UNIVERSITY OF CALIFORNIA C dg ol ab

S H N TH E H IJ Z atasha Vit

Holly Casaletto
Abhishek Singh

nttps://edge-lab.github.io/

Byzantine faults . Data indexing .
Consensus algorithms . Data management
Coordinated Peer-2-Peer . Security .

Cloud application and infrastructure design
Fast distributed transaction processing

Distributed databases . loT

At UCSC Edgelab, we study and
puild distributed data management

systems. We are interested in * LSM

systems that span large geographic

areas and infrastructures, including
cloud and edge environments.

Edge databases : WedgeDB

System model 1

Motivation
- Avoid cloud overhead in transaction processing
- Locality-aware transaction processing

ow oW

o w &
Partition| |Partition

Cloud Node

il I _)
Description thudil K
Partition| |p5 rtition g

- Data is partitioned into clusters

- Partitions hold disjoint data

- Each cluster has a leader which coordinates transaction processing

- Transactions are batched and executed deterministically

- Every execution of a transaction batch builds a Merkle tree which is used as a
proof for transaction execution.

- Efficient read-only transactions. Read-only transactions do not require
consensus among nodes.

- Read-only transaction response includes verifiable proof of transaction other
nodes involved in transaction

System model 2

Motivation
- Build cloud applications which do not access or manage user data directly.
- Users need never share personal data with anyone unless explicitly trusted.

The Cloud:

"""""""" Used for data backup

Data availability

Trusted servers

Data integrity

Fault tolerance

Edge registry

Access permission

management
..... Xe ’

o Edge nodes T A |
AR 0 : (]
' : o &1 Fem
_D: Bm T = D &Ll
- I R s o . | —

S éDi - w ------ : B :
o ta“z} D _________ L
--------- - el] e
'H‘ A el : : [
e L j . %10
> | @m0
10 i I
The Edge:

Primary data storage
Edge-Edge transactions
Edge-Cloud transactions

Description

- Data is held by users/edge nodes.

- Data encrypted by user's private key. Multiple public-private keys can be used
for data encryption.

- Encrypted data is stored on cloud nodes. Cloud nodes do not have access to
user data.

- Permissions are managed by cloud nodes. User B or C can request access to A's
data via the cloud node by requesting for public keys to decrypt data.

- User A can agree to provide access to specific data by sharing the public key
which can be used to decrypt A's data.

- Once permission is granted by A, encrypted data can be access from either the
cloud node or directly from A. Access can be revoked by modifying public-private
keys used to encrypt data and revoking permissions on the cloud nodes.

- This model allows cloud nodes to host application without accessing user's data
without directly accessing user data.

- User has complete control of personal data.

Cooperative Log-Structured Merge Tree (CoolLSM)

Current projects:
* WedgeDB — Wide-area Edge Database

* MinPaxos — Minority consensus

Minority consensus algorithms

MinPaxos and Sleepy Consensus

Leader
Compaction:
emaintenance operation
enegative impact on system resources
Compaction Servers edegrades read performance

Dedicated Compaction Servers:
ecliminates CPU overhead from region servers

Motivation

efaster compactions
eimproves read performance

Read Server:
eimproves read performance
ecompacted data from compaction servers can be easily placed (in sequential batches)

Leader

J Read Server

G N -

Compaction Servers

Traditional consensus models are not suitable for supporting the needs of
emerging loT and edge applications.
loT and edge applications are unpredictable and sleepy
 Nodes can join and leave arbitrarily at any given time;
* Nodes may voluntarily go to “sleep” to save energy as it sees
appropriate;
* Number of active nodes can be arbitrarily small compared to the total
number of nodes at any given time.
MinPaxos is Minority Consensus Model.
* Can tolerate arbitrary number of failures;
* Does not require votes from majority.
MinPaxos trades consistency for partition tolerance. Partitioned minorities

Mﬂllf\ 'aldaValdaV¥a¥al Illl‘\:lf\ Hf\'l' l‘\f\ﬁl":ﬂﬂ 'Fl"ﬂm f\ﬂf\l‘\ t‘\'l'l'\f\P

Minority Consensus Guarantees

CooLSM with Multiple Leaders

Compaction Manager

Validity: Every block in the SMR log is one in which some user has requested to
be committed.

At-most-once commitment: A request to commit a block b cannot result in a
SMR log with two copies of b.

Agreement: There exists a time-difference function A such that the probability of
two nodes disagreeing on the content of a position in the log at time (now -

A(e)) is smaller than .

Termination: There exists a time-difference function A such that the probability
that at time (now + A(¢)) a node will change its state of a committed block is

Leader Leader Leader
. N he . smaller than «.
[1) () ® oo |) i >
. ° °] [propawih|
|) Lt i D Optimistic Leader Election e ol Y | ?
Compaction Servers Compaction Servers Compaction Servers -) 2 >
[l l l () * Leader after sending Prepare C - >
I] [] [] message' P pade l-nur“ Htfuu'lﬂl’ﬂ ptageaeilsl scomat
S S | I | |
| J [] i CheCkmg If any ObjeCtIOI‘?S Figure 1: An example scenario of MinPaxos Leader Election
|) (| - Waiting for threshold of time and Replication.
- Unilaterallv self-nroclaim
[lead Server R | | . . t: | o2 | B |
.-’f[] ™ (] Asanhronous Repllcatlon Liold) | rixwix) | rty)wiy) | r@iw(a)| rixwiz)
| J
Read Server : o
[) - - * Replica after receiving a Propose
\ ‘ t2: t5: : :
I'l'x[] / : I| message. Linew) r(xt)ilel rly)wly) | riu)w(z) r(xtﬁv{y) r(zﬁ«(x}
|] B repllcate the proposed blOCk Figure 2: An example of the old log and new log in a fork
|) - request for blocks in the gap to be merge scenario
. J aont
___ [A
o
ReSOIVIng Forks rupueih‘llﬂTprapuse{hE:[y_u_au[ﬂwupn (b3) czepl? ‘
Motivation: . i . — >
eCurrent LSM structure is monolithic which limits flexibility in terms of scalability. ’ Mml?gxos sacrifices consistency for Ce & & g o ofw=w >
eOnly way to deal with increased load is to repartition data & distribute across partition tolerance so forks are "
nodes. unavol d ab | €. . Figure 3: An example scenario of the destructive fork ano:-
* Borrows idea from Block Chain - aly.
To do so, we break LSM tree into components, and then find a way to elastically Longest Chain Wins (LGW)
scale these components.
MinPaxos-TP
Running more than one instance for each component can enable various

performance advantages: .
1.Increasing number of Leaders enable to digest data faster because we are no
longer limited by performance of a single machine.

2.Increasing number of Compactors enable to offload compaction to more nodes
and thus reduce impact of compaction on other functions.

3.Increasing number of read servers enable to increase read availability.

Transactional merges increase concurrency;
Re-committing transactions using MinPaxos Algorithm guarantees that the
resulting log is serializable.

About us:

* Faisal Nawab | nawab.me

e Natash

a Mittal | https://users.soe.ucsc.edu/~natasha/

« Holly Casaletto | https://users.soe.ucsc.edu/~hcasalet/

« Abhish

Fmail:
{fnawab, nmittall, hcasalet, abasingh}@ucsc.edu

ek A Singh | twitter.com/alfredd

