
ENST Paris - Promotion 2006

Bogdan ALEXE

Rapport de stage d’ingenieur

An Alternative Storage Scheme for the

DBNotes Annotation Management

System for Relational Databases
Non Confidentiel

Directeur de stage: Wang-Chiew Tan

Correspondant de stage: Talel Abdessalem

Dates de stage: 12 Juillet - 12 Decembre 2005

Adresse de l’organisme:

University of California, Santa Cruz

Jack Baskin School of Engineering

Computer Science Department

1156 High Street

Santa Cruz 95064, California

United States of America

1

Abstract

DBNotes is an annotation management system for relational databases developed in the

Database Research Group at University of California, Santa Cruz. Every column of every

tuple in every relation of a database can have one or more annotations, which are pieces of

information relevant to the data, but normally not stored with the data in the database. In

the initial implementation of DBNotes, annotations are physically stored in the database in a

scheme that presents several disadvantages. This report presents work carried on the DBNotes

system, dealing with the design and implementation of an alternative storage scheme for an-

notations that attempts to eliminate the disadvantages of the initial scheme (mainly the data

redundancy). It also presents experimental results indicating the absolute performance of this

storage scheme and comparisons that prove it is more efficient than the scheme considered in

the initial implementation of the system.

DBNotes est un systeme de gestion des annotations pour les bases de donnees relationnelles,

developpe dans le Groupe de Recherche dans les Bases de Donnees a l’Universite de Californie a

Santa Cruz. Chaque colonne de chaque tuple de chaque relation dans une base de donnees peut

avoir une ou plusieurs annotations, qui sont des informations pertinentes pour les donnees, mais

qui normalement ne sont pas stockees a cote des donnees dans la base. Dans l’implementation

initiale de DBNotes, les annotations sont physiquement presentes dans la base de donnees suiv-

ant un schema qui presente plusieurs inconvenients. Ce rapport presente le travail effectue sur le

systeme DBNotes, pour la conception et l’implementation d’un schema alternative pour le stock-

age des annotations qui essaye d’eliminer les inconvenients du schema initial (principalement

la redondance). Il presente aussi des resultats experimentaux qui indiquent les performances

absolues de ce schema de stockage et des comparaisons qui prouvent qu’il est plus efficace par

rapport au schema considere dans l’implementation initiale du systeme.

2

Acknowledgments

I would like to thank Professor Wang-Chiew Tan for offering me the opportunity to work in the

Database Research Group, for all the advice and the good ideas she gave me, and for the continuous

guidance all along the period I spent working on DBNotes at UC Santa Cruz.

I also thank Laura Chiticariu for the insight she gave me into the initial implementation of the

DBNotes system.

3

Contents

1 Introduction 5

2 The Environment of My Work 6

2.1 Overview of UC Santa Cruz . 6

2.2 The Database Research Group . 8

3 DBNotes 9

3.1 Introduction and Motivation . 9

3.2 pSQL and Propagation Schemes . 9

3.3 The DBNotes System and the Initial Storage Scheme 13

4 Alternative Storage Scheme for DBNotes 15

4.1 Schema Description . 15

4.2 Translation Algorithm . 16

4.3 Experimental Evaluation . 18

4.3.1 Experimental Setting . 18

4.3.2 Absolute Performance . 20

4.3.3 Comparative Results . 26

5 Further remarks 30

6 Conclusions 31

4

1 Introduction

In 2005, between July and December, I worked in the Database Research Group at the University

of California, Santa Cruz. My primary focus was on the annotation management system for rela-

tional databases DBNotes. The goal of this research project is to provide a means for annotations

(pieces of information about the actual data, that normally would not be stored in the database) to

be efficiently stored, retrieved and propagated as the data is transformed by queries. This kind of

system that allows the easy manipulation of annotation has many applications: storing comments

about the data, error reports, accuracy levels in scientific applications, tracing the provenance of

data.

The way annotations are propagated is established through a PROPAGATE clause that is

added to queries to form a variant of SQL called pSQL. The DBNotes system is built on top of

a relational database management system. It translates an incoming pSQL query into a union of

SQL queries that are sent to the database engine. The provided output is postprocessed and the

final answer is given to the user.

My main contributions reside in the design and implementation of an alternative storage scheme

for the annotations in DBNotes whose aim is to compensate the disadvantages of the initial scheme,

as well as in the experimental evaluation of its performance.

This report is organized as follows. First, some information about the University of California at

Santa Cruz in general and the Database Research Group in particular is given. The DBNotes system

is introduced, together with its motivation. Then, the pSQL language that allows the manipulation

of annotations and their propagation under various schemes is described. The architecture of

the system is given next. The following section deals with the alternative annotation storage

scheme that was implemented: the relational schema, the translation algorithm from custom pSQL

to SQL and the experimental evaluation (absolute performance and a comparison to the initial

storage scheme). Finally, some remarks are given about a data exchange project I am involved in.

Conclusions are presented at the end of this report.

5

2 The Environment of My Work

2.1 Overview of UC Santa Cruz

The University of California, Santa Cruz, opened in 1965 and grew to its current enrollment of

about 15,000 students. Undergraduates pursue 61 majors in physical and biological sciences, so-

cial sciences, humanities and arts. Graduate students work toward graduate certificates, master’s

degrees, or Ph.D. degrees in 32 academic fields.

Faculty members at UC Santa Cruz include 10 members of the National Academy of Sciences,

19 members of the American Academy of Arts and Sciences, and two members of the Institute of

Medicine.

All undergraduates, whether they live on campus or off, are affiliated with one of the UCSC col-

leges (Cowell, Stevenson, Crown, Merrill, Porter, Kresge, Oakes, Eight, Nine, and Ten). Although

students take classes in any number of colleges and academic units throughout the campus, core

courses within each college provide a common academic base for first-year and transfer students.

At the conclusion of work in their major, all UCSC seniors must pass a comprehensive examination

or, in some majors, complete a senior thesis or equivalent body of work.

Graduate study began at UCSC in 1966 with programs in astronomy, biology, and history of

consciousness, a program that combines the humanistic disciplines with links to the social sciences,

natural sciences, and arts. In 1967, graduate programs in chemistry, literature, and Earth sciences

were introduced. Additional graduate programs have been established in anthropology, computer

engineering, computer science, economics, education, environmental studies, history, linguistics,

mathematics, music, physics, psychology, science communication, sociology, and theater arts. In

1998, UCSC began a Ph.D. program in ocean sciences. In 1999, M.S. and Ph.D. programs in envi-

ronmental toxicology and a Ph.D. program in politics began recruiting students. In 2000, M.A. and

Ph.D. programs in philosophy were launched. In 2002, a new Ph.D. program in education began

recruiting students. In 2003, a new M.A. program in history and an M.F.A. program in digital

arts and new media began. In 2004, additional programs in social documentation and musical

composition were established.

In 1997, UCSC began its first professional school, the Jack Baskin School of Engineering, and

introduced a new undergraduate electrical engineering major, followed in 1998 by a major in in-

formation systems management. In 1997-98, UCSC began offering a ”distance-learning” version of

6

the M.S. in computer engineering, with a concentration in networking engineering, at its Silicon

Valley facilities. In 2001, an undergraduate major in bioinformatics was launched and, in 2003,

M.S. and Ph.D programs in bioinformatics were initiated. The school is in the process of hiring

faculty, which has led to the new Electrical Engineering Department; an Applied Mathematics and

Statistics Department is also being established. In 2003, retired engineer and philanthropist Jack

Baskin gave additional funding for a new engineering building, Engineering 2, and to create an

endowed chair in the Department of Biomolecular Engineering, which began in 2004.

In conjunction with graduate teaching and intellectual inquiry, the campus is home to two

Organized Research Units: the Institute of Marine Sciences and Santa Cruz Institute for Particle

Physics. The University of California Observatories/Lick Observatory is a Multicampus Research

Unit headquartered at UCSC. UC’s Institute of Geophysics and Planetary Physics (IGPP), a Mul-

ticampus Research Unit, includes a branch on the UCSC campus established in 1999. UCSC also is

one of several UC campuses sponsoring the Institute for Quantitative Biomedical Research (QB3),

and the Center for Information Technology Research in the Interest of Society (CITRIS), two of

the California Institutes for Science and Innovation established in 2000. Over the years, UCSC has

been awarded a total of $863 million for contracts and grants within these units and in numerous

other campus research programs.

The ten UCSC colleges–each a separate community with its own buildings and administration–

are built around a core of shared university facilities. These include the main and science/engineering

libraries, performing arts buildings, visual arts studios, classrooms, computer facilities, and a com-

plex of highly specialized buildings for the physical & biological sciences, and engineering. Athletic

facilities exist on the east and west sides of the campus.

Significant private funds–over $242 million through the 2003-04 year– have been donated to

build or enhance academic, student-life, and other facilities at the campus, as well to fund pro-

grams, research, and scholarships.

UCSC is increasing both its enrollment and resources and diversifying its educational and re-

search opportunities over the next decade. In pace with this growth will be the development of

additional academic programs. Another major objective is to provide for a growing number of

students, faculty, and staff of diverse ethnic backgrounds and cultural experiences.

UCSC is moving forward with planning its Silicon Valley Center in order to respond to UC’s

7

increasing enrollment; intensify partnerships with the area’s community colleges, state universities,

and businesses; and develop distance learning. A 10-year, $30 million program establishing a Uni-

versity Affiliated Research Center (UARC) at NASA Ames was initiated in 2003. UARC provides

research and educational capabilities to meet NASA’s requirements and to develop future human

resources in science and technology.

2.2 The Database Research Group

My work was carried under the supervision of Prof. Wang-Chiew Tan, in the Database Research

Group, part of the Computer Science Department in the Jack Baskin School of Engineering.

This research group consists of three faculty members and five graduate students. The main

research topics revolve around database theory, data provenance, annotations, data exchange, infor-

mation integration, query processing for semi-structured data and advanced visual query interfaces.

8

3 DBNotes

3.1 Introduction and Motivation

In many applications, there is some information normally not stored in a database, but associated

with the data in the database. In many cases, this additional information must be propagated along

with the data it is associated with through query transformations. One example is the situation

where scientific data is associated with metadata describing its accuracy or reliability. Another one

is a situation where one might be interested in analyzing the chain of transformations a piece of

data has gone through before arriving in an output relation.

DBNotes is an annotation management system for relational databases. Every “cell” in the

database (every column of every tuple) can have zero or more annotations. An annotation can rep-

resent information about data provenance, comments or some other kind of metadata. As queries

transform the data, annotations must be propagated from the source instance to the result instance

of a query application. By default, annotations are propagated based on where the data is coming

from. Thus tracing the provenance of data is one direct application (every cell is annotated in this

case with its “location” in the database). A second use of annotations is to store any additional

information about the data that otherwise would not be stored inside the database. Examples

include comments, error reports, security level or quality of data.

In DBNotes, there are three possible schemes for propagating annotations: default, default-all

and custom. Under the default scheme, annotations are propagated in the result of a query based

on where they originated from (if the query copies data from a source location to a target location,

then the annotations for the source location are propagated to the target location). Unfortunately,

for some applications, this propagation scheme is not sufficient. The result of propagating annota-

tions under the default scheme can be different based on how the query is written. The default-all

scheme deals with this by propagating annotations based on all possible equivalent formulations of

a query. Under this scheme, the propagation result will always be the same for equivalent queries.

The third propagation scheme (custom) allows the user to completely specify the way annotations

are propagated.

3.2 pSQL and Propagation Schemes

The queries considered for transforming the data belong to the Select-Project-Join-Union fragment

from SQL (this fragments corresponds to conjunctive queries with union). The SQL syntax is

9

extended with a PROPAGATE clause that specifies the way annotations are propagated.

A pSQL query is an expression of the form Q1 UNION Q2 UNION . . . Qn where each Qi is a

query of the following form:

SELECT DISTINCT selectlist

FROM fromlist

WHERE wherelist

PROPAGATE DEFAULT | DEFAULT ALL |
r1.A1 TO B1, . . ., rn.An TO Bn

The fromlist has the form R1 r1, . . . , Rk rk. In this expression, ri is a tuple variable in the

relation Ri. The selectlist has the form r1.C1 AS D1, . . ., rm.Cm AS Dm. In this expression, ri

are variables defined in fromlist, Ci is an attribute in Ri and Di is a name for the corresponding

attribute in the relation representing the output of this query. If the WHERE clause is present,

its wherelist represents a conjunction of equalities between relation attributes or between constants

and relation attributes.

The PROPAGATE clause specifies the way annotations are propagated. Its parameter can be

either DEFAULT, DEFAULT ALL or a list of expressions of the form r.A TO B where A is the name

of an attribute in the tuple bound to the variable r and B is a name among the output attributes Di.

The semantics of a pSQL query are similar to a normal SQL query, with the addition of prop-

agating the annotations according to the PROPAGATE clause.

In the following, a location will be a triple (r, t, i) representing the attribute at position i in

tuple t of relation r. If the relation r is clear from the context, we can also use the simplified

notation (t, i). The notation A(r, t, i) will represent the set of annotation at the location (r, t, i).

Similarly, for a location (t, i), A(t, i) represents the set of annotations at this location.

Under the custom propagation scheme, the user has the possibility to completely specify the

way annotations are propagated. Let’s consider a query where the propagate clause has the form

r1.A1 TO B1, . . ., rn.An TO Bn. The semantics of this query is the following: for every binding

of the tuple variables according to the fromlist such that wherelist is satisfied, a tuple t is emitted

according to selectlist. Every clause of the form ri.Ai TO Bi in the PROPAGATE clause determines

the annotations at the source location (ri, Ai) to be propagated to the output location (t, Bi). Any

10

duplicate tuples in the output relation are merged. In the output relation, the set of annotations

at a given location is A(s,B) = ∪tj=sA(tj , B), where tj are duplicate tuples that are merged in the

tuple s.

In the following, the values in curly brackets along with the data in a cell represent the anno-

tations for that cell.

As an example, let’s consider the relation:

R ID Desc

g231 {a11} AB {a12}
g756 {a13} CC {a14}

and the query:

SELECT DISTINCT r.ID as ID, r.Desc as Desc

FROM R r

PROPAGATE r.ID to ID, r.Desc to ID

The result of evaluating the query with custom propagation on the relation is the following:

ID Desc

g231 {a11, a12} AB

g756 {a13, a14} CC

Under the default propagation scheme, the annotations at a given location in the output rela-

tion originate at the locations in the source relation where the data is copied from. We can define

the semantics of a pSQL query with default propagation in the following way: for every binding

of the tuple variables according to the fromlist such that wherelist is satisfied, a tuple t is emitted

according to selectlist, together with the sets of annotations for every location in t. As in the previ-

ous propagation scheme, duplicate tuples are merged and the set of annotations for a location in a

merged tuple s is the union of the sets of annotations for that location in every tuple tj merged into s.

For the default propagation scheme, we can consider the following example relation:

11

R ID Desc

z131 {a1} AB {a2}
q229 {a3} CC {a4}
q939 {a5} ED {a6}

and the query:

SELECT DISTINCT r.ID as ID, r.Desc as Desc

FROM R r

WHERE r.ID = “q229”

PROPAGATE DEFAULT

The result of evaluating the query with default propagation on the relation is the following:

ID Desc

g229 {a3} CC {a4}

Two pSQL queries are equivalent if they produce the same output on all databases. Two pSQL

queries are annotation-equivalent if they produce the same annotated output on all databases.

There are situations where two pSQL queries are equivalent, but not annotation-equivalent. This

motivates the definition of a third propagation scheme: default-all. Under this propagation scheme,

the annotated output of a pSQL query is invariant with respect to the way the query is formulated.

The annotations are propagated according to the default propagation scheme for all the equivalent

formulations of the query. The resulting tuples are merged in the end. Although there might be an

infinite number of equivalent formulations for a query, there is a method of computing the output

by examining only a finite set of queries (the query basis of the original query).

We consider the following example relation for the default-all propagation scheme:

R ID Name

p332 {a7} AB {a8}
p916 {a9} AB {a10}

and the query:

SELECT DISTINCT r.ID as ID, r.Name as Name

FROM R r

PROPAGATE DEFAULT ALL

12

The result of evaluating the query with default-all propagation on the relation is the following:

ID Desc

p332 {a7} AB {a8, a10}
p916 {a9} AB {a8, a10}

The result above is justified by the fact that the following query is equivalent to the query above

(without the propagation clause):

SELECT DISTINCT r.ID as ID, r.Name as Name

FROM R r, R q

WHERE r.Name = q.Name

Under the default-all propagation scheme, annotations for identical values in the Name column are

combined.

3.3 The DBNotes System and the Initial Storage Scheme

The DBNotes system consists of two main modules: the translator and the postprocessor. The

input of the translator module is a pSQL query and its output is a union of SQL queries to be sent

to a relational database management system. These queries are executed by the database system

and the sorted result is given as input to the postprocessor module. This module, in a single pass

through the sorted tuples, merges identical tuples and performs the union of the sets of annotations

on these tuples.

The initial scheme for storing annotations in DBNotes was the following: for every attribute

A in a relation R, there is an extra attribute Aa used to store annotations for A. The modified

relation is denoted by R′. For instance, if the initial relation is R(A,B), the relation modified to

store annotations is R′(A,Aa, B, Ba). If a tuple t contains k annotations {a1, . . . , ak} for a given

location (t, A), then the annotated relation will contain k tuples t1, . . . , tk such that ti.Aa = ai. If

we consider the tuple (a {a1, a2}, b {b1}) (the values in the curly braces are the annotations), the

following tables are valid relational representations of it:

A Aa B Ba

a a1 b b1

a a2 b -

A Aa B Ba

a - b b1

a a1 b -

a a2 b -

13

We will consider an example in order to illustrate the function of the postprocessor. If the

relation returned by the database engine is the following:

A Aa B Ba

a a1 b a2

a a3 b -

a - c a2

then the postprocessor will merge the tuples with identical data values and return the following

tuples as a result: (a {a1, a3}, b {a2}), (a {}, c {a2}).

14

4 Alternative Storage Scheme for DBNotes

4.1 Schema Description

In the initial annotation storage scheme, if a location in a tuple had multiple annotations, the

annotated relation contained multiple copies of that tuple. This leads to redundant storage of some

of the tuples in the database. A direct consequence of this is an increase in the response time for

queries involving annotated relations (especially queries with joins).

The goal here is to design a new annotation storage scheme that would increase the efficiency of

running queries over annotated relations by eliminating the redundancies in the data relations. In

what follows, we will describe this alternative storage scheme and will provide some experimental

results that provide insight into the performance of this new scheme and compare the behavior of

the initial and alternative storage schemes.

The alternative storage scheme uses the concept of rowid, present in many available database

management systems, such as Oracle or Postgres. The rowid is a value that uniquely identifies a

tuple in an entire database.

In the alternative storage scheme, for every data relation R in the database, there will exist one

annotation relation Ra that will store the annotations for the locations in R. Let’s consider the

case where the database contains the relation R with attributes (A1, A2, . . . , An). The relation Ra

containing the annotations for R will have the attributes (rowid, A1a, A2a, . . . , Ana). The column

rowid in Ra will contain rowids for tuples in R, and the columns Aia will contain annotations for

locations in columns Ai of R.

As an example, let’s consider the situation where we have a single annotated tuple

t = (a {a1, a2}, b {b1})

The first element in the tuple corresponds to attribute A and the second to attribute B. The

relations R and Ra for this example have the following form:

R A B

t a b

Ra rowid Aa Ba

rowid(t) a1 b1

rowid(t) a2 -

15

4.2 Translation Algorithm

The queries are ultimately run by a relational database system which accepts SQL as its query

language. Therefore, the pSQL queries have to be translated to equivalent unions of SQL queries

before being sent to the database system. Because pSQL queries with default and default-all prop-

agation clauses can be translated to queries with custom propagation, we only need one translation

mechanism: from pSQL queries with custom propagation clauses to equivalent unions of SQL

queries.

The translation from custom pSQL consists of two phases. First, a set of SQL queries is gen-

erated. Second, a wrapper query is created that takes the union of the queries generated in the

first phase and sorts the output of these queries. This step is required by the postprocessor module

(otherwise, it would need multiple passes through the tuples).

As we have seen before, a pSQL query with custom propagation has the following form:

SELECT DISTINCT r1.C1 AS D1, . . ., rm.Cm AS Dm

FROM R1 r1, . . . , Rk rk

WHERE wherelist

PROPAGATE r1.A1 TO B1, . . ., rn.An TO Bn

This query has to be translated into a union of SQL queries. To comply with the input format

of the postprocessor, the output relation of each of these SQL queries has to contain two columns

for each of the Di output attributes: one for the data and one for the annotations that might

be propagated by the query to Di. The Bi annotation destinations in the propagation clause are

attributes among the selected attributes Di. First we need to establish on which output attribute

will arrive each of the propagated annotations. So we need to set up a correspondence between

each of the output attributes (Di) and the list of locations among the rj .Aj that will contribute

with annotations to Di. This will give us the annotation sources for each annotation destination

Di. We can represent the correspondence as follows:

D1 ←− A11, A12, . . . , A1p1

D2 ←− A21, A22, . . . , A2p2

...

Dm ←− Am1, Am2, . . . , Ampm

We take one annotation source (Aij) from each list, generate a SQL query as we will see below

and repeat until all the annotation sources have been considered.

16

As we have mentioned before, the output relation of each SQL query will contain two columns

for each output attribute of the pSQL query. One column will contain the data and appears the

same in each of the generated SQL queries. The second column contains the annotations for that

output attribute. In the SELECT clause of the SQL query, this column can be either the attribute

where the annotations are extracted from, or a NULL (if there are no annotations to be propagated

to this specific output attribute, or all the sources for this attribute have already been considered

in previous SQL queries).

The FROM clause of each SQL query contains the list of relations that provide data for the

output relation, together with the list of annotation relations that correspond to the annotation

sources considered in the SQL query. Each annotation relation is joined to its corresponding data

relation based on the equality between the ROW ID attribute (in the annotation relation) and the

ROWID property of each tuple in the data relation. The join to be performed is a LEFT OUTER

JOIN, since in the output relation we still need to obtain tuples with no annotations on any of

their attributes.

As an example, we can consider the following pSQL query with custom propagation:

SELECT DISTINCT R.Att1 as A, R.Att2 as B, R.Att3 as C

FROM Test R

PROPAGATE R.Att1 TO B, R.Att2 TO B, R.Att3 TO C

The first part of the translation process produces the following two queries:

Q1

SELECT DISTINCT R.Att1 AS A, R.Att2 AS B, R.Att3 AS C,

NULL AS C A, R ANNOT.Att1 ANNOT AS C B,

R ANNOT.Att3 ANNOT AS C C

FROM Test R LEFT OUTER JOIN Test ANNOT R ANNOT

ON R.ROWID=R ANNOT.ROW ID

Q2

SELECT DISTINCT R.Att1 AS A, R.Att2 AS B, R.Att3 AS C,

NULL AS C A, NULL AS C C,

R ANNOT.Att2 ANNOT AS C B

FROM Test R LEFT OUTER JOIN Test ANNOT R ANNOT

ON R.ROWID=R ANNOT.ROW ID

Annotations from the Att1 and Att2 attributes are propagated to the B attribute in the output

relation (the annotation sources for B are Att1 and Att2) and from the Att3 attribute to the C

17

output attribute. The query Q1 propagates the annotations from Att1 to B and from Att3 to

C. The query Q2 propagates to the output attribute B the annotations from its other annotation

source (Att2).

Finally, the query to be executed by the database system is the following:

SELECT DISTINCT *

FROM (Q1 UNION Q2)

ORDER BY A, B, C

It performs the union of the results given by queries Q1 and Q2 and sorts the result so that the

postprocessor can merge the tuples with identical data values in a single pass.

4.3 Experimental Evaluation

4.3.1 Experimental Setting

For experimental evaluation, we used the TPC-H benchmark dataset. The schema of this dataset

contains eight relations with the following structure:

Part(partkey, name, mfgr, brand, type, size, container, retailprice, comment)

Supplier(suppkey, name, address, nationkey, phone, acctbal, comment)

PartSupp(partkey, suppkey, availqty, supplycost, comment)

Customer(custkey, name, address, nationkey, phone, acctbal, mktsegment, comment)

Orders(orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority,

clerk, shippriority, comment)

Lineitem(orderkey, partkey, suppkey, linenumber, quantity, extendedprice,

discount, tax, returnflag, linestatus, shipdate, commitdate,

receiptdate, shipinstruct, shipmode, comment)

Nation(nationkey,name,regionkey,comment)

Region(regionkey,name,comment)

The queries that were run on this dataset contain an increasing number of joins between tables

and an increasing number of output attributes. The queries are denoted as Qi(j), where i is the

number of joins and j is the number of output attributes.

Each of these queries were considered both without a PROPAGATE clause (plain SQL) and

with annotation propagation, under the default and default-all schemes. The plain queries are

shown below:

18

Q0(1)
SELECT DISTINCT s.name

FROM Supplier s

Q1(1)

SELECT DISTINCT s.name

FROM Supplier s, Nation n

WHERE s.nationkey = n.nationkey

Q2(1)

SELECT DISTINCT s.name

FROM Supplier s, Nation n, Region r

WHERE s.nationkey = n.nationkey AND n.regionkey = r.regionkey

Q3(1)

SELECT DISTINCT s.name

FROM Supplier s, Nation n, PartSupp ps, Region r

WHERE s.nationkey = n.nationkey AND

r.regionkey = n.regionkey AND s.suppkey = ps.suppkey

Q4(1)

SELECT DISTINCT s.name

FROM Supplier s, Nation n, PartSupp ps, Region r ,Customer c

WHERE s.nationkey = n.nationkey AND r.regionkey = n.regionkey AND

s.suppkey = ps.suppkey AND s.nationkey = c.nationkey

Q0(3)
SELECT DISTINCT s.name, s.address, s.phone

FROM Supplier s

Q1(3)

SELECT DISTINCT s.name, s.address, s.phone

FROM Supplier s, Nation n

WHERE s.nationkey = n.nationkey

Q2(3)

SELECT DISTINCT s.name, s.address, s.phone

FROM Supplier s, Nation n, Region r

WHERE s.nationkey = n.nationkey AND r.regionkey = n.regionkey

Q3(3)

SELECT DISTINCT s.name, s.address, s.phone

FROM Supplier s, Nation n, PartSupp ps, Region r

WHERE s.nationkey = n.nationkey AND s.suppkey = ps.suppkey AND

n.regionkey = r.regionkey

Q4(3)

SELECT DISTINCT s.name, s.address, s.phone

FROM Supplier s, Nation n, PartSupp ps, Region r, Customer c

WHERE s.nationkey = n.nationkey AND s.suppkey = ps.suppkey AND

n.regionkey = r.regionkey AND c.nationkey = s.nationkey

Q0(5)
SELECT DISTINCT s.name, s.address, s.phone, s.acctbal, s.comment

FROM Supplier s

19

Q1(5)

SELECT DISTINCT s.name, s.address, s.phone,s.acctbal, s.comment

FROM Supplier s, Nation n

WHERE s.nationkey = n.nationkey

Q2(5)

SELECT DISTINCT s.name, s.address, s.phone,s.acctbal, s.comment

FROM Supplier s, Nation n, Region r

WHERE s.nationkey = n.nationkey AND r.regionkey = n.regionkey

Q3(5)

SELECT DISTINCT s.name, s.address, s.phone,s.acctbal, s.comment

FROM Supplier s, Nation n, PartSupp ps, Region r

WHERE s.nationkey = n.nationkey AND s.suppkey = ps.suppkey AND

n.regionkey = r.regionkey

Q4(5)

SELECT DISTINCT s.name, s.address, s.phone, s.acctbal, s.comment

FROM Supplier s, Nation n, PartSupp ps, Region r, Customer c

WHERE s.nationkey = n.nationkey AND s.suppkey = ps.suppkey AND

n.regionkey = r.regionkey AND c.nationkey = s.nationkey

These queries were run on the annotated dataset with different annotation factors: 0%, 30%,

60%, 100%, 130%, 160% and 200%. An annotation factor of 30% means that 30% of the locations

in each relation have one annotation and the rest are not annotated, 100% means that each location

in each relation has one annotation and 160% means that each location in each relation has one

annotation and 60% of the locations have one additional annotation.Two sizes were used for the

dataset: 100MB and 500MB.

The experiments we conducted had two goals. The first was to determine the behavior of

the alternative storage scheme when parameters like the propagation scheme or the number of

annotations are changed. The second was to compare the efficiency of the alternative and the

initial storage schemas. We expect to obtain a degradation in performance when the number of

annotations is increased and also when the default-all propagation scheme is used instead of the

default scheme. Our expectation is that the time gain obtained by eliminating the redundancies in

the data relations is more important than the loss due to the extra join needed to obtain the an-

notations, so we expect to prove that the alternative scheme is more efficient than the initial scheme.

4.3.2 Absolute Performance

First, we want to examine the behavior of the system when running pSQL queries with different

propagation schemes: no propagation, default and default-all. All the listed queries were run on

20

the 100% annotated datasets in their plain SQL version and with default and default-all propagate

clauses.

For both the 100MB and the 500MB datasets we observe the same pattern. The only queries that

take a considerable amount of time to exacute are the three most expensive ones: Q4(1), Q4(3), Q4(5)

21

(the queries that contain four joins). Generally, the overhead generated by the default propagation

scheme is not very big, as obtaining annotations involves one extra join with the annotation table

that has, in our setting, an index on the rowid join attribute (there is an increase by a factor

between 1 and 2 in execution times for queries with default propagation compared to plain SQL

queries). The gap between the execution times for the default and default-all propagation schemes

is more significant, due to the fact that one default-all query is translated into a union of several

plain SQL queries to be executed by the database engine.

The next step is to run the queries under default and default-all propagation schemes and

observe the influence of the number of annotations (here unannotated and 30%,60% and 100%

annotated relations).

22

23

For annotation factors above 0% and below 100% (so for situations where the relations are an-

notated, but each location has at most one annotation), the number of annotations has little impact

on the execution times. For both the 100MB and the 500MB datasets, changing the annotations

factor from 30% to 60% and to 100% does not change considerably the execution times for default

and default-all queries. For each tuple in the data relation, the annotation relation will contain

at most one tuple, for all the situations mentioned here (30%, 60% and 100% annotation factors).

Obtaining the annotations for these situations involves joining the data relations with annotation

relations of about the same size.

24

In the next experiment we analyze the behavior of pSQL queries (under default and default-all

propagation schemes) on relations annotated above 100% (up until 200%, where each location has

two annotations). We used the 100MB dataset.

The difference in execution times between queries on relations annotated at 100% and above

100% is more significant. This is due to the fact that for annotation factors above 100%, for each

tuple in the data relations there is at least one tuple and at most two tuples in the annotation re-

lations. Because of this, the joins that are necessary for retrieving annotations are more expensive.

25

On the other hand, the differences in performance are not significant between 130%, 160% and

200%. This is a consequence of the fact that for all these annotation factors, there is at least one

tuple and at most two tuples in the annotation relations for one tuple in the data relation. Thus

the cost of joining the data relations with the annotation relations does not change much.

In the graphs above, there are a few situations where the execution times for a query with

default propagation scheme is smaller than the time for the same query, without the propagation

clause. This counterintuitive observation is justified by the different plans chosen by the database

engine for the execution of these queries (a much more inefficient plan for the plain SQL query

compared to the one with a default propagation clause).

4.3.3 Comparative Results

The goal here is to compare the behavior of the initial and the alternative storage scheme. We

have to observe how the execution times change when the propagation scheme or the annotation

degree change, for both storage schemes. The following graphs present the experimental results for

the default and default-all propagation schemes, on the 100MB dataset with increasing values of

the annotation degree (30%, 130% and 200%).

26

27

28

In all the above graphs, we observe an important improvement of the execution times between

the alternative and the initial storage scheme (note the logarithmic scale of the graphs). In some

of the cases, the execution time decreased by a factor of 10.

For some of the very simple queries the execution times appear to be greater for the alterna-

tive scheme. The execution times for these queries are very small (generally less than a tenth of a

second) and external influences such as slight modifications in the experimental environment (oper-

ating system, database server) have a great effect on the experimental value. Thus the comparison

for these queries is not very relevant.

The main justification for the improvement in execution times provided by the alternative stor-

age scheme is the following. Under the initial storage scheme, the annotations are stored in the

same relation as the data. Thus extracting annotations together with data from one relation is

a relatively cheap operation (no joins are necessary). On the other hand, propagating annota-

tions in queries involving several joins between relations becomes a very expensive operation (the

joins are performed between large tables with redundancies generated by the way the annotations

are stored). In the alternative storage scheme, the annotations are stored in a separate relation.

The annotations are extracted by joining the data relation and the annotation relation. The joins

required by the query (excluding the ones needed for obtaining the annotations) are performed be-

tween much smaller tables (containing only the data, not the annotations in a redundant format).

Thus the execution times for queries involving several joins are significantly improved when using

the alternative storage scheme.

29

5 Further remarks

While working on the design and implementation of the alternative storage scheme for DBNotes,

I also worked on a data exchange project. At the moment of writing this report, it is still in the

development phase, this being the reason why only a few details about it are presented here.

Data exchange deals with transforming a database instance structured under a source schema

into an instance structured under a target schema, while satisfying the constraints between the

source and target schemas. A data exchange setting is a tuple (S, T, Σst,Σt) where S is the source

schema, T the target schema, Σst a set of constraints between S and T and Σt a set of constraints

on T . The data exchange problem is the following: given an instance I valid against S, find an

instance J valid against T such that the constraints in Σst and Σt are satisfied.

The goal of the project is to generate synthetic data exchange settings that can be used as a

benchmark for data exchange tools. The user can influence the way these settings are generated

by providing, at several stages in the generation process, sets of control parameters.

30

6 Conclusions

This report presented the DBNotes annotation management system, with an emphasis on my main

contributions in the project: the design and implementation of an alternative annotation storage

scheme, together with the experimental evaluation of the performance of this alternative scheme.

This annotation system uses an extension of SQL, called pSQL, that allows the specification

of the way annotations are propagated when data is transformed by queries. This language was

presented in the first sections of the report, together with the architecture of the implemented

system. Because it is built upon a relational database management system, I had to implement

a translation mechanism (presented in a subsequent section) from pSQL to SQL specific to the

alternative annotation storage scheme. This scheme had to be evaluated, so I carried out several

series of experiments that on one hand show the behavior of the scheme when some parameters

change (such as dataset size, number of annotations and type of propagation) and on the other

hand compare it to the scheme that had been initially implemented.

The main conclusion that can be expressed after the analysis of the experimental results is

that the alternative scheme is more efficient than the initial scheme. The performance gap is most

obvious for queries with multiple joins. In our experimental setting, the execution times for queries

with three and four joins decreased when using the alternative scheme, compared to the initial

scheme, by a factor of about 10.

The period I spent working on DBNotes allowed me to confront very different and interesting

problems. I had the chance to be part of a research team at the University of California, Santa

Cruz. It was a great opportunity to work in an exceptional academic environment, and was overall

an outstanding experience from every point of view.

31

References

[1] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, Gaurav Vijayvargiya: “An Annota-

tion Management System for Relational Databases”, VLDB Journal

[2] Serge Abiteboul, Richard Hull, Victor Vianu: “Foundations of Databases”

[3] Raghu Ramakrishnan, Johannes Gehrke: “Database Management Systems”

[4] Laura Chiticariu, Wang-Chiew Tan, Gaurav Vijayvargiya: “DBNotes: A Post-it System for

Relational Databases Based on Provenance”, SIGMOD 2005 (Demo track)

[5] TPC Transaction Processing Performance Council, http://www.tpc.org

[6] Wang-Chiew Tan: “Containment of Relational Queries with Annotation Propagation”, DBPL

2003

[7] The University of California, Santa Cruz Website, http://www.ucsc.edu

32

