in the Oz project (Loyall &

Bates 1991). It works around an “active plan tree” (which predated the behavior tree terminology

but functions similarly) with nodes containing goals and subgoals for completion. The dynamism

and reactivity of Hap‟s plan tree means that the tree itself changes shape, allowing the subgoals

to be reused and the agents to be more reactive (a key aspect of agent believability mentioned

above) (Georgeff, Lansky & Schoppers 1987; Georgeff & Lansky 1987; Firby 1987). Loyall

presented Hap in his dissertation work as “an architecture specifically designed to support the

requirements and expression of believable agents,” including support for agent and human

interaction, animations, arbitrary (read: potentially artistic) emotions/personalities, and other

aspects of believability all in one architecture (Loyall 1997).

ABL

ABL, A Behavior Language, is an extension of the Hap language, and was the agent

architecture behind one of the most influential and extensive examples of interactive dramatic

agents research: Façade (Mateas & Stern 2003; 2004; 2005; 2005b). ABL extended Hap with

more generalized connections between actions and sensors, atomic behaviors, meta-behaviors,

goal spawning, support for joint behaviors, among other things (Mateas 2002). In particular, ABL

carried on Hap‟s legacy of supporting believable characters and their ease of authoring, all while

enhancing agent complexity and expressivity, as well as multi-agent capabilities (Mateas &

Stern 2004). Instead of the reactive planning “active plan tree” mentioned above, ABL agents

have an Active Behavior Tree (ABT) that is in constant flux during the agent‟s performance.

Why ABL?

 ABL will be the agent architecture on which we explore authoring support for this

dissertation. ABL, like its predecessor Hap, was designed for the believable, dynamic agents

previously described, and is robust enough to support a publicly releasable interactive

experience. Façade via its existence proves that ABL is complex enough to support high-quality

agents with robust behaviors, while also managing to scale at least semi-tractable and

performing without crashes or developer hand-holding on audience machines. Because of its

potential agent complexity and full feature set, ABL is also ripe for authorial assistance for

anyone who is not currently an expert with the architecture.

Use Cases

 Mateas and Stern were able to leverage the dynamic, reactive behavior tree at the core

of ABL to direct the agents Trip and Grace through complex and dramatically rich interactions

with a first-person player and between each other (Mateas 2002). Now, over ten years later,

Façade is cited as one of the only fully realized dramatic experiences created making use of

these behavior tree research advances. However, other uses of ABL agents include procedural

level generation in Launchpad (Smith et. al. 2011) and Tanagra (Smith, Whitehead, & Mateas

2010), StarCraft (Blizzard Entertainment 1998) agents (McCoy & Mateas 2008; Weber, Mateas,

& Jhala 2010), and full body agent interaction in IMMERSE (Shapiro et. al. 2013).

 Idioms

Weber et. al. published an overview of the design patterns for EISBot, their StarCraft

(Blizzard Entertainment 1998) player, as general reactive planning idioms (Weber et. al. 2010).

While for a different domain than dramatic characters, the idioms in the paper serve as common

tasks that different authors use when authoring in ABL. I would like to use this as a starting point

for the idioms to be reified in my proposed work, so I will enumerate the idioms with brief

summaries and examples here:

Daemon Behaviors enable agent multitasking via a listening behavior with its ear

constantly to the ground, ready to pursue any goals sent its way by using the Spawngoal

keyword.

Messaging is the idiom for sending information between different parts of the ABT

through WMEs. One behavior waits for the existence of a message, and another behavior

creates those messages. The first behavior can then consume the message by pulling

relevant information out of it and then deleting the WME.

Managers is the general term for partitioning parts of the ABT for different tasks.

Any ABL program of any respectable size creates their own system of managers to

organize their code, but there is no consistency in this manager organization between ABL

programs or programmers. One of the major aspects of this document‟s proposed work is

to define a set of managers for creating ABL character agents that is then reified in the

authoring tool architecture.

 Micromanagement Behaviors are the lower-level behavior companions to the

high-level managers. These behaviors enact all the final decisions of the agent once the

decision-making reasoning has already been done elsewhere.

 Mateas and Stern have described their ABL joint action idioms used in Façade, which

are much more multi-agent focused, involving agents that have independent ABTs (Mateas &

Stern 2004). These joint idioms primarily involve negotiating joint behavior participation and

handling conflicts. Other idioms include player input handling behaviors, higher-level beat

behavior organization, cross-beat behaviors, and body resource management (Mateas & Stern

2004; Mateas 2002).

 Dan Shapiro et. al., in ABL‟s most recent incarnation and implementation, described

their Social Interaction Unit (SIU) idiom: a way of nominating behaviors by their level of

importance and grouping a series of related behaviors into a few seconds of performance

similar to Façade‟s beats (Shapiro et. al. 2013). Their performance manager handles SIU

nomination and body resource management; the wrap-on mechanism flavors behaviors based

on specified mood/emotional variations; and the volition process helps manage agent intention

to decide which SIUs to execute. In these processes, we see the requirements of believable

agents result in many complex and interlocking mechanisms that are constantly nominating and

enacting different behaviors in different ways.

 Agent Authoring

Authorial Burden

 As far as the author is aware, there has not been a robust definition of authorial burden

in the context of computer science for creating interactive digital artifacts. Rather, most users of

the term mean it to refer, in general terms, to the amount of time or effort required to create

some or all hand-authored content, whether the content is related to embodied agents (Mateas

2002), dialog (Reed et. al. 2011), environmental assets (Smith, Whitehead, & Mateas 2010), or

many other types of design concepts in computer science. This content is everything that is not

the architecture itself, but the data that the architecture uses in order to generate or display

desired output.

Heckel et. al. conducted a study on the representational complexity of reactive agents in

an attempt to compare high-level agent representational techniques and their effect on authorial

burden (Heckel, Youngblood, & Ketkar 2010). The paper admits to the difficulty in comparing

architectures that cannot represent the same agent or agent capabilities, but attempts to

compare Finite State Machines (FSMs), Hierarchical Finite State Machines (HFSMs), and

Subsumption Architectures anyway. While the paper only examines behavior trees in their most

basic form (ie not reactive planning), the paper reports that reducing the number of states and

transitions reduces the representational complexity, which should make authoring easier.

Authorial Leverage

 Known by authorial leverage and sometimes agency or affordances, this concept

represents the power of the author to express their will or imagination on the content they are

creating. In the evaluation of authorial leverage on drama managers, Chen et. al. define

authorial leverage as “the power a tool gives an author to define a quality interactive experience

in line with their goals, relative to the tool‟s authorial complexity” (emphasis from the original

source) (Chen et. al. 2009). We will describe authorial complexity shortly, but for the time being

we can examine two approaches to authorial leverage. One approach is described by Mateas in

his dissertation: “the authorial affordances of an AI architecture are the „hooks‟ that an

architecture provides for an artist to inscribe their authorial intent in the machine” (Mateas

2002). In other words, a feature set of levers, knobs, and other controllers to direct the

architecture: creative potential and the freedom to express it.

The other approach is closer to Chen et. al.‟s use of leverage in the rest of their paper:

that leverage can be influenced by the complexity. If the content they are authoring becomes

impenetrably complicated, the author no longer feels free to make changes because of the high

cost of editing previous content. While the tools of the architecture have not changed from the

beginning of the project to the end, the author feels chained by the weight of previous decisions.

This is an important aspect of authorial leverage to acknowledge and consider for our proposal,

as agent authoring is extremely complex and threatens to reduce authorial leverage very

quickly.

Authorial Complexity

In the introduction, we introduced the concept of authorial complexity: a different

approach to examining authoring burden, which is very close to Heckel et. al.‟s representational

complexity. However, while counting states and connections is very quantifiable, it fails to

capture the challenge of authoring the states such that they are believable. There is an

undeniably human element in behavior authoring where the author must imagine (or see

through debugging processes) the agent in their state enacting each connection: does it look

natural? How would the agent handle this particular transition? Would every agent handle it that

way? Ensuring (or debugging) believability in this painstaking manner is required to create

believable agents. Authorial complexity refers to the complexity of authoring a given piece of

content (in this case, a behavior), which involves sifting through and making use of authorial

leverage. This is why Chen et. al. says leverage is relative to complexity: authors cannot make

use of the leverage that they do not understand (Chen et. al. 2009). A summary of all these

elements can be seen in Figure 3.

Figure 3: A summary of authorial burden, complexity, and leverage in the context of believable agents

represented via a behavior tree. The tree at the top represents the final scenario. Each bubble is a behavior,
which incorporates all desired elements of believability, and interfaces with other behaviors in the tree.

 While the ABL architecture has been designed to make simple character behaviors need

only a few lines of code (Mateas & Stern 2004), designing robust behaviors, behaviors that can

interact appropriately and believably with many other behaviors, is extremely challenging. That

is, ABL offers a huge level of leverage, so much so that trying to make use of it all blows

authorial complexity out of proportion. Other researchers have noted this problem:

The cost of reactive intelligence is engineering. The agent’s intelligence must be designed

by hand since it performs no search (including learning or planning) itself… Although

behavior modules are themselves definitionally easy to create, engineering interactions

between behaviors has proved difficult. (Bryson 2003)

Isla echos this observation when he says, “Quantity, of course, is complexity,” although his term

for authorial complexity is “mental bandwidth” (Isla 2005). He describes the loss of what we‟ve

been calling authorial leverage: “when we lose the ability to reason about what's going on in the

system, we lose control over it.” Additional context and details for these definitions can be found

in the proposed work.

Authorial Evaluations

Internally, authoring challenges and tools get a wide variety of treatment, although it is

difficult to find many publications describing this (hence, internally). Some systems create bug-

ridden authoring tools for producing content, such as the Comme il Faut‟s authoring tool for

Prom Week (McCoy et. al. 2011). The tool would periodically crash, lose authored content, and

fail to display content properly to authors, but it was still used to make thousands of micro-

theories for the game. FAtiMA only describes its authoring process: “FAtiMA characters are

complex to author since their behaviours emerge from a combination of multiple factors… Since

there are no conventional definitions of such values, authors have to adjust them through trial

and error” (Berardini & Porayska-Pomsta 2013). In the previous work section, we show some

more detailed accounts of the FAtiMA authoring process. CADIA‟s authoring tool, Populus,

asserts an easy of authoring without providing many details as to how: “the tool is written in

Python which assures flexibility, fast prototyping and deployment of new scenarios and

behaviours” (Pedica 2009). Informal discussions with other authors have admitted to keeping

scenarios to a small scope to minimize authoring and remove the need for a tool (Grow et. al.

2014).

BOD/POSH has deployed authoring tools to undergraduate computer science students

and graduate classes of social and behavioral sciences (Brom et. al. 2006). In order to make

authoring as approachable as possible, one of their major goals was “making simple things

simple, and complex things possible” (emphasis in the original). Their approach also supported

rapid prototyping and a graphical virtual environment in order to visualize agent behaviors.

Authoring and visualization modules were separated into the BOD/MASON view that showed

behaviors running, and the ABODE behavior editor that created the trees. However, not much

detail is given on the author‟s experiences using the tool. We can only extrapolate that the

modular approach and focus on simplicity made authoring possible by these students.

Weber, Mateas, & Jhala used an unpublished ABL authoring tool to visualize ABL‟s

Active Behavior Tree when conducting their research on their StarCraft agents (Weber, Mateas,

& Jhala 2010; Blizzard Entertainment 1998). However, Weber never reported on its use, nor

provided any documentation, and future ABL authors on IMMERSE found the tool to be

intimidating, buggy, and overall not worth using. However, the tool is a first attempt at providing

ABL-specific authoring support. Many of the same things Weber visualized in his tool, we will be

trying to visualize in a more modular and user-friendly manner.

Some architectures claim to enable non-programming experts to create content related

to agents, such as scene composition in SceneMaker (Gebhard et. al. 2003), and usually are

presented in some form of scripting or XML-editing interface to the architecture such as XSTEP

or BML (Huang, Eliëns, & Visser 2003; Kopp et. al. 2006; Vilhjálmsson et. al. 2007). However,

XML and spreadsheets are not conducive to building creative agents (O‟Keefe 2010). One

argument presented in that article is that XML removes any formatting (for text) or visualization

of the final output from the authoring process. The XML is clearly closer to the technical

representation of the content rather than the author‟s creative mental image, which interferes

with creative expression. Other authors crave the restrictions found in richer user interfaces: for

example, only allowing numbers in certain text fields, or not allowing spaces in others. Another

article explains that one of the reasons XML is seen as so troublesome is that it‟s trying to

bridge a very large gap between machines and human-readable content (Bone 2002).

 Although agent architectures are often lacking in their authoring descriptions, there are

commercial behavior tree authoring tools used by the industry. Behave, a library for Unity, is a

drag-and-drop interface for constructing behavior tees (Johansen 2014). However, not only are

these behavior trees static (rather than dynamic), but they focus on tasks related to navigation

and combat rather than rich, dramatic, and social interaction between agents. A research-

focused behavior tree editor, AIPaint, also builds behavior trees for space-oriented behaviors for

pathfinding-like tasks, this time with a sketching interface (Becroft et. al. 2011). In summary:

complex dramatic agents with many interactions between their behaviors are very difficult to

control and visualize. Authoring interfaces for architectures that handle dramatic behaviors are

either nonexistent, poorly represented, or lack author-focused evaluations. These poor

representations have led to the general, yet structured, authoring proposals in this document

being defined as research contributions.

Evaluation Model for Leverage

 Chen et. al. conducted an evaluation of authorial leverage for drama managers by

comparing the output complexity and quality of authored stories from a drama manager and a

script-and-trigger approach (Chen et. al. 2009). They showed that a drama manager provides

authorial leverage, which was defined above. While the study examined stories (not agents)

and decision trees (not behavior trees, nor dynamic), it is the most detailed author-focused

evaluation of AI architectures we have seen. The metrics they examined were complexity, easy

of policy change, and variability of experiences:

Complexity: Examining the smallest tree that achieves reasonable performance and

qualitatively examining whether it would be reasonable to hand-author. Or, approaching from

the other direction, beginning with a small world and measuring how complexity grows when

adding additional elements. (Quantity)

 Ease of policy change: Assuming a fully realized tree, how difficult is it to tune and alter

the experience? Script-and-trigger alterations require many complicated changes throughout the

system, while the drama manager offers high-level controls. (Quality)

 Variability of experiences: Examines the variety of experiences by measuring the

frequency of variability. Attempts to capture a breadth of different high-quality experiences

(Quantity & Quality)

All of these metrics attempt to capture elements of decision tree authoring that we wish to also

examine in behavior tree authoring. The Evaluation section near the end of this document

proposes our application of these metrics to evaluate our authoring interface as Chen et. al.

evaluated their drama manager.

Previous Work
The author has had a long infatuation with enabling the creation of various things by

other authors, including arts and crafts, natural language, and embodied agents. The following

research is constrained to be at least semi-related to the field of embodied agents research.

 Disembodied Agents

 While not directly fitting with the full form of embodied agents we‟ve described, the

author was involved with natural language generation and behavior authoring for chatbot-like

agents (with at most static visual image representations).

SpyFeet

SpyFeet was a mobile app developed to motivate young girls to exercise, and

generating dialog for its characters was the first time the authored encountered friction with

novice authors (Reed et. al. 2011). The novice authors tasked with writing agent dialog had

difficulty working in spreadsheets and situating their mental model of characters in arbitrary

situations. This is a similar problem to imagining agent state space and the combinatorial

number of possibilities to account for when authoring agent behaviors.

GrailGM

The author encountered further challenges from novice authors in helping Anne Sullivan

with her dissertation work on quests for social role-playing games (Sullivan 2012).

The Grail Framework in its entirety is designed to create a framework in which the

designer is able to author high-level rules together with relatively-atomic pieces of

traditional content, allowing for a large amount of dynamism in play. By not requiring the

designers to use traditional scripting methods to create the game story, they are able to

focus on the tasks of designing and writing, as opposed to programming and scripting.

(Sullivan 2012)

While story-focused rather than agent-focused, we created a Social Mechanics Design Tool

(SMDT) for Grail Framework‟s disembodied characters (See Figure 4).

Figure 4: The Social Mechanics Design Tool for the Grail Framework. The whole tool interfaces to XML files

and represents different areas of authoring in an accordion-like menu interface. Some examples of these
authoring areas include Micro-theories, Plot Points, Social Moves, and Quests. The use of bullet points and
drop downs restrict data entry options (and thus mistakes) where ever possible by the authors. Courtesy of

(Sullivan 2012).

This design tool handled content creation for the Grail Framework at all levels of story

granularity, including agent dialog, their motivations, major plot points, and whole quests. It was

used by writers with varying levels of computer science education, and while all authors were

able to understand the predicate logic eventually, it was a challenge for non-programmers

initially. The following are lessons we learned for future iterations of the tool, many of which can

be extrapolated to be used with the tool presented in this dissertation. More details about these

lessons in relation to the Grail Framework can be found in Anne Sullivan's Dissertation (Sullivan

2012).

 Hierarchical Confusion

 The design tool was separated into sections based on the type of data being authored

(See Figure 4 above). However, the authors got confused handling all levels of hierarchical data

in a flat manner. For example, there were (informally) world-level, game-level, quest-level, and

character-level plot points, but they all co-existed simultaneously in the same plot point editor.

Character-level plot points would sometimes be coded in quest-level plot points, and it would be

difficult to untangle quest and character progression later.

ABL faces a similar challenge in that behaviors are the fundamental building block in all

levels of its potential hierarchical planning. It is completely up to the user‟s design to delineate

levels of hierarchy and enforce their own consistency. A tool can help separate these

hierarchical levels and help authors enter the proper design space for each level.

Context Confusion

 Predicate logic was pervasive throughout all parts of the tool. The same predicate with

very little visual difference could be seen acting as a precondition for a whole behavior to fire

(1), as a weight to determine if an agent desired to do the behavior (2), the condition for a

specific instance of the behavior (3), and the resulting value change if the behavior occurs (4):

(1) buddyNetwork(initiator, responder) greaterThan 50 (precondition)

(2) 3 buddyNetwork(initiator, responder) greaterThan 50 (influence rule weight)

(3) buddyNetwork(initiator,responder) greaterThan 50 (condition of an effect)

(4) buddyNetwork(initiator, responder) +10 (change of the effect)

(Sullivan 2012)

ABL has more explicit keywords to show when these different predicate uses are occurring

(such as precondition and context_condition). However, it is important that the different

functions of these predicates are clearly maintained in the tool in order to reduce user

confusion.

Expected Tool Performance

 The history of tool usage for all our authors brought certain expectations to their use of

our tool, and we were not able to fulfill them all. Flawless saving and loading was absolutely

required, and periodic auto-saving (and thus work recovery) was expected and fulfilled.

However, we did not get around to implementing “undo” functionality, nor any level of copy-

paste operations. Since many low-level concepts were reused when authoring similar behaviors

(see those predicates above), being able to copy-paste their settings would have saved authors

3-4 mouse clicks per entry of that predicate. The authors also desired ways to filter previously

authored work, such as finding all micro-theories involving a change in the “buddyNetwork”

above. These are common features to data-driven tools that the ABL authoring tool should also

strive to support.

 In-Tool Testing

 The SMDT was a separate entity from the game that used the data that resulted from it:

text files were saved and shared between the tool and the game in two separate applications.

There was no verification or testing of the authored text other than those ensured by the

graphical user interface (the author could not misspell an entry in a drop-down list, for example).

The authors desired ways to see metrics such as reachability of certain behaviors, which

predicates were constraining behavior choice, or how often micro-theory rules were used, which

the tool was incapable of displaying.

 Since we did not have any support in the SMDT, it is difficult to say which features would

have actually been useful in aiding designers. However, The ability to compile and run ABL

code within its tool is going to be critical for providing designer feedback as quickly as possible,

regardless of what precisely that feedback is.

Character Creator

 After GrailGM, the author built a currently unpublished authoring tool for merging the

agents in Sullivan‟s system with the natural language of SpyFeet. This tool was designed to fill

in the authoring that had not been covered in the Grail Framework, but was still required by the

Framework: the agents and objects within the world, including their properties, personalities,

relationships, and history. The author approached the task with the metaphor of creating a

Dungeons & Dragons character sheet: a common trope found within many character creation

systems in computer role-playing games (TSR 1977). While the tool was never finished nor

used by anyone other than the author, it exists as another instance of concrete tool design.

Figure 5: A fraction of the Character Creator tool design spec. Where ever possible drop-down menus and

radial buttons were used to verify user input. Fields were meant to update in real time to any change of
variables.

Every button, text field, dropdown, checkbox, mouseover, and other user interface element was

defined in a design document (see Figure 5 above). Approximately one-third of the tool was

encoded and functioning (see Figure 6 below). The author had followed the design principles

learned from the Grail Framework: restricted user input to ensure valid output, robust

saving/loading, and simulations of how the characters and items would be used within the

game.

Figure 6: A section of the Character Creator tool functioning. Built in Action Script, which is now considered

a dead language.

 Embodied Agents

 While working on the next generation of Façade with Michael Mateas, Andrew Stern,

and others, the author graduated from novice to tentative expert in ABL authoring. We began

with Mateas‟ dissertation on ABL, the de facto document of ABL‟s most crucial elements, and

made small additions to the IMMERSE project code-base with processes such as organizing a

group of agents to pantomime a small group discussion. It took months of PhD-level student

man-hours to get up to speed in ABL authoring to the point of working on semi-believable

agents.

 Over the next year, our group added structure to the code base in an attempt to both

lower the authorial burden and increase or agent‟s believability; the SIU, performance manager,

volition process, and wrap-on mechanism mentioned above were all developed during this time

(Shapiro et. al. 2013).

The Social Interaction Unit

Social Interaction Units are akin to beats in Façade (Mateas & Stern 2005) and social

exchanges in Prom Week (McCoy et. al. 2011). An SIU is designed to be as small as possible

to accomplish a single, discrete social goal, such as a reacting to the player‟s approach,

exchanging an object, or momentarily discussing a question. It typically lasts from 5 to 10

seconds. An SIU has a primary initiator and one or more responders, one of whom may be a

primary responder. For example, the Greet SIU has a greeter (initiator), and one or more

characters being greeted (responders). SIUs may take parameters, such as a character to add

or remove from a group formation, a gesture to mirror, or a question being asked. SIUs can be

built to allow either the player or an NPC to be the initiator or a responder.

SIUs are typically launched from higher-level decision-making rules in reaction to

interpretations of social signals from another character (typically the player). Additionally, SIUs

may be autonomously launched as self-motivated behavior, e.g., for maintaining a group

formation. Each NPC is typically involved in multiple simultaneous active SIUs at the same

time. For example, ManageFormation, ChitChat, StudyOthersObject, and ReactToQuestion

may all be active simultaneously.

After the SIU pattern was established, code templates were created to ease their

authoring process. An author looking to create a new SIU would copy-paste a set of partially-

constructed skeleton behaviors that all shared a structure of initialization, role-selection,

NPC/Player performance differences, and clean-up. The behavior templates came with

connections with the performance manager so that the SIU could be used by the performance

manager without the author having to worry about interfacing with those different aspects of the

code.

The Performance Manager

The performance manager interleaves SIU execution using an authored-defined priority

assigned to each SIU. Priority tiers are heuristically tuned to favor more important performance

requests such as reacting quickly to a gesture from the player, over less urgent performance

such as maintaining group formation or chitchatting. If the Performance Manager suspends a

less important ongoing performance to allow a more important request to perform immediately,

the suspended performance will typically re-run when the interrupting performance has

completed. Since each performance request typically lasts no more than a few seconds, re-

running interrupted performances often maintains coherence and believability.

Volition Process

 The volition process performs social reasoning by deciding which SIUs to execute and

when. The mechanism employs three types of production rules, added to ABL for this purpose.

These rules leverage the existing pattern matching capabilities of ABL, but provide new

functionality for asserting and processing new working memory elements. The first are

nomination rules. These rules assert an SIU decision object into working memory when its

preconditions hold in the social context. Nomination rules execute whenever a new social

interpretation is introduced to the simulator through the input channel, or a specified amount of

time elapses. This is the first step of the volition process. At this stage, the resulting SIU

decision objects only indicate that the associated behaviors are possible given the social

context, but they are not immediately executed.

The second type of rule integrated into ABL represent desirability, or influence. A given

influence rule matches an SIU decision object plus additional state data. The action side of the

rule increments or decrements a preference value for the execution of that SIU. A single

aggregated score is computed for each SIU decision object from all matching influence rules,

and any SIUs above a static threshold are marked for execution.

The third type of rule matches a set of relations on the left hand side and either asserts

or deletes any number of standard ABL working memory elements on the right hand side. This

is done for all matching variable bindings. These rules generalize the trigger functionality in CiF

and are fired at a specific moment in the decision process. A separate parallel process

continuously monitors SIU objects marked for execution, and launches the corresponding

behavior by adding it to the active behavior tree (ABT).

Wrap-On Mechanism

The wrap-on mechanism addresses the problem of encoding character performance

given a wide variety of behaviors and attitudes. A naïve approach to capturing these variations

quickly leads to an intractable amount of authoring, so we focus, instead, on building reusable

social affordances that can be authored independently and recombined dynamically to produce

the desired performance range. The wrap-on mechanism does this by layering expressions of

attitude onto behavior.

In more detail, we author the core functionality of each SIU in an affect-neutral way,

comprised of very short functional performances. For example, ExchangeObject has the initiator

holding out the object, waiting for the responder to reach for it, which finally completes the

exchange. Next, we write behaviors that can perform these low-level actions with a variety of

attitudes. This can be as simple as defining attitudinal variations of individual animations, such

as holding out an object in a friendly, aggressive or hesitant way. The wrap-on manager acts by

inserting these animations before, after, and/or in place of the core performance, such as

impatient sighs, frustrated gestures, or nervous glances, using the meta-behavior capabilities in

ABL to alter the structure of the ABT.

 Requirements Analysis for ABL authoring

In an effort to approach creating authoring support for ABL, we conducted a survey of

embodied agent authoring architectures and uncovered interesting similarities in how

reasonably isolated groups each approached their authoring challenges (Grow et. al. 2014). In

preliminary conversations with five different research institutions, we found that many of them

do not believe the cost of an authoring tool is less than the effort to brute-force simple agents to

prove their research goals. However, authoring tools would be needed to scale up production of

their agents because of the rapidly increasing authorial complexity. We set out to find out what

the authoring process was for these systems so that we could begin to understand how to

approach reducing their authorial burden and complexity.

The System-Specific Step

 At a high-level, we carved out a chunk of the authoring process, which we called the

System-Specific Step (SSS), as the term for the parts of the authoring process where broad

discussion ends and system-specific design constructs are used instead. The SSS is a

troublesome idea because it both represents a phase in the authoring process that all IVA

authors must complete, but how each author approaches, conceptualizes, and executes the

phase can be completely different. We set out to map exactly how each author approached,

conceptualized, and executed this phase with as much detail as possible for scientific

examination.

Figure 7: Illustrates the boundaries of the SSS for the three different agent architectures that we conducted

case studies with.

In order to find a specific system‟s point of divergence from shared authoring concepts,

we needed to run the architecture through an authoring exercise. We designed a simple

scenario, described below, for intermediate-expert authors to transform into descriptive

pseudocode for their own system, one step removed from actually programming the scenario.

These intermediate-expert authors were accompanied by an analyst who was not an expert in

the architecture, which forced the intermediate-expert to elaborate and make explicit every step

of their authoring process.

The authoring team then translated their work into a rigorous process map, where the

analyst wrote the map (confirming their understanding) and the intermediate-expert validated

and expanded it as necessary. Process mapping involves creating a visual representation of a

procedure similar to a flow chart, making explicit “the means by which work gets done” (Madison

2005). Details of each step (and possible sub-steps) in the process were recorded, such as the

duration of each step, other people involved, and possible authoring bottlenecks. The goal of

this process map is to make as much of the authoring process as explicit as possible for

analysis.

In the following case studies, conclusions drawn from the process maps of each team

are enumerated as SSS Components. We found this process not only helpful, but necessary to

discover actionable means by which to improve the authoring experience for the requirements

analysis. It is important to note that it may take multiple of these sessions with the same author

(and possibly multiple process maps) to obtain the full authoring process with sufficient detail for

analysis. For example, one early process map made with an ABL author was very high-level,

focusing on the interconnection with other teams and the bottleneck this caused. The analyst

had to return to the ABL author for another session aimed at creating a new process map

through the expansion of a single node in the first process map. All the involved systems have

been mentioned and described previously in the related works section, so their introductions are

not necessary.

The Scenario

The scenario we chose is a simplified version of the “Lost Interpreter” scenario recently

completed and demoed by the IMMERSE group in ABL (Shapiro et. al. 2013). It involves the

player as an armed soldier in an occupied territory searching for their lost interpreter via a

photograph in their possession. The player must show the image to a cooperative local civilian,

who will then recognize the person in the photograph and point the player in the direction of the

interpreter. Once the player knows the location, the scenario is successfully completed. The

uncooperative civilian will not respond to the player‟s pleas for help, and if the player is rude or

breaks social norms (Evans, forthcoming), the NPCs (Non-Player Characters) will leave and the

scenario will end unsuccessfully.

We chose this scenario because it exercises a wide range of capabilities of interactive

characters: player involvement, multiple NPCs with different attitudes, a physical object,

communication between NPC and PC, and multiple outcomes. The scenario was also simple

enough that each team was able to reach a pseudocode state of completion in a reasonable

amount of time (1-3 hours). While the original IMMERSE scenario required non-verbal

communication via gesture recognition, we did not enforce that modality on other systems. The

specifications of the scenario were designed to be loose enough to allow each system to

encode the scenario to their system‟s advantages without demanding extraneous features that

all systems may not possess.

 Case Study 1: BOD using POSH

A programmer and designer worked together to create a list of abstract behaviors that

need to be performed. It is important to note that the BOD designer (as distinct from the

programmer) will never need to encounter anything more complicated than graphical interfaces

in their authoring interactions, allowing the designer and programmer to be the most

independent of the three case studies (although they may be the same person in some

projects). The separation of these two roles is part of the design philosophy of BOD. In our case

study the abstract behavior list included seven actions: a greeting/goodbye to mark the

beginning and end of the interaction, accepting, examining, returning an item, ignoring the

player (for the uncooperative agent), and telling information. The second step was to build what

is ultimately a list of procedure signatures for the programmer, determining which of these

behavior elements need to be represented as actions and sensors, as well as an idle state

should all else fail (Bryson & Stein 2001).

The programmer then coded the actions and sensors as functions to create the building

blocks of the dynamic plan. In parallel, the designer used the primitives (actions and sensors)

created by the programmer to design the behavior tree using ABODE*, a graphical design tool

for POSH plans.

Figure 8: The BOD/POSH SSS in detail.

 Case Study 2: FAtiMA

When presented with the requirements of the the Lost Interpreter scenario, FAtiMA

authors started by considering the motivations of the NPCs. Since the behaviors of agents in

FAtiMA are goal driven, it was proposed that NPC‟s in this scenario must have the explicit goal

of helping the player, which we creatively called Help. Additionally, there needed to be a

motivation not to help, in order to model the uncooperative NPC's behavior. The authors chose

for the uncooperative NPC to have the goal of avoiding harm from the armed player (let it be

called ProtectSelf). For this second goal to be useful, there must be an NPC action that is

helpful to the player, but at the same time might put it in harm‟s way. For instance, the NPC

might consider the possibility of being harmed when taking the picture from the player. If the

agent considers a plan involving possibly being harmed, then it will feel a Fear emotion. The

authors then continued to define actions that the agents can take along the path of reaching the

help goal, such as actually taking the photo, examining it, or speaking.

Figure 9: The FAtiMA SSS in detail.

 Case Study 3: ABL

The ABL authors approached the scenario by first creating a list of abstract behaviors

which were stubbed into the ABT in a rough sequential structure. At a high level, the authors

each tackled a specific behavior and worked iteratively with each other to bring it to completion.

Consider the example give_object() behavior for a character to hand an object to another

character:

Figure 10: ABL code snippet authored for giving an object to another agent.

● The context of how the behavior will be triggered: in this scenario, the author knows that

give_object() will be triggered in response to a request_object() behavior or it will be

accepted unconditionally. It contains no logic for having the offered object rejected. This

behavior also only handles removing the object from the character‟s hand, and assumes

another behavior handles the object‟s fate.

● Relevant signals and WMEs: The previous behavior was authored assuming that the

characterPhysicalWME contains locational information, that there is a socialSignalWME

ready to handle socialInterpretationExtendHand, and that there are constants such as

the cExchangeObjectDistance previously defined and calibrated for the world. If any of

these are lacking, or the author does not know about them, the author must search the

existing code or create them.

● Expected animations: Head tracking, eye gaze, and holding out the offered object are

the animations used in this behavior. The logic behind procedurally animating them is

handled elsewhere, and if it were not, the author would have to create it.

● Possible Interruptions: The most challenging and crucial step to making these behaviors

robust is handling interruptions, which the above behavior fails to do. In the

success_test, if the NPC never acknowledges the socialSignal or the player never

comes in range, the NPC will hold their hand out forever. If a timeout was added to

holding out their hand, what should the NPC do about the unrequited object offering, and

how should the lost request_object() context be handled? These are all considerations

the author must address when making behaviors robust.

Figure 11: The ABL SSS in detail.

Discussion

In an attempt to distill the authoring process into smaller components, each team defined

a set of SSS Components as major guidelines, steps, or lessons learned from the process of

mapping their SSS. The summary of them is listed here, and greater detail about them can be

found in the source paper (Grow et. al. 2014):

Name Summary Systems Authoring Support

i Start Minimally Having a working vertical slice early
gives programmers and designers a
good overview of the scenario
structure.

BOD/
POSH,
ABL

Current ABODE* graphical
design tool is sufficient.

ii Decompose
Iteratively

Filling in the stubs iteratively gives
designers and programmers freedom

BOD/
POSH,

Current ABODE* graphical
design tool is sufficient.

to adjust the structure without getting
in each other‟s way.

ABL

iii Minimize and
Encapsulate

The BOD/POSH tree relies on simply
logic to execute quickly, so complex
sensory preconditions should be
offloaded to behaviors.

BOD/
POSH

A module that manages
encapsulated behaviors,
keeping them simple and
proposing them to new
authors.

iv Goals First The agent‟s actions are driven by
goals, so there must always be a
goal structure.

FAtiMA Combined with SSS
Element v.

v Find Decision
Points

Necessary scenario-defined decision
points make sub-goals more
apparent to author.

FAtiMA Scenario event
sequencing tool with
prompts for goals and
actions at decision points.

vi Goal
Weighting and
Tuning

Agent‟s different behaviors are
driven by different weights, which is
a huge time-sink to debug.

FAtiMA Parallel execution and
real-time adjustment/
comparison of values

vii Intent Goals
for Future
Consequences

Language-specific limitations, such
as only having one active goal at a
time, hinder novice-intermediate
authors.

FAtiMA Better documentation

viii Define Coding
Idioms

As ABL is its own language, an
author must have a strong
understanding of their chosen idioms
before coding.

ABL Too advanced for a tool to
offer much help

ix NPC and
Player
Considerations

An author must conceptualize roles,
the contents of the working memory
and ABT, and fine-grain performance
details while building up their
behaviors.

ABL Revival of the ABL
Debugger through
modularization: offline
code analysis of behavior
structures through idioms

x Consider
Interruptions

Authors must try to robustify their
behaviors against interruptions and
stalling, which complicates the
previous SSS Element.

ABL Revival of the ABL
Debugger through
modularization: tree
visualization of iterations
and disparate tree
sections.

Table 3: The summary of SSS Elements found in (Grow et. al. 2014).

 The SSS Components that arose from the simplest case study, BOD/POSH, were high-

level authoring guidelines that apply to multiple architectures. Specifically, all three of

BOD/POSH‟s Components apply to ABL as well, as they are more characteristic of a

hierarchical planning structure than of BOD/POSH specifically. Other SSS Components, such

as FAtiMA‟s Goals First (iv), are guided by FAtiMA‟s planning-oriented cognitive-appraisal

architecture that is driven by explicit goals. The ABL case study provides a level of complexity

above the other two; ABL is a general reactive planning language where many authoring

idioms may be designed, as well as the only architecture in the case studies with a behavior

tree that dynamically changes during runtime.

Many interviewees were resistant to the idea of specifying implementation time (in

number of hours), as it varied greatly between each task. We also found that the particular

shape or contents of any single process map wasn‟t as relevant as the process of elucidation

and reflection. The goal of the process mapping technique is to tease out what is general and

what is system-specific about a given architecture. The system-specific information forms the

core of requirements analyses and the actionable plans found therein. The previous table shows

a summary and consolidation of each team's analyst's best attempt at discovering system-

specific patterns of frustration and proposing solutions to alleviate the problems.

Although the SSS concept contains the phrase “System-Specific” in its name, we found

that certain SSS Components are shared between different systems, revealing common

architectural tropes. However, we did find common medium-level authoring challenges that may

be of use to other teams by abstracting SSS Components of the case studies: the need for

(better) mechanisms for behavior (or other architecture construct) sharing and reuse, live

debugging, and template structures for architecture constructs. Even though our authoring

process diagrams for the System-Specific Step did not include any architectural coding

examples, we did ask authors to describe their debugging process and how they would go

about the coding process. We came up with a generalized and shared authoring process

diagram:

Figure 12: The authoring process diagram that every author across the different architectures followed.

Proposed Work
 The following work proposes two primary bodies of work: a general set of authoring

support strategies and patterns to be used by any agent architecture, and an application of

these support strategies and patterns to the ABL architecture. The work is informed by the

previous sections of related work and prior work in agent design with regards to behavior trees,

authoring experience and feedback, and authoring tool design.

Authoring

Definitions

So far, we have wrangled with the concept of authoring, which describes content

creation for or within some architecture by human authors. This broad definition includes a

Figure 13: An expanded Figure 3 diagram. The definitions are more detailed to support the proposed work in
this section. The definitions are also applied to interactive narrative, as part of the related work supporting

these terms comes from that literature.

variety of content and architectures so vast that it is not a useful definition on its own. When

describing the number of instances of content that need to be authored growing exponentially

(in, for example, branching narratives), the term authorial burden describes the number of

instances. We have proposed the term authorial complexity to define the challenge of authoring

each individual instance of the content, which varies greatly and independently from authorial

burden. Authorial leverage is a term used to refer to the human author‟s agency or control over

what they are creating during any given instance. Authorial leverage and authorial complexity

are often positively correlated (with high leverage resulting in more complex authored instances

of content), but not necessarily. Finally, in previous work, we attempted to map the authorial

process of different architectures: a process map of detailed steps that describe what exactly

occurs when the author creates an instance of content for a given architecture.

 The following Figure summarizes the context and details of the above definitions (except

authoring process, see previous work for agent authoring process). Much of this diagram has

been implied or alluded to informally, or partially presented in the terms of a given architecture,

in the related work. However, we present this diagram as the beginnings of our work to define a

shared and concrete vocabulary to describe content authoring. While this document is focused

on agent authoring patterns and will continue to move forward in that space specifically, the

below diagram shows both agent and interactive storytelling use cases because both fields

tackle similarly structured authorial burdens and authoring vocabularies.

Patterns

The previous work began to shape a loose authoring process discovery method for use

by general systems, and we began to find patterns in the approach and methods of the authors.

Although they were using different architectures, they are creating agents with similar

connecting parts toward the same goal. At a high level, the authors must keep track of all the

elements in the following diagram for the purposes of debugging behaviors when they do not

perform as intended:

Figure 15: A restatement of figure 1. These are elements of the architecture authors must hold in their mental

model, including all subjective criteria of believable agents.

Combining this diagram with previous work, we begin to see a general description for the

nebulously “difficult” authoring process of interactive dramatic agents:

Figure 16: Includes both the "mental model" (re)evaluation section as well as the general authoring process

diagram discovered in previous work. This is why agent authoring is so hard. Now that we've aggregated
them on a big map, we have to break them down into solvable sub problems.

If the author does not get their behavior correct and satisfactory on the first pass, which

they almost never do, it is difficult to pin-point where corrections should be made in the code.

First, there are the technical requirements of the architecture, such as a language specification,

which must be obeyed for the agent and program to be compiled. Next, when the agent and

scenario is run, the behavior must be triggered and performed, which may require specific

scenario set-up or an introductory sequence of actions before the author reaches the proper

setting for the behavior. The author must then check technical aspects of the behavior: does it

trigger and finish properly, are its parameters correct, and does it change agents‟ state or

perform its system-level functions correctly? At the same time, the author judges its aesthetic

performance in regards to being believable and readable for the future audience, taking note of

timing, duration, and physical asset blending. If at any time these requirements fail, the author

must go back to the code to tweak numerical values, re-examine this behavior or those

interacting with it for updates, or perhaps redesign the behavior from scratch if some

misunderstanding has caused an unrecoverable catastrophic failure. Depending on the

architecture, the author may have to request external assets, such as fresh animations, if the

performance is unsatisfactory. And, of course, if any other behaviors get changed, there may be

a domino effect with testing that new behavior or other behaviors reliant on those changed

behaviors.

Visualization Modules

 From our discussions with agent authors in previous work, we know at least a few areas

where authors have had problems debugging agent behavior: reliably triggering a behavior and

circumstances for consistent testing, tweaking performance metrics until they look just right, and

detecting problems when interfacing with another behavior. This dissertation‟s first proposal is a

set of general-purpose visualization module designs for helping expose architecture state to

authors during their performance evaluation phase. For those thinking of building or upgrading

their architecture for more author-friendly debugging support, we highly recommend adding

these prescriptive designs to your agent authoring architecture.

 Reliable Triggering

 My brother doubted that computer science was a proper “science” until he saw me

debugging: applying the scientific method of having a hypothesis for the problem or solution;

rigorously testing the code by changing variables or by holding variables constant to see if my

hypothesis was valid; and then either applying the correct hypothesis or changing the

hypothesis based on new information. An absolute necessity of proving a sound hypothesis

based on experimentation is repeatability. The core of this module is providing a consistently

repeatable path through the decision tree, whether it is to repeat the appearance of the bug or

to repeat the setup for the bug in order to test if a change has fixed the bug. In order to execute

this design, the architecture will need the following elements:

RT1: A meta representation of state and decisions

RT2: A means of automatically triggering decisions

RT3: Controlled randomness, if any randomness is used

In informal terms, reliable triggering (RT) can be seen as saving and loading a particular

path through the architecture‟s behavior tree (or through each agent‟s personal behavior trees).

RT1 represents the means by which this saving and loading can occur: the meta representation

must contain relevant data that is not inherent to the behavior tree itself, and it may contain

additional information. For some architectures, all they will need for RT1 is log of commands

entered by the user that will be executed by RT2. If timing is important to the architecture,

timestamps and encoded delays in executing the behaviors may be required. And if there is

randomness, saving and using a random seed for RT3 would remove any remaining possible

variation in reliably creating the same scenario. Any additional information on the state of the

agents, for example, can be useful to the author if presented intelligently.

Implicit in all of these stored commands is a means by which the architecture can

execute these commands. Some architectures may not be capable of this on their own, and

may need some scripting wrapper or other interface to enable this meta functionality. However,

the payoff for this functionality is enormous. Not only does it remove error and doubt in the

scientific process of debugging agent behavior (allowing the author to remain focused on the

task at hand), but it enables many potential instances of the agent to be executed

simultaneously side-by-side. The author can then see the results of different hypothesis at the

same time, rather than testing them sequentially. Additional information processing of the state

and decision representation can highlight what aspects of the agents are inconsistent with one

another in this side-by-side view. The following ABL-focused section will cash out what these

advances would look like and mean for an ABL author.

Tweaking Performance Metrics

 Each of these sections are meant to be isolated instances of improvement. However,

this section on tweaking performance metrics (TPM) works in tandem with many elements of the

previous section. In isolation, live TPM for the architecture offers increased author agency. It

requires:

 TPM1: Access to where (in the architecture) the metric is defined

 TPM2: A means to change the metric, preferably in real time, with immediate results

The metrics that we are envisioning here are generally some numerical value, such as a weight

from 0 to 1, or an enum. Given that the metrics are trying to be externally accessed, they should

be stored as some global variable or in some kind of globally accessible (such as an indexed)

data structure. The TPM2 element, such as a drop-down menu or a slider, would use its TPM1

access to immediately override the value. Instead of requiring the author to change code and

recompile, the TPM would change the metric with a quicker and more immediate interface. If

this is something the architecture needs to do often, some object-oriented design can make a

reusable pattern for generating and hooking up the GUI element to the metric for the author with

a single line of code.

Depending on the architecture, TPM can be more or less useful. For example, in our

previous work section, TPM would be a much more important feature to add to the FAtiMA

architecture than ABL or BOD/POSH. When interfacing with the previous RT section, each

simultaneous agent instance could have a different interface for tweaking the metric. Thus, the

author could simultaneously see the result of multiple instances of the metric altering the

performance of the same set of behaviors, for example. This would rapidly decrease the time it

would take for an author to narrow in on a value for the metric that they find pleasing.

 Behavior Interfacing

 Understanding how behaviors interact within an architecture is a more advanced

requirement, usually found when many behaviors have been made and have to interlock in a

pleasing manner. After the freshly authored behavior code is checked to compile, run properly,

and functions well on its own, the last stage of the author‟s debugging task is often to verify that

the behavior works well when interfacing with other code. What possible combinations of

behaviors are possible is completely reliant on the architecture and the scenario. However,

authors have requested a means to detect when behaviors interfere with one another, as well

as methods of consistently and explicitly blending behaviors wherever possible. To satisfy these

requests, we propose the following requirements:

 BI1: Meta tracking of ongoing behaviors

 BI2: High-level managers to mediate resource conflicts

 BI3: Alerts for “hanging” or “stalling” behaviors

 When debugging ABL code, the behavior tree can be visualized as a series of directory

folders in a computer file management, where each subgoal or spawngoal corresponds to

delving down another level in the hierarchy. Authors have expressed that seeing this whole

hierarchy would be overwhelming. However, flagging certain specific behaviors using some

meta language has been useful in the past (see related work on the ABL debugger). An

alternative approach could be to select behaviors to “watch” where the author is alerted if the

behaviors are interrupted. An interruption could be interpreted as any shift of focus from the

“watched” behaviors (that is, execution of behavior steps not in the those behaviors) by the

behavior tree execution algorithm via BI1.

 Not only does behavior code execution need to be interfaced, but conflicting resource

use is another common author challenge. Mateas‟ quintessential example for Façade is the

blending the behaviors of drink-mixing and conversation-having with Trip‟s hands. Both

behaviors involved using the hands, but they could not perform both tasks at once. In this case,

ABL had both high-level managers to detect when parts of the body were occupied, as well as

extra authored behaviors for Trip‟s body language as alternatives to using his hands when they

were occupied. These behavior interfacing (BI) tactics were author-designed, but could be

better supported by the architecture itself. Note that “resources” here does not necessarily mean

bodily resources only: they could be any mutually exclusive architectural element.

Another example of BI difficulties can be shown via a lack of expected behavior

interaction. In the previous work section, we showed an example behavior of an NPC offering

an object to the player with no recourse if the behavior was left unanswered: the NPC would

stand with his hand out for all eternity. A quick resolution to this problem may be to

automatically abort the behavior after a timeout period, but the social repair of that broken

interaction should be addressed for a believable character. Authors may not even think to

address the broken behavior until much later, or not even know why an agent is stalling, as it

may have been an untested edge case in a behavior authored days or weeks prior. A simple

warning mechanism via BI3 can help find these edge cases much sooner.

Behavior Reuse

 The previous section on visualization modules introduces and describes a number of

general, somewhat high-level authoring challenges faced by previously interviewed authors, and

a mixture of requests and proposals to lessen those challenges. However, many of these

modules require a non-trivial amount of effort to support. Why bother? The most common

problem we found in our previous work, at least mentioned by every team and institution, was

the need for reusable behaviors. By some combination of modular design patterns, robustly

authored and believable behaviors, and an interface to understand existing behaviors (likely

authored by someone else): previous authors wanted to leverage previous work and have

others make use of their behaviors. Since the previous section focused on robust behaviors, the

following proposal outlines modular design patterns. The following section on the ABL authoring

tool gives an example proposed interface.

 Modular Design Pattern

 In general, an author can try to apply principles of modular programming by minimizing

mutual interaction with other modules and making self-contained behaviors. However, this is

nearly impossible for behaviors in practice. Just previously there was an example of a “hanging”

behavior to pass along an object to another agent: a behavior that required the presence of not

only another behavior, but another agent, in order to finish. Interactivity in behaviors is a

common occurrence because we want our agents to richly interact. The next best solution is to

acknowledge, accept, and accommodate common forms of interaction between behaviors so

that the forms of interaction are explicit for authors to create, evaluate, and reuse.

 Let‟s work with an example behavior to examine these patterns: eye gaze. This behavior

can be seen as simple as setting a location point of where an agent‟s eyes are focusing, or as

complex as a one expression of agent attention (of which body orientation or head facing are

other expressions). Some architectures may couple head facing and eye gaze together, as it is

common for humans to orient both body parts together instead of having eyes rolling freely in

their sockets. This behavior appears simple, but as soon as multiple points of interest are

introduced, we have a conflict of what to look at: does the agent slowly alternate (and how so?),

or try and find a medium between them?

Immediately we see that the idea of a modular behavior is a little misleading, in that we

more accurately desire a reusable set of hierarchical behaviors, or a behavior module. In the

next Figure 17, there is an example hierarchical eye gaze module, with each bubble

representing a behavior. There are authored interfaces with the module for authors to make use

of: getters and setters for other behaviors to use as explicit access points that the internal

higher-level manager decides what to do with, as well as access points for the behaviors to use

the animation engine (or whatever other behaviors it acts upon). Within the cloud, the author of

the module is free to exercise whatever logic they desire to handle the inputs/outputs in an

expected manner. However, incorporating a module manager for handling incoming access

points and variations in execution is expected when following this pattern.

Figure 17: An example low-level behavior module. Includes interface points as getter/setter behaviors, a

module manager within the heart of the module’s logic, and a low-level connection to the animation engine.

Now imagine you were handed a completed eye gaze module: how would an author

plan to use it? We envision the module like a code library for a regular programming language:

a set of functionality that can be copy-pasted and hooked into existing behaviors with minimal

effort. Authors could accept the module as-is, alter how the management code works, or flavor

the GazeAt(target, duration) behavior with different moods or attitudes, for example. But not

every module can be so cut-and-dry. Let‟s examine that item-giving example from above in the

following Figure 18.

Complex modules begin to tangle very quickly, especially if there are other modules

vying for the same resources. Higher-level modules (in this case, a step removed from nearly

one-to-one mapping of the agent‟s body) make use of other modules, which in library terms is

called a dependency. If an author were to use this item exchange module, they would require

the dependency modules as well, and each would require the appropriate hooks into the

author‟s animation and input systems. However, there are still clear connecting points between

modules and sectioned-off pieces of code for reuse. Here is another example manager, this

time orchestrating a sequence of behaviors and handling social repair if the sequence fails.

Appropriate documentation, whether within the code or in a library repository, on the module‟s

dependencies, expected use cases, and features would make these modules much more

useable. Debugging and visualization information could also be filtered via these modules

(rather than individual behaviors) and help isolate problems more quickly.

Figure 18: An example higher-level behavior module. It has the same getter/setter behaviors, as well as a

manager. However, its functions call upon the getter/setter behaviors of other modules to actually pull off its
sequence of requirements to pass the item.

ABL Authoring Interface, ENABL

 The second main thrust of this proposal is applying all the theoretical proposals just

discussed to the ABL agent architecture and its constructs. These theoretical proposals attempt

to satisfy two primary purposes: easing the authorial complexity for ABL and reifying ABL idioms

identified by previous ABL authors in the related work.

Definitions

 First, a brief review of the definitions in the context of ABL. Mateas has stated that ABL

has a high authorial burden (Mateas 2002), as it encompases both intent formation logic,

behavioral selection planning, and behavioral execution with the behavior and working memory

element (WME) constructs. ABL has no built-in higher-level concepts, and as such the

hierarchical organization of behaviors is entirely up to the author‟s discretion to use or create.

Combine this freedom with the multitude of features ABL offers the author in terms of specificity,

context conditions, joint behaviors, and so on; and it is clear that ABL authors have extremely

high leverage. However, ABL behaviors are also extremely complex to author.

Visualization Modules

 Lessons learned from the Grail Framework SMDT taught us that authors desire sections

of a technical design tool to be focused on accomplishing a specific task extremely well, rather

than an open interface capable of solving every problem simultaneously. We broke up the

Visualization Modules section with this design approach in mind, and we propose a separate

section of the design tool to accommodate each visualization module.

 Reliable Triggering

 To reiterate the outlined requirements for this section:

RT1: A meta representation of state and decisions

RT2: A means of automatically triggering decisions

RT3: Controlled randomness, if any randomness is used

The ABL language would have to be extended to be cognisant of meta state and decisions

(which are, in ABL‟s case, chosen behaviors), or some wrapper added around ABL‟s execution

could detect these changes. The state and chosen behaviors can be stored in a simple text file

and parsed and visualized for many creative purposes (see below). Whatever I/O ABL is

situated within (whether command line or GUI interface) can be scripted to execute commands

automatically. If ABL does not already use a random seed to pick between equally viable

behaviors, it can be extended to do this as well.

 The more interesting aspect of applying this design is envisioning an example use case.

There are two approaches to generating the state/decisions text file: automatically recording

playthroughs of the system in a robust fashion (ie saving the logs up to a crash) and scripting

actions within the log (entering via a tool or by hand decisions the agent should take or changes

to their state). The recording interface would be exceptionally simple. However, the state

interface has the potential to be very complex (see Figure 19). If code libraries for ABL

connections to I/O are made available, such as for Unity, modules for visualizing these agents

can also be reused.

Figure 19: The reliable triggering graphical user interface (GUI). Includes an interactable interface over the

scene that presents WMEs and behaviors filtered by agent and their current state.

One primary goal is to make the state-decision log completely independent so that many

instances of the agent(s) can be run via the state-decision logs simultaneously. Each of these

logs can have a slightly different script and be testing a series of common cases, similar to unit

tests.

Figure 20: 5 simultaneous instances of the agents with different emotions. Here, two crash! Found in the time

to run the agents once rather than 5 times sequentially.

Alternatively, a tree search algorithm could be applied to the ABL state space to procedurally

generate test traces with the system and agents. These traces can then be automatically run

and checked for crashes -- all independent of any authoring or testing by the author. While this

cannot check for performance abnormalities, quality, or tweaking automatically, it helps with a

chunk of the debugging process (see run-time errors of the authoring process Figure 12).

 Tweaking Performance Metrics

 To reiterate the outlined requirements for this section:

TPM1: Access to where (in the architecture) the metric is

defined

TPM2: A means to change the metric, preferably in real

time, with immediate results

In addition to the recording interface, a small slider interface can

be added (TPM1, see FIGURE for example). ABL variables are

already easily made either global or stored in a global-space

WME (TPM2), and so long as they are accessed in real-time via

behaviors, they can offer immediate results.

 Behavior Interfacing

 Once again, the outlined requirements:

 BI1: Meta tracking of ongoing behaviors

 BI2: High-level managers to mediate resource conflicts

 BI3: Alerts for “hanging” or “stalling” behaviors

In the RT FIGURE above, we snuck in a visualization pane for the ongoing behaviors filtered for

a specific agent when they were selected because of how common the request for that

information was by ABL authors. The tracking of such information is fairly easy in ABL‟s

architecture, and a small internal ABL tool was built by Larry LeBron to examine all ongoing

behaviors in ABL‟s ABT. We plan to consult with LeBron to expand and improve this tool for

general use for the ABL language.

 Defining the modular design pattern with a manager meshes with the B12 requirement

nicely, as a manager is built into every module. This manager is meant to handle resource

conflicts, blending resources wherever possible and repairing failed attempts at behavior or

sequence performance. Having an explicit area in the modular design pattern for B12 code

helps promote its use by authors. As for BI3, ABL has the specific wait command that is often

the culprit for “hanging” behaviors. Although the author clearly used the wait command for a

purpose, the specific active wait commands that an actor is executing are easy to find. Once

found, the author can re-evaluate whether the command is performing as intended and change

their approach accordingly.

 While not directly related to BI per say, the tracking of ongoing behaviors past and

present allows the gathering of statistical data on the traversal of the ABT possibility space (also

known as the dependency tree). Going back to those generated and automated runs from RT1

and RT2, we can see statistics on how often different behaviors are actually used: valuable data

that current ABL authors can only get a “feel” for. For example, if a “sad” variation is never used,

the author can examine if this is an issue with the specific behavior, or a problem with whether

the agent is ever made sad. However, without seeing that statistic, the author may have

forgotten to test the “sad” variation and never known it was broken.

Behavior Reuse

 The previous sections have demonstrated how the visualization modules would be

implemented in ABL, as well as example uses for their features. These modules have the

Figure 21: Enums or variables
that need to be tweaked or that
express different behaviors
should be easy to edit.

primary purpose of easing the authorial complexity for the author. The modular design pattern

focuses on reifying the most common ABL idioms. With a consistent structure and consistent

idiom pattern, different authors can then share their authored behavior modules, and the long-

awaited goal of reusable behaviors is within reach!

 Modular Design Pattern

 While defined as a single pattern idea for generality‟s sake above, ABL will see different

flavors of the behavior module. Two of these flavors have already seen examples: the low-level

module that is close to body resources, and the high-level module that orchestrates multiple

low-level modules. Let us examine these examples more closely to see where ABL idioms

manifest.

Figure 22: Figure 17 rephrased using more ABL-specific idioms.

The general structure of the modular design pattern (the input/output specification, the

inclusion of a manager, and the helper behaviors) represent all the idioms that Weber et. al.

outlined in their paper (Weber et. al. 2010). The manager behavior‟s existence exemplifies the

manager idiom. The manager should, if it is accepting command messages like those in the

eye gaze module, be a daemon behavior, as those two idioms come in a pair. The behaviors

that the manager calls once it has decided how to act on its given messages are a direct

example of the micromanagement behaviors idiom. These idioms, which belong to both the eye

gaze module and the item exchange module (see Figure 22), are reified via adherence to the

modular design pattern by necessity.

Figure 23: Figure 18 rephrased using more ABL-specific idioms.

Mateas & Stern‟s example idioms are reified via different executions of this design

pattern for different purposes. For example, this low-level eye gaze module is what they would

call a body resource management idiom because its manager‟s primary function is to mediate

body resource conflicts about what the agent should gaze at. The hypothetical arm gesture

module and locomotion module from the item exchange module (see Figure 23) are also

examples of this body resource management idiom. The item exchange module itself, however,

would be an instance of the higher-level beat organization idiom, as it is orchestrating a series

of specific interactions.

Depending on the approach of the ABL author, the item exchange module is also a

potential example of joint behaviors. Two agents may enter the item exchange module, one with

the command to give an item, and another with the command to receive it. The manager

attempts to orchestrate the two characters together for the exchange of the item, accessing the

agent‟s body resource idioms to accomplish this. However, if one or both agents are unable to

participate (whether by physical or social constraints), a series of behaviors is waiting to be

executed by the manager to handle a variety of negotiation failures. These behaviors may in

turn call other modules, such as a Social Faux Pas module that determines how the agents

handle the failed negotiation and if they should try again.

The general modular design pattern also aligns with the Social Interaction Unit idiom that

IMMERSE‟s ABL authors employ (Shapiro et. al. 2013). Because their ABT holds all agents,

not just a single agent, their manager involves much more role specification between initiators

and responders of the behavior. The performance manager, which aligns and orchestrates all

the other behaviors, acts as a monolithic manager at the highest level of the ABT hierarchy: in

other words, it acts as an all-encompassing module that contains many modules within it. This

is why we gave the caveat of “depending on the approach of the ABL author” above --

IMMERSE‟s approach of holding all agents within one ABT means that no joint behavior

negotiation needs to happen between trees.

 Reifying the Idioms

 The modular design pattern holds up to various example ABL behaviors that an author

may want to create, including at different levels of hierarchical detail and for varying levels of

complexity. However, we propose enumerating these patterns for an author and giving them a

starting point with code. The author doesn‟t alter the structure of the given code too much, the

ABL behaviors they write will more likely be a great candidate for use as an ABL library for code

reuse! The following Table 4 shows example idioms we have discovered so far, a brief

description of their purpose or functionality, and example instances of the idiom an author may

create (which we will build templates for).

Name Planned Support Examples

Daemon
Behaviors (Weber
et. al. 2010)

An on-going listener for messages. Every Body
Management module will likely be a Daemon.

manageGazeTargets,
manageHeldItem,
manageLocomotion

Messaging
(Weber et. al.
2010)

A behavior that subgoals or spawns a goal for
Daemon Behaviors. Getters/Setters for
Daemons.

setGazeTarget,
moveToLocation, pickUpItem

Managers (Weber
et. al. 2010)

The standard template for the management
behavior within each module. Likely Daemon.

manageGazeTargets,
manageLocomotion,
itemExchangeSequencer

Micromanagement
Behaviors (Weber
et. al. 2010)

Lowest level behaviors that call direct agent
action.

gazeAt, move, setArmPosition,
playAnimation

Higher-level Beat
Behavior
Organization
(Mateas & Stern
2004)

The term for managers when used for higher
level behaviors (ie not body resource
management).

itemExchangeSequencer,
attentionManager,
socialEtiquetteManager

Body Resource
Management
(Mateas 2002)

The term for managers when used for lower-
level behaviors (ie not beat behavior
organization). Likely Daemons.

manageGazeTargets,
manageLocomotion,
manageArms

Input-Handling
Behaviors
(Mateas & Stern
2004)

Behaviors that interpret sensor information
from the player/interface. Can be simple or
very complex, and often trigger agent
responses.

findTarget, estimateEmotion,
parseNaturalLanguage

Joint Behavior
Negotiation
(Mateas 2002)

Behaviors that orchestrate actions from
multiple agents and signal managers for failure
recovery if necessary. Likely Daemons.

giveItem/recieveItem,
offerToDance/
acceptOfferToDance

Multi-Agent ABT
Negotiation
(Shapiro et. al.
2013)

The Joint behavior negotiation for ABT‟s that
hold all agents. Uses different plumbing to
work within the tree.

giveItem/recieveItem,
offerToDance/
acceptOfferToDance

Mood/Emotion
Wrap-ons
(Shapiro et. al.
2013)

Additions to Body Resource Management that
flavor Micromanagement Behaviors.

gazeAngrilyAtTarget,
gazeCuriouslyAtTarget

Performance
Manager (Shapiro
et. al. 2013)

The Highest level Beat Behavior Organization.
Directs scenario-level instructions for a specific
sequence or as a drama manager. A Daemon.

act1, act2, act3,
generateConflict, denouement,
interruptPerformance

Table 4: A summary of ABL idioms defined to-date, as well as their general purpose and examples for how
authors may use them. Some of them overlap or make use of each other, as they have been defined by
different authors working toward different bodies of work.

Evaluation

Applying Authoring Patterns

 The first section of our proposed work was a general set of authoring support strategies

and patterns to be used by any agent architecture. The second section is our evaluation for the

first: a proof-of-concept application of the strategies and patterns. We plan to publish these

strategies and patterns, as well as their example implementation, as a guidebook for other

agent architectures to follow. The proposed work outlined how we would apply each proposed

idea to the ABL architecture. The next sections in this evaluation will show how we plan to

evaluate the architecture that implements these patterns.

Authorial Leverage

 In the related work, we saw how Chen et. al. evaluated authorial leverage for drama

managers by examining different qualities of authored decision trees (Chen et. al. 2007). Some

of these evaluations were possible because they built upon previous work that established, “the

evaluation function can correspond with expert evaluations of experience quality” by Weyhrauch

(Weyhrauch 1997). There is no such evaluation function for simulated users interacting with

agents. In any case where agent quality must be measured, we must either build our own

evaluation function or use quantitative results from a user study. Examples from the related

work section involve methods of evaluating believability of agents that we can use for this.

However, we are focused on the quality and ease of authoring experience, as well as the

quantity of output in a given amount of time, in this proposal and not on guaranteeing quality

agents. So long as two agents can be judged to be of equivalent quality by performing the same

tasks in similar manners, their behavior trees can be suitably analyzed and compared.

Complexity: Examining the smallest tree that achieves reasonable performance and

qualitatively examining whether it would be reasonable to hand-author. Or, approaching from

the other direction, beginning with a small ABT and measuring how complexity grows when

adding additional behaviors or behavior modules. (Quantity)

 Ease of policy change: Assuming a fully realized tree, how difficult is it to tune and alter

the agent‟s behaviors? Standard ABL tree edits require many phases of debugging, while the

visualization modules shorten or eliminate many of these phases for the same policy change

task. (Quality)

 Variability of experiences: Examines the variety of agent behavior by measuring the

frequency of variability. Attempts to capture a breadth of different high-quality interactions with

the agent (Quantity & Quality)

These three metrics capture the essence of ABL authorial leverage while taking into account

ABL‟s currently massive authorial complexity. We plan to examine the output of the following

user studies using these metrics in order to quantitatively measure the changes to ABL‟s

authoring experience before and after applying the proposed authoring strategies and patterns.

Usability & User Studies

 The previous incarnations of ABL‟s authoring tool have taught us that if the tool is not

usable, authors will not use it, regardless of its perceived benefits. If the proposed patterns are

too difficult to make use of, or the interfaces too fragile and buggy, they will not be used. All of

the promises in this proposal would be for naught. We propose a series of iterative and rigorous

user studies in order to prevent this scenario from occurring. We will present expert,

intermediate, and novice ABL authors with progressive instances of the proposed patterns and

tools and judge their effectiveness for different audiences. As expert ABL authors are housed at

UCSC and in close proximity to this proposal‟s author, we plan to deploy advances of our tool to

them for long-term case studies on their usability and effectiveness in large-scale projects.

We also understand that expert ABL authors may not wish to use many of the tools, as

they have their own shortcuts or patterns too specific for ABL to be made general in a proposal

such as this one, or that novices may need a much richer starting ABT in order to begin

authoring their own agents by example. We will do our best to prepare each user study

accordingly to maximize the author‟s leverage and the successful creation of their agents, as

well as maintain consistency within author experience groups.

 Usability

 The field of Usability Testing has standards for user interface evaluation that we can

take advantage of. In general, the user studies involve the interviewer examining a user

attempting to use the interface for its intended purpose, often gathering UI operations and

questionnaires or surveys before and after the study. The study itself involves completing a

number of tasks using the given interface. The exact list of tasks will be dependent on what

aspects of the proposal design have been completed, but will ultimately involve editing or

creating behaviors or ABL agents. The testing protocols will involve a mixture of the following

(whatever is possible depending on location and subjects):

Thinking-aloud Protocol: user talks during the test

Question-asking Protocol: tester asks user questions during the test

Performance Measurement: tester or software records usage data during test

Log File Analysis: test analyzes usage data

Co-discovery Learning: two users collaborate

Interviews: one user participates in a discussion session

Surveys: interviewer asks user specific questions

Questionnaires: user provides answers to specific questions

(Ivory 2001)

 Authored Agents

 Using the data gathered in the usability studies, we can apply the authorial leverage

metrics, both of which were described above. We will be careful to classify gathered data by the

version of the tools presented to the users, their length of time interacting with the tool, their

programming experience, and their experience with ABL and other agent architectures.

 Target User Groups

 As previously mentioned, we have ABL experts (as well as intermediate and novices)

housed at UCSC for short- and long-term user studies. However, we also have plans to export

these ABL tools to other authors of ABL that have moved on from UCSC, such as Gillian Smith

and her students, who are interested in a more user-friendly ABL experience. To further push

the concept of iterative design and introducing author feedback as early as possible, we plan to

host workshops at a variety of conferences with a focus on agent authoring interfaces (see the

following schedule for a detailed list). At these workshops, we will present attendees with the

most recent version of our work and conduct group user studies with them; this is where we

imagine the Co-discovery Learning protocol from above to come into play. Finally, as the

authoring experience becomes more polished, we plan to push the user studies to even more

novice users unfamiliar with agent authoring at all by hosting a seminar or class at UCSC where

undergraduate students will make ABL agents.

Schedule

2014 Fall ABL extension design & execution

 ABL dependency tree analysis (with Swen Gaudl)

2015 Winter Prototype scripting commands for ABL‟s extensions

Prototype recording interface

IUI Workshop* (possibly with Swen Gaudl)

 AAAI Workshop* (possibly with Swen Gaudl)

 Spring Prototype scene display with Unity

FDG Workshop*

 Summer Automatic ABT exploration algorithm

 ABT exploration statistics

ICIDS Workshop*

Creativity & Cognition Workshop*

ICCS Workshop*

 Fall Build first draft of authoring library via authoring patterns

IVA Workshop*

DiGRA Workshop*

 AIIDE Workshop*

2016 Winter Revise tools, displays, and libraries for final round of studies

 Begin Dissertation writing

IUI Workshop II*

 AAAI Workshop II*

 Spring Present full suite of tools to authors for final rounds of studies

 Propose/teach class on ABL authoring

 FDG Workshop II*

 Continue Dissertation writing

 Begin Job Search

 Summer Propose/teach class on ABL authoring (if Spring is not possible)

Continue Dissertation writing

 Job Search

 Fall Defend Dissertation

* Note: These are assuming these conferences are occurring at all, are occurring at roughly at

times of the year where they have previously, and that the workshop proposal is accepted.

Conclusion
 This document has presented a detailed plan for enabling the authoring of dramatic,

embodied, and interactive virtual agents, as well as a schedule for executing that plan using the

ABL architecture as a baseline. First, a history of the type of agents targeted by this plan, as

well as their behavior trees and previous incarnations are explored via related work and

previous work. Next, the plan for supporting agent authoring is explained: it includes general

specifications for common authoring patterns and visualization modules designed to target

specific problems authors face while following those patterns. Application of this plan is then

outlined for the ABL architecture, and benefits to authoring are hypothesized for future testing.

Finally, analyses of authoring and tool usability testing are described as future plans for

evaluating the resulting authoring interface.

 The goal of this body is work is to show that an explicitly modular authoring approach

can reduce authorial complexity in creating dramatic agents, which are extremely complex by

necessity. Thus, the authorial leverage of agent authors is increased, and more users can easily

create agents for whatever purpose they desire: be it games, education, or any of the many

other fields creating virtual agents. While the work in this proposal focuses on ABL agents, the

proposed designs can be extrapolated to any behavior-tree-based agent architecture (and

possibly even further than that). Whether the world sees more ABL agents, or more agents of

some other architecture, this author would be greatly satisfied so long as the authorial burden is

no longer so frightening to new agent authors.

References
Agre, Philip. 1997. Computation and human experience. Cambridge University Press.

Aristotle. 330 BC. The Poetics. Mineola, New York: Dover 1997.

Becroft, David, et al. 2011. "AIPaint: A Sketch-Based Behavior Tree Authoring Tool." AIIDE.

Bates, Joseph. 1992. The nature of characters in interactive worlds and the Oz project.

Pittsburgh, PA: School of Computer Science, Carnegie Mellon University.

Bates, Joseph. 1994. "The role of emotion in believable agents." Communications of the ACM

37.7. 122-125.

Bates, Joseph, A. 1994. Bryan Loyall, and W. Scott Reilly. An architecture for action, emotion,

and social behavior. Springer Berlin Heidelberg.

Bernardini, Sara, and Kaska Porayska-Pomsta. 2013. "Planning-Based Social Partners for

Children with Autism." ICAPS.

Blizzard Entertainment. 1998. StarCraft. Blizzard Entertainment.

Blumberg, Bruce Mitchell. 1996. Old tricks, new dogs: ethology and interactive creatures. Diss.

Massachusetts Institute of Technology.

Bone, Jeff. 2002. “Does XML Suck? Revisited.” O’Reilly.

http://archive.oreilly.com/pub/post/does_xml_suck_revisited.html [Accessed 17

September 2014]

Brom, Cyril, et al. 2006. "Posh tools for game agent development by students and non-

programmers." The Nineth International Computer Games Conference: AI, Mobile,

Educational and Serious Games. University of Bath.

Bryson, Joanna J. 2003. "The behavior-oriented design of modular agent intelligence." Agent

technologies, infrastructures, tools, and applications for e-services. Springer Berlin

Heidelberg. 61-76.

Bryson, Joanna J., and Lynn Andrea Stein. 2001. "Modularity and design in reactive

intelligence." International Joint Conference on Artificial Intelligence. Vol. 17. No. 1.

Lawrence Erlbaum Associates LTD.

Cassell, Justine, et al. 1999. "Embodiment in conversational interfaces: Rea." Proceedings of

the SIGCHI conference on Human Factors in Computing Systems. ACM.

http://archive.oreilly.com/pub/post/does_xml_suck_revisited.html

Champandard, Alex. 2007. “Understanding Behavior Trees.” AIGameDev.

http://aigamedev.com/open/article/bt-overview/ [Accessed 17 September 2014]

Chen, Sherol, et al. 2009. "Evaluating the Authorial Leverage of Drama Management." AAAI

Spring Symposium: Intelligent Narrative Technologies II.

Dias, Joao, Samuel Mascarenhas, and Ana Paiva. 2011. "Fatima modular: Towards an agent

architecture with a generic appraisal framework." Proceedings of the International

Workshop on Standards for Emotion Modeling.

Digman, John M. 1990. "Personality structure: Emergence of the five-factor model." Annual

review of psychology 41.1. 417-440.

Dromey, R. Geoff. 2001. “Genetic Software Engineering - simplifying design using requirements

integration.” In IEEE Working Conf. on Complex Dynamic Systems Architecture,

Brisbane, Australia.

Dromey, R. Geoff. 2003. "From requirements to design: Formalizing the key steps." Software

Engineering and Formal Methods, 2003. Proceedings. First International Conference on.

IEEE.

Egri, Lajos. 1960. The Art of Dramatic Writing: Its Basis in the Creative Interpretation of Human

Motives. With an Introd. by Gilbert Miller. Simon and Schuster.

Ekman, Paul, and Wallace V. Friesen. 2003. Unmasking the face: A guide to recognizing

emotions from facial clues. Ishk.

Evans, Richard. “Computer models of social practices.” In Synthese Library: Philosophy and

Theory of Artificial Intelligence. Synthesis, forthcoming.

Firby, R. James. 1987. "An investigation into reactive planning in complex domains." AAAI. Vol.

87.

Gebhard, Patrick et. al. 2003. “Authoring Scenes for Adaptive, Interactive Performances” In:

Proceedings of the Second International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS'03), Melbourne.

Georgeff, Michael P., and Amy L. Lansky. 1987. "Reactive reasoning and planning." AAAI. Vol.

87.

Georgeff, Michael P., Amy L. Lansky, and Marcel J. Schoppers. 1987. Reasoning and planning

in dynamic domains: An experiment with a mobile robot. SRI International, Menlo Park,

CA.

Grow, April M., et al. 2014. “A Methodology for Requirements Analysis of AI Architecture

Authoring Tools.” Foundations of Digital Games ‘14.

http://aigamedev.com/open/article/bt-overview/

Gomes, Paulo, et al. 2013. "Metrics for Character Believability in Interactive Narrative."

Interactive Storytelling. Springer International Publishing. 223-228.

Hayes-Roth, Barbara, and Patrick Doyle. 1998. "Animate characters." Autonomous agents and

multi-agent systems 1.2. 195-230.

Heckel, Frederick William Poe, G. Michael Youngblood, and Nikhil S. Ketkar. 2010.

"Representational complexity of reactive agents." Computational Intelligence and Games

(CIG), 2010 IEEE Symposium on. IEEE.

Hecker, Chris. 2009. “My liner notes for spore/Spore Behavior Tree Docs.”

http://chrishecker.com/My_liner_notes_for_spore/Spore_Behavior_Tree_Docs [Accessed

17 September 2014]

Huang, Zhisheng, Anton Eliëns, and Cees Visser. 2003. "XSTEP: An XML-based Markup

Language for Embodied Agents." Proc. 16th International Conf. on Computer Animation

and Social Agents,(CASA 2003).

Ihnatowicz, Edward. 1986. Cybernetic art: a personal statement. Self-published. Available from:

http://monoskop.org/Edward_Ihnatowicz [Accessed 17 September 2014]

Isbister, Katherine, and Patrick Doyle. 2002. "Design and evaluation of embodied

conversational agents: A proposed taxonomy." The First International Joint Conference

on Autonomous Agents & Multi-Agent Systems.

Isla, Damian. 2005. “GDC 2005 Proceeding: Handling Complexity in the Halo 2 AI.” Gamasutra.

http://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php

[Accessed 17 September 2014]

Ivory, Melody Yvette. 2001. An empirical foundation for automated web interface evaluation.

Diss. University of California, Berkeley.

Johansen, Emil. 2014. “The Behave Project.” AngryAnt. http://angryant.com/behave/ [Accessed

17 September 2014]

Kelso, Margaret Thomas, Peter Weyhrauch, and Joseph Bates. 1993. "Dramatic presence."

Presence: The Journal of Teleoperators and Virtual Environments 2.1. 1-15.

Kopp, Stefan, et al. 2006. "Towards a common framework for multimodal generation: The

behavior markup language." Intelligent virtual agents. Springer Berlin Heidelberg.

Krahulik, Mike, and Jerry Holkins. 2013 "Audacity." Penny Arcade. Web. http://penny-

arcade.com/comic/2013/06/19 [Accessed 17 September 2014]

Lester, James C., and Brian A. Stone. 1997. "Increasing believability in animated pedagogical

agents." Proceedings of the first international conference on Autonomous agents. ACM.

http://chrishecker.com/My_liner_notes_for_spore/Spore_Behavior_Tree_Docs
http://monoskop.org/Edward_Ihnatowicz
http://monoskop.org/Edward_Ihnatowicz
http://monoskop.org/Edward_Ihnatowicz
http://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php
http://angryant.com/behave/
http://penny-arcade.com/comic/2013/06/19
http://penny-arcade.com/comic/2013/06/19

Lindsay, Peter A. 2010. "Behavior trees: from systems engineering to software engineering."

Software Engineering and Formal Methods (SEFM), 2010 8th IEEE International

Conference on. IEEE.

Loyall, A. Bryan. 1997. Believable agents: building interactive personalities. Diss. Stanford

University.

Loyall, A. Bryan and Joseph Bates. 1991. Hap: A Reactive, Adaptive Architecture for Agents.

Technical Report CMU-CS-91-147, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA.

Madison, Dan. 2005. Process mapping, process improvement, and process management: a

practical guide for enhancing work and information flow. Paton Professional.

Maiden, Neil, Alexis Gizikis, and Suzanne Robertson. 2004. "Provoking creativity: Imagine what

your requirements could be like." Software, IEEE 21.5. 68-75.

Mateas, Michael. 1999. An Oz-centric review of interactive drama and believable agents.

Springer Berlin Heidelberg.

Mateas, Michael. 2002. "Interactive drama, art and artificial intelligence." Diss. Carnegie Mellon

University.

Mateas, Michael, and Andrew Stern. 2003. "Façade: An experiment in building a fully-realized

interactive drama." Game Developers Conference.

Mateas, Michael, and Andrew Stern. 2004. "A Behavior Language: Joint action and behavioral

idioms." Life-Like Characters. Springer Berlin Heidelberg. 135-161.

Mateas, Michael, and Andrew Stern. Released 2005. Façade. Procedural Arts.

http://www.interactivestory.net/ [Accessed 17 September 2014]

Mateas, Michael, and Andrew Stern. 2005b. "Structuring Content in the Façade Interactive

Drama Architecture." AIIDE.

McCoy, Joshua, and Michael Mateas. 2008. "An Integrated Agent for Playing Real-Time

Strategy Games." AAAI. Vol. 8.

McCoy, Joshua, et al. 2011. "Comme il Faut: A System for Authoring Playable Social Models."

AIIDE.

McKee, Robert. 1997. Substance, Structure, Style, and the Principles of Screenwriting. New

York: HarperCollins.

Myers, Isabel Briggs.1962. "The Myers-Briggs Type Indicator: Manual (1962)."

O‟Keefe, Sarah. 2010. “XML: The death of creativity in technical writing?” Scriptorium.

http://www.scriptorium.com/2010/02/xml-the-death-of-creativity-in-technical-writing/

[Accessed 17 September 2014]

http://www.interactivestory.net/
http://www.scriptorium.com/2010/02/xml-the-death-of-creativity-in-technical-writing/

Ortony, Andrew. 2002."On making believable emotional agents believable." Trappl et

al.(Eds.)(2002). 189-211.

Pedica, Claudio. 2009. "Spontaneous avatar behaviour for social territoriality." Master‟s Thesis.

Reykjavik University.

Perlin, Ken, and Athomas Goldberg. 1996. "Improv: A system for scripting interactive actors in

virtual worlds." Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques. ACM.

Powell, Daniel. 2010. "Behavior engineering-a scalable modeling and analysis method."

Software Engineering and Formal Methods (SEFM), 2010 8th IEEE International

Conference on. IEEE.

Rao, Anand S., and Michael P. Georgeff. 1995. "BDI Agents: From Theory to Practice." ICMAS.

Vol. 95.

Reed, Aaron A., et al. 2011. "A Step Towards the Future of Role-Playing Games: The SpyFeet

Mobile RPG Project." AIIDE.

Reilly, Neal, and W. Scott. 1997. "A methodology for building believable social agents."

Proceedings of the first international conference on Autonomous agents. ACM.

Riedl, Mark O., and Andrew Stern. 2006. "Believable agents and intelligent scenario direction

for social and cultural leadership training." Proceedings of the 15th Conference on

Behavior Representation in Modeling and Simulation.

Shapiro, Daniel G., et al. 2013. "Creating Playable Social Experiences through Whole-Body

Interaction with Virtual Characters." AIIDE.

Simpson, Chris. 2014. “Behavior trees for AI: How they work.” Gamasutra.

http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI

_How_they_work.php [Accessed 17 September 2014].

Smith, Gillian, Jim Whitehead, and Michael Mateas. 2010. "Tanagra: A mixed-initiative level

design tool." Proceedings of the Fifth International Conference on the Foundations of

Digital Games. ACM, 2010.

Smith, Gillian, et al. "Launchpad: A rhythm-based level generator for 2-d platformers."

Computational Intelligence and AI in Games, IEEE Transactions on 3.1 (2011): 1-16.

Sosa, Ricardo, and John Gero. 2003. "Design and change: a model of situated creativity."

University of Sydney, Sydney.

Stone, Brian A., and James C. Lester. 1996. "Dynamically sequencing an animated pedagogical

agent." AAAI/IAAI, Vol. 1.

http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php

Sullivan, Anne. 2012. The Grail Framework: Making Stories Playable on Three Levels in

CRPGs. Diss. University of California, Santa Cruz.

Swartout, William, et al. 2010. "Ada and Grace: Toward realistic and engaging virtual museum

guides." Intelligent Virtual Agents. Springer Berlin Heidelberg.

Traum, David, et al. 2012."Ada and Grace: Direct interaction with museum visitors." Intelligent

Virtual Agents. Springer Berlin Heidelberg.

TSR. 1977. Character Record Sheets. Dungeons & Dragons.

Turing, Alan M. 1950. "Computing machinery and intelligence." Mind: 433-460.

van der Hoek, Wiebe, and Michael Wooldridge. 2012. "Logics for Multiagent Systems." AI

Magazine 33.3.92.

Vilhjálmsson, Hannes, et al. 2007. "The behavior markup language: Recent developments and

challenges." Intelligent virtual agents. Springer Berlin Heidelberg.

Wardrip-Fruin, Noah. 2009. Expressive Processing: Digital fictions, computer games, and

software studies. MIT press.

Weber, Ben George, Michael Mateas, and Arnav Jhala. 2010. "Applying Goal-Driven Autonomy

to StarCraft." AIIDE.

Weber, Ben George, et al. 2010. "Reactive planning idioms for multi-scale game AI."

Computational Intelligence and Games (CIG), 2010 IEEE Symposium on. IEEE.

Weizenbaum, Joseph. 1979. Computer power and human reason. Freeman.

Wen, Larry, and Geoff Dromey. 2009. "A hierarchical architecture for modeling complex

software intensive systems using behavior trees." 9th Asia-Pacific Complex Systems

Conference. Chuo University.

Weyhrauch, Peter. 1997. “Guiding Interactive Drama.” Diss, Tech report CMU-CS-97- 109,

Carnegie Mellon University.

Wooldridge, Michael, and Paul E. Dunne. 2005. "The complexity of agent design problems:

Determinism and history dependence." Annals of Mathematics and Artificial Intelligence

45.3-4. 343-371.

