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The transport properties of a lateral surface superlattice, a two-dimensional (2D) electron system in a
2D periodic potential, are studied with a molecular-dynamics Monte Carlo technique including the
Coulomb interaction. Excellent numerical energy conservation is achieved by adopting a predictor-
corrector algorithm to integrate the equations of motion. With increasing 2D potential amplitude, elec-
trons show a transition, from a mobile phase to an immobile phase, where the radial distribution func-
tion has some characteristic peaks, indicating the beginning of the long-range ordering of the electrons
in the potential minima. The velocity autocorrelation function shows a 2D plasma oscillation in the
mobile phase, while in the immobile phase the classical oscillation at the bottom of the potential well is
observed. Raising the temperature improves the transport since electrons are released from the con-

straint of the 2D potential and the Coulomb potential.

I. INTRODUCTION

Due to the rapid progress in semiconductor technolo-
gy, a two-dimensional (2D) electron gas in a 2D periodic
potential with the period a¢~0.1 um can now be
achieved in lateral surface superlattices (LSSL’s) forming
field-effect-transistor (FET) structures with meshed-gate
electrodes. Transport properties of this system have been
studied extensively both experimentally and theoretical-
ly."2 A classical electron picture often gives a successful
explanation of the experimental results at temperatures
above liquid helium.®>~>

However, most such studies have focused on a situa-
tion where the number of electrons in a unit cell is so
large that the Coulomb interaction between electrons is
well screened, and, as a result, a noninteracting, indepen-
dent electron picture prevails. If we reduce the number
of electrons in a unit cell so that the Fermi energy be-
comes on the order of the thermal energy 4.2 K, the role
of the Pauli exclusion principle is more irrelevant, and
the Coulomb interaction is no longer well screened. All
the electrons are more or less bound to one another
through the Coulomb interaction. The motion of a cer-
tain electron affects that of other electrons and provides
feedback to the original electron. In thermal equilibrium
without the Coulomb interaction, electrons prefer to stay
near the bottom of the 2D potential well and the typical
separation of electrons would be d ~a /10~0.01 um for
a potential depth ~ 10k T. This small separation causes
an unscreened Coulomb energy e2/(4med) as large as
~11 meV for a pair of electrons in a GaAs channel. At
4.2 K, this value is much larger than the thermal energy
and electrons are driven apart some reasonable distance
in the Coulomb interaction, although this increases the
average 2D potential energy of electrons. Therefore, the
role of the Coulomb interaction is essential in the LSSL if
the number of electrons in a unit cell is small so that the
screening is weak. The transport properties should be
profoundly influenced by the Coulomb interaction.

We study the effect of the Coulomb interaction on
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transport properties in LSSL structures with a
molecular-dynamics technique,® which is a straightfor-
ward method to include the Coulomb interaction. At
each time step, the Coulomb force is calculated for all the
pairs of electrons and their positions and momenta are
updated according to this force. The advantage of this
method is that it makes no assumptions for screening or
collective-mode excitations such as the plasma oscilla-
tion. These effects are automatically included in molecu-
lar dynamics. In order to eliminate unwanted effects
from the use of the finite number of electrons in simula-
tions, periodic boundary conditions are adopted which
enable us to simulate an infinitely large system. Thermal
equilibrium is assumed in all the simulations here, and
the diffusion constant is evaluated by the temporal
derivative of an Einstein plot, i.e., the plot of the mean-
square displacement of electrons versus time. Scattering
by both impurity and phonons is also included in the
simulation with a usual Monte Carlo technique, although
impurity scattering dominates at this low temperature.

Phonon scattering is infrequent on the time scale of in-
terest, and the number of electrons is fixed so that the
system is isolated. Thus the total energy of electrons,
which is the summation of kinetic energy, 2D potential
energy, and Coulomb energy has to be conserved (even
with phonon emission/absorption, the energy conserva-
tion can be extended to include the phonon energy
transfer). In this situation, achieving good numerical en-
ergy conservation is necessary in the present molecular
dynamics. We have used a predictor-corrector method to
integrate the equations of motion and succeeded in
achieving five-digit numerical energy conservation. In
Sec. II, the model and the numerical techniques are ex-
plained, and in Sec. III the results and discussion are
given. The conclusion is given in Sec. IV.

II. SIMULATION METHOD

The electrons are considered as classical pointlike par-
ticles rather than quantum-mechanical waves, which
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move in the 2D potential created in a GaAs LSSL struc-
ture by Vi(x,y)=V,[ cos(2mx /a)+ cos(2my /a)+2]/4
with @ =0.16 um, following the experiment.? The poten-
tial amplitude ¥V, is varied from O to 40 meV. The tem-
perature is assumed to be 4.2 K and realistic impurity
and phonon scattering is included in the ensemble Monte
Carlo method as discrete events, although the impurity
scattering dominates at this temperature. The electron
areal density is 1.4 X 10'© cm ™2 and the Fermi wave vec-
tor and the Fermi energy are 3.0X10° cm ™! and 0.39
meV, respectively, with a parabolic-band assumption.
Since the Fermi energy is on the order of the thermal en-
ergy 0.36 meV, the role of the Pauli exclusion principle is
not important, and we use a classical particle picture.’
On the other hand, because of the low areal density the
screening is weak and the role of the Coulomb interaction
is essential in the present case,® as was discussed in the
previous section. The effect of the Coulomb interaction is
included in the electron dynamics itself through molecu-
lar dynamics, and the energy band is assumed to remain
parabolic.

We have used a combination of a Monte Carlo tech-
nique and a molecular dynamics® to simulate the present
situation. Electrons perform a free flight under the
influence of the potentials and, if scattering occurs, they
suddenly change their momentum (and energy in inelastic
processes) and start another free flight. The scattering is
a stochastic process, and whether or not it occurs is
determined in the usual Monte Carlo code with the help
of random numbers. We adopt an envelope function’
corresponding to the lowest stubband in the FET channel
and evaluate the scattering rates in the quasi-two-
dimensional inversion channel based on the scattering
rates formulated by Price.!° The Coulomb interaction be-
tween electrons is treated through a molecular-dynamics
technique. This treatment is markedly different from
that of impurity or phonon scattering. We do not treat it
as a discrete scattering event, but as a continuous one.
At each time step, the Coulomb force is calculated for all
electrons and this is used to update the position and
momentum of each electron during the subsequent time
step. In this way, we include various many-body effects
automatically without using any artificial assumptions for
the screening or the collective excitation mode. Al-
though impurity and phonon scattering are included in
the Monte Carlo part of the simulation for completeness,
the Coulomb interaction dominates the dynamics of the
system and the scattering gives only a small perturbation,
as will be discussed later.

In order to eliminate unwanted boundary effects due to
the finite number of electrons used, a periodic boundary
condition is employed which enables us to simulate virtu-
ally an infinitely large system. We typically simulate 32
electrons in 3X3 unit cells, corresponding to electron
areal density 1.4X 10'° cm ™2, and the periodic boundary
condition is imposed for this square area with the side
length L =3a. When an electron leaves the square cross-
ing by the boundary x =L, another electron is input from
the equivalent boundary x =0 with the same y coordinate
and the same momentum. The number of the electrons
in the square remains the same throughout the simula-
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tion. Thus, the dynamics is topologically equivalent to
that of electrons distributed on a torus surface since x =0
and x=L are equivalent and y=0 and y=L are
equivalent, respectively.!!

The Coulomb interaction has to be consistently defined
with the periodic boundary condition so that the total en-
ergy is conserved. Usual techniques to truncate the in-
teraction for a pair of electrons with a distance longer
than a certain cutoff length are not appropriate. The first
reason is that the long-range nature of the Coulomb in-
teraction behaves as r~! and prohibits a natural
definition of the cutoff length. The second is that the
number of interacting electrons may change with time in
the truncation process, leading to an abrupt, unphysical
change in total energy. The most appropriate formula-
tion of the Coulomb interaction consistent with the
periodic boundary condition is related to the Ewald sum
method.'? In this method, an electron is considered to in-
teract with other electrons in the square and also with all
electron images in the replicas of the square.

However, the implementation of the exact Ewald sum
is unreasonably time consuming since the Coulomb po-
tential in the Ewald form cannot be expressed in a closed
analytical form and needs an extensive numerical 2D in-
tegration, which is often subject to numerical errors. In
practice, we need to decide which to take: the exact
Ewald sum formalism but with a poor numerical energy
conservation or an approximated Ewald sum in a simple
analytical form with an excellent numerical energy con-
servation within the approximation. Here we have
chosen the latter and employed a minimum image ap-
proximation for the Ewald sum,'""!> where an electron is
assumed to interact with N —1 other electrons in the
square through specially defined distances. The distance
of electrons i/ and j in the minimum image approximation
is given by the length of the minimum image vector r;;
defined as follows. Let a, =(L,0) and a,=(0,L). Then
r; =X;—X;—n.a, —n,a,, where n, and n, are chosen to
be the integers to minimize the length [r;;|.

The minimum image approximation can be understood
using an analogy to the dynamics with N electrons distri-
buted on a torus surface, as remarked above. The ap-
proximation assumes that an electron always interacts
with N —1 other electrons on the torus surface with a
specially defined distance. There are in general plural
paths along the surface to connect two electrons, as
shown in Fig. 1. The electrons are assumed to interact
with one another through the distance defined by the
length of the shortest path, which corresponds to the for-
mation of the minimum image vector. This is a topologi-
cally equivalent definition of the distance above, neglect-
ing the curvature of the torus. When electron i or j
crosses the axis x=L, the integer n, to give the
minimum image vector r;; changes by unity, but the dis-
tance itself remains the same, causing no artificial change
in the Coulomb energy. Thus the minimum image ap-
proximation satisfies two requirements: it does not break
the energy conservation law, and it has an electron in-
teract with the same number of electrons throughout the
simulation.
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FIG. 1. Electron dynamics on a torus. This is topologically
equivalent to the dynamics with the periodic boundary condi-
tion applied to the square simulation area within the minimum
image approximation. The shorter path corresponds to the
minimum image vector, and it determines the distance of two
particles used in the evaluation of the Coulomb force.

The minimum image approximation has an important
translational symmetry that the original Ewald sum also
had, which is that the Coulomb potential of an electron
does not change under a spatial translation of all the elec-
trons by the amount of lattice vectors. Therefore, the
minimum image approximation is considered as the sim-
plest possible approximation for the Ewald sum to retain
the translational property of the Ewald sum, and is com-
pletely different from a usual simple truncation of the po-
tential, which does not retain it. The validity of this ap-
proximation will be examined in the next section by
determining the 2D plasma frequency. The frequency
represents the nature of the long-wavelength limit of the
Coulomb interaction and seems best suitable to check

whether or not an artificial truncation effect is intro-

duced. It will turn out that the present prescription sup-
ports a 2D plasma frequency that tracks properly for two
different electron densities, and gives results in keeping
with those obtained by more extensive plasma calcula-
tions.

A remark has to be made that the origin of the
Coulomb energy must be properly adjusted in the
minimum image approximation if we are interested in the
internal energy of the system. In the exact Ewald sum
formalism, a uniform background charge, required to
neutralize the electron negative charge, is assumed, and
the result of the Ewald sum can be used directly to evalu-
ate the internal energy. In the minimum image approxi-
mation, however, we need to make a correction to the en-
ergy origin by adding some constant value since the effect
of the background charge is not included. In the results
below, this constant value has always been chosen to be
zero in the evaluation of the Coulomb energy.

The Coulomb potential is now written with a simple
form in the minimum image approximation. In molecu-
lar dynamics, we update the position x and momentum p
by

x(i+D=x(+ [*p ar, (1)
pli+D=p+ [Vf dt, @)

where x (i) and p (i) indicate the functional values of x (¢)
and p (¢) at the ith time step with step period At, and f is
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the force (in the units of m =1). The force f is generally
a complicated function of positions (and momenta) of all
electrons: the force from the 2D potential is a function of
the position of an electron, and the Coulomb force is a
function of the positions of all electrons. Using a tra-
pezoidal formula to approximate the integrals, we have

x(i+1)=x)+[p()+pi +1)]At /2, (3)
pli+1)=p()+[f(D)+fli+1)]At/2, 4)

where the two functional values at i and i +1 are used to
evaluate each integration. This is a self-consistent equa-
tion. By assuming p(i-+1), (3) gives x(i +1). Then
f(i+1) is determined from x (i +1) and p(i +1). By
knowing f(i +1), (4) gives p(i +1), and this has to be
self-consistent with the original value of p (i +1) that we
started from. The determination of x (i +1) and p (i +1)
to satisfy this self-consistency at each time step leads to
an excellent numerical energy conservation.

This kind of self-consistent equation can be solved by
the iteration or the predictor-corrector method.'> The
first prediction is

fG+D=£0). (5)
Then we have

p'i+1)=pli)+f(DAt, (6)

x'(i+D)=x)+[p)+p'i+1)]At/2 . (7)

We can correct the first predicted position and momen-
tum, since the corrected force f'(i +1) can be calculated
using x'(i +1) and p'(i +1). Then,

p i+ D)=p()+[f D)+ f(i+1)]AL/2, 8)
x"(i +1)=x () +[p(i)+p'(i +1)]At /2 . 9)

This procedure is repeated until good convergence is ob-
tained, but adopting p’’(i +1) and x''(i +1) is enough in
the present simulations. Actually, adopting p’" and x"
leads to five-digit accuracy in energy conservation
throughout typical simulations up to ~10? ps with the
Coulomb interaction.

The implementation of this predictor-corrector method
in the Monte Carlo program needs some care, since we
have two time periods corresponding to At¢. One is the
time duration ¢,, for molecular dynamics, which is con-
stant over the simulation, and the second is the free flight
time ¢, between scattering, which is a random variable.
An electron performs a free flight during the time period
min(z,,,2,) and in most cases this is equal to ¢,,, since 7,,
is chosen to be much shorter than the relaxation time.
The Coulomb force is updated every t,, and the 2D po-
tential force is updated every min(z,,t.). If t,>1,,
which is the case in most situations, both forces are up-
dated at ¢,,. If 1, <z, the Coulomb force is assumed to
be constant during ¢,, and the 2D potential force is up-
dated at ;. The similar treatment is necessary for future
consideration of a Lorentz force in a magnetic field, since
the Lorentz force changes discontinuously after a scatter-
ing event where the direction of electron momentum
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abruptly changes.

Finding an initial condition is not trivial because of the
Coulomb interaction included. If any electrons are ac-
cidentally close to one another in the initial condition,
this causes an artificial heating of the electron system; the
average electron kinetic energy  E,;, ) should be equal to
the thermal energy k7. We have performed a prelimi-
nary simulation to find an appropriate initial condition
using a molecular-dynamics Monte Carlo code but with a
slight modification. This modification consists of adding
an operation to scale the momentum by /' (E;, ) /kpT
at every ~ 10% time step. Every time the scaling opera-
tion is performed, the average electron energy is reset to
the thermal energy without changing the direction of
momentum of each electron. This scaling perturbation is
gradually turned off as the system approaches thermal
equilibrium, since the scaling factor approaches unity. If
the average kinetic energy shows essentially no time
dependence, an appropriate initial condition is obtained.
This preliminary simulation can start with any conditions
with large enough kinetic energy. This is a computer ver-
sion of the quenching experiment.

From an ensemble of real simulations with initial con-
ditions found by the above method, the raw data consist
of the position and momentum of each electron at each
time step. Using these values, we can evaluate the veloci-
ty autocorrelation function {v,(i)v,(0)), the mean-
square displacement { Ax%(i)), and the radial distribution
function g(r). Since the thermal equilibrium states are
simulated, we can take a time average as well as an en-
semble average and this improves the statistical error in
the results significantly. The basic practice is to gather as
many data samples as possible. In order to evaluate
(v, (i)v,(0)), an ensemble average of v,(i)v,(0) over
different electrons is available as usual. In addition to it,
a time average v, (i +j)v, (j) over different time j is avail-
able. Also, {v,(i)v,(0)) is available since the system is
symmetric with respect to x and y. The same policy can
apply to the mean-square displacement. Since the avail-
able number of samples decreases with increasing time in-
dex, these quantities for a long time comparable to the
whole simulation time span have larger statistical error
and need care. The evaluation of the radial distribution
function g(r) is straightforward in molecular dynamics
since the distance for each pair of electrons is calculated
every time step for the evaluation of the Coulomb poten-
tial and force. The gathered distances are averaged over
ensemble and time to calculate g (7). As a general guide-
line, data with more than ~ 10° samples are appropriate.

When evaluating a diffusion constant D, another quan-
tity of interest, the usual method is to integrate the veloc-
ity autocorrelation function using Green-Kubo formula,
by

D= [ (v, (tw,(0))dr . (10)
0

However, this method may not be suitable to the present
simulations for the following reasons. First, the formula
is for noninteracting particle systems and its applicability
to the present case is questionable, in that the simulation
computes only the single-particle correlation functions,
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and higher-order many-body terms may provide
significant differences. Second, we need to perform a nu-
merical integration and there is always a numerical error
associated with this procedure even when good formulas
are available. If the velocity autocorrelation function
shows a long-lasting oscillation and the expected diffusion
constant is close to zero, it is difficult to find a reasonable
upper point of the integral. What is worse, the diffusion
constant is not positive-definite in this definition. Third,
the electron velocity changes discontinuously in a scatter-
ing event and this is not good for numerical calculations.
Therefore we have created an Einstein plot of the mean-
square displacement and evaluated the diffusion constant
from its gradient, by'4
_14d 2

D > dt<Ax () . (11)
The advantage of this method is the counterpoint of the
above. First, it is the appropriate definition of the
diffusion constant applicable even for interacting parti-
cles, and we can see whether the diffusion picture applies
or not by checking the linearity of the Einstein plot. It
gives a clear idea whether electrons are in the mobile
phase, where ( Ax%(z)) increases linearly with time, or in
an immobile phase where { Ax%(¢)) is bounded. Second,
the numerical integration is avoided. Evaluating a
derivative of the linear line is much easier than the nu-
merical integration. Third, Ax(¢) changes continuously
in a scattering event. After running several trial simula-
tions, we have found the equivalence of (10) and (11) nu-
merically, which has also been reported in molecular-
dynamics calculations.!*!> Once the numerical equiv-
alence of these expressions is established, (11) is used ex-
tensively from thereon because of the advantage cited
above.!®

III. RESULTS AND DISCUSSION

A. Impurity and phonon scattering only

We start with the simplest case, which is the transport
of free electrons at 4.2 K with only impurity and phonon
scattering, where the impurity scattering dominates at
this temperature. The impurities (N;=3.3X 10" cm™3)
are assumed to be uniformly distributed through the
Ga,_, Al As layer of the heterostructure, and we adopt
the impurity screening model of Stern and Howard,!’
who formulated the impurity scattering in the context of
electrons confined to the lowest subband of a FET struc-
ture. The inverse screening length is assumed to be
(nm /27w#H%) (e2/2{e)), where n is the areal electron den-
sity, (€) is an average dielectric constant of GaAs and
Ga,_,Al As, and the other symbols have their usual
meanings.

Figure 2(a) shows the time evolution of the velocity au-
tocorrelation function. The exponential dependence of
the time is clearly shown in the figure, with a relaxation
time 7 of 4.6 ps. This value can be converted to the mo-
bility p=er/m =1.3X10° cm?/V s, which corresponds
to the diffusion constant D =(kzT /e)u=46 cm?/s. Fig-
ure 2(b) shows the mean-square displacement of the elec-



6420

10 T

i @ |
1

Normalized velocity autocorrelation

0.1 ST T N SO TN SO T A SO S TR S

Time (ps)

5.0

T T T T T T T T T T

et
®

4.0

Ll

3.0

2.0

1.0

RSN ETEEN N BV RN RTEN R

Mean-square displacement (10 cm?)
A e e A

0.0 P IR R S RN RN
0 10 20 30 40 50 60
Time (ps)

FIG. 2. The simulation result with only impurity and phonon
scattering at 4.2 K. (a) The normalized velocity autocorrelation
function of the particles as a function of time. (b) The mean-
square displacement of the particles as a function of time.

trons. The linear dependence of the mean-square dis-
placement on time immediately gives the diffusion con-
stant of 42 cm?/s. The difference defines the accuracy of
the simulation, here about 10%, due to the small number
of particles. The initial kinetic energy is conserved under
elastic impurity scattering and, if the kinetic energy is
chosen consistently with the temperature, it is maintained
constant. Energy conservation on the computer is quite
easily achieved in this case of the absence of the Coulomb
interaction.

B. Impurity and phonon scattering,
and electron-electron interaction with V=0

Next, electron-electron interaction is added to impuri-
ty and phonon scattering with the molecular dynamics.
Now the system is regarded as a one-component 2D plas-
ma and it is meaningful to make a connection to parame-
ters often referred in plasma physics. The plasma cou-
pling constant I"=e2/(47eAky T) is 6.43 in the present
model, where A~ '=(7n)!/? is the radius of the Wigner-
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Seitz disk and # is the areal density. It has been shown
that there is a phase transition from a mobile phase to an
immobile phase as T is increased, with a critical value of
' ~ 10? in molecular-dynamics simulations.!® The immo-
bile phase is an ordered structure, known as a Wigner
crystal, exhibiting a characteristic oscillation in the radial
distribution function. Since the present value of T' is
much smaller than the critical value, electrons are in the
mobile phase and possess a well-defined diffusion con-
stant.

A remark has to be made about this phase transition.
Mermin has published a rigorous proof that 2D systems
cannot display long-range crystalline order.!® The above
statement may seem contradictory to this proof. Howev-
er, the proof has two limitations. First, the interaction
potential is assumed to fall off faster than r ~2. Second,
the result only applies in the thermodynamic limit. The
Coulomb potential falls off as » ! and, obviously, the first
condition is not satisfied. The second point is subtle,
since we use a periodic boundary condition and the
Ewald sum technique to eliminate unwanted boundary
effects. In this sense, we are virtually simulating an
infinitely large system. However, this is not mathemati-
cally equivalent to taking the thermodynamic limit. For
these reasons, we can observe a phase transition in
molecular-dynamics simulations which is not contradic-
tory to Mermin’s statement.

The velocity autocorrelation function changes drasti-
cally with the Coulomb interaction, as shown in Fig. 3(a).
Two results, one with 32 electrons in 3 X3 unit cells and
the other with 14 electrons in 2 X2 unit cells, are shown,
where actually no LSSL is present (¥,=0) and the desig-
nations 2X2 and 3X3 are used only to specify the rela-
tive sizes of the simulation areas. Both show no essential
difference and the original choice of 32 electrons in 3X3
unit cells seems reasonable. The velocity autocorrelation
function is no longer a simple exponential function but an
oscillatory function with a strong decay. Since the decay
is quite strong, and numerical noise begins to merge into
the autocorrelation function at around 4 ps, it is difficult
to extract an oscillation period with good accuracy. In
fact, the peak frequency depends on the choice of the
window function in the numerical Fourier transform.
With either a rectangular window or a Blackman win-
dow, an estimation gives the period as 3.2—3.7 ps.

The oscillation is attributed to the Coulomb interaction
but the interpretation is not as easy as in the case of
three-dimensional (3D) systems, where the oscillation is
due to the coupling of a single electron to the plasma
oscillations characterized by a frequency w;p
=(e%n;p/em)!/?, with n;p the 3D electron density.
This is a direct consequence of the fact that the charges
are distributed on a plane, the simplest model for polar-
ization in a 3D system, and create an electric field per-
pendicular to the plane with a strength that is indepen-
dent of the distance from the plane. In 2D systems, how-
ever, the plasma oscillation has a dispersion that varies as
Vg. Actually, the polarization in 2D systems can be
modeled by charges distributed on a line, creating an
electric field inversely proportional to the distance from
that line. Thus the squared plasma frequency, which is
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FIG. 3. The simulation result for the electron-electron in-
teraction with impurity and phonon scattering present, but with
Vo=0. The parameter is I' =6.43 at 4.2 K. (a) The normalized
velocity autocorrelation function. The solid line is the result for
32 electrons in a 3 X3 unit cell and the dashed line that for 14
electrons in a 2 X2 unit cell, although no superlattice potential
is present. Here the designations 2X2 and 3X 3 are used only
to specify the size of the simulation area in terms of the basic
lattice constant a. (b) The mean-square displacement of the par-
ticles. (c) The radial distribution function obtained for the 3 X3
unit-cell simulation where the distance is normalized to L.

proportional to the field, is inversely proportional to the
distance or proportional to g. The dispersion calculated
in detail is w,p(q)=(e?n,pq/2em)!’? in lowest order,?
with n,5 the 2D electron density, which results in
®,p(q)—0 when g —0.

The situation seems puzzling, but it has been shown by
several authors®! that the oscillation in the velocity auto-
correlation can be attributed to the 2D plasma oscillation
with g ~q,=(7n,p )!/2 rather than g ~0, by studying the
dynamic structure factor S(g,®), which is directly calcu-
lated in molecular dynamics. The dispersion of the 2D
plasma oscillation rises quickly with ¢ and becomes al-
most flat around g,,>! showing a discrepancy from the
curve @ =w,p(q) due to higher-order effects that are au-
tomatically included in molecular dynamics. A 2D elec-
tron couples with this part of the mode, where the state
density is large, and this is consistent with the fact that
the 3D plasma oscillation has a flat dispersion part
around ¢ ~0 and a 3D electron couples with this part.
The time period ‘corresponding to the flat part of the 2D
plasma oscillation dispersion around g, is empirically
given by ~5.2(4wem /e?q3)!/%,'% which is estimated to
be ~3.2 ps for the present situation of LSSL, consistent
with our result of 3.2-3.7 ps.

Figure 3(b) shows the mean-square displacement under
the condition of Fig. 3(a). Again, two results are shown,
one with 32 electrons in 3X3 unit cells and the other
with 14 electrons in 2X2 unit cells, exhibiting no essen-
tial difference. Since the figure shows a clear linear
dependence on time, we can still use a diffusion picture of
Brownian particles although electrons are interacting
through the Coulomb force. The diffusion constant D is
evaluated to be 6.7 cm?/s, which is smaller than the value
with impurity scattering only. Usually, the Coulomb in-
teraction conserves the total momentum of the electron
system and therefore does not change the transport prop-
erties. However, the present result is a natural con-
clusion if we remember that the phase transition from the
mobile to the immobile phase occurs as I'" increases. The
result for larger I" will be discussed later.

Figure 3(c) shows the radial distribution function for
V=0 obtained from the 3X3 unit-cell simulation. The
distance is normalized to L. The radial distribution has
essentially zero value for short distances but rises rapidly
and peaks around 1/v'32=0.177, which is the average
distance assuming a perfectly uniform 2D electron gas.
As the distance increases, the radial distribution function
approaches unity without showing an oscillation. This is
further evidence that the electrons are in a uniform,
mobile phase. The initial peak in the radial distribution
function is larger than unity and this indicates an
effective attraction in the system. The origin of the at-
traction is the same as that of hard-sphere systems and
can be intuitively understood as follows. When the
second electron is at a distance corresponding to this re-
gion from the central electron, there is little possibility of
inserting a third electron between them since electrons
cannot approach within a certain distance due to the
strong Coulomb repulsive force, just as the third electron
cannot find enough space to enter in hard-sphere systems.
As a result, the second electron suffers less scattering



6422

from other electrons on the side facing the central elec-
tron than from those on the opposite side: the effect is a
net average attraction toward the center.

Since the initial condition is properly chosen, the aver-
age kinetic energy with respect to time is the temperature
0.36 meV. Slight oscillations in energy about this value
are observed with time. They are due to the 2D plasma
oscillation and attributed to the finite number of elec-
trons used in the simulation. If the number of electrons
N increases, the fluctuations decrease as 1/V'N and go to
zero in the infinite limit. Although there are some oscil-
lations in energy, the total energy stays essentially con-
stant during the simulation.

In order to assure the validity of the minimum image
approximation for the Coulomb interaction under the
present condition, one simulation has been performed un-
der the condition that the Coulomb interaction is more
dominant-—a larger I" case. The temperature is assumed
to be the same, 4.2 K, but the side of the area is decreased
so that I" will be 36. This is a mathematical test rather
than a physical one, to check whether the minimum im-
age approximation gives essentially the same result as
those of the more exact Ewald sum treatment. The oscil-
lation of the velocity autocorrelation becomes clearer, as
shown in Fig. 4. By taking the Fourier transform, the
time period for this oscillation is estimated to be
0.20-0.22 ps, which is consistent with the value of 0.20
ps assuming the coupling of a single electron to the 2D
plasma oscillation at ¢ ~(7n)!”2. The mean-square dis-
placement shows a linear dependence on time after ~1.5
ps, and the displacement after that is fitted to a straight
line to evaluate the diffusion constant D. This gives
D ~4.3 cm?/s. The reported value was D =5.1 cm?/s for
'=36."2 If we use Matthiessen’s rule to include the
effect of impurity scattering using the diffusion constant
determined by impurity scattering alone, the reported
value is changed to 4.6 cm?/s. Thus the minimum image
approximation agrees with results of a more exact Ewald
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FIG. 4. The normalized velocity autocorrelation function of
electrons for plasma coupling constant I'=36, realized with a
higher electron density at the same temperature 4.2 K under the
electron-electron interaction with impurity and phonon scatter-
ing.
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sum treatment for I'=36 and is appropriate for the
present model. The Coulomb interaction is so dominant
over the thermal fluctuation of the electrons that their
spatial distribution begins to show some order, which is
conducive to reducing Coulomb energy as is indicated in
the peaks of the radial distribution function.

C. Addition of 2D periodic potential

Next we consider the 2D potential. With increasing
2D periodic potential, electrons tend to stay at the poten-
tial minima and, if the potential exceeds some critical
value, electrons will show a phase transition from a
mobile to an immobile phase. This can also be under-
stood by checking the average value of the sum of the ki-
netic energy and 2D potential energy. If this value is
greater than the saddle-point energy of the 2D potential,
which is the lowest 2D potential barrier energy, electrons
can move anywhere in space. Otherwise, most electrons
are confined in a unit cell and only some gain enough en-
ergy to overcome the saddle point and move to neighbor-
ing cells, leading to a smaller diffusion constant. This is
reminiscent of classical hopping, leading to a smaller
diffusion constant. With greater potential, no electrons
can change their original cells, resulting in zero diffusion
constant.

These insights are actually seen in the results. Figure
5(a) shows the velocity autocorrelation for three potential
values, 2.5, 5, and 10 meV. The velocity autocorrelation
function begins to show an oscillation with a shorter time
period than that in the presence of the Coulomb interac-
tion alone seen above. This oscillation can be attributed
to classical oscillation in the potential. For ¥;=10 meV,
a clear oscillation is observed, which indicates that elec-
trons are beginning to be confined in the potential mini-
ma and that the major force dominating electron motion
is changing from a Coulomb force to a 2D potential
force. The Fourier transform of the velocity autocorrela-
tion function for ¥;=10 meV shows a peak correspond-
ing to the time period of 2.2 ps. Generally, the time
period T, in the classical periodic motion of a particle
with mass m in the one-dimensional potential well U (x)
can be given by

Xy 1
T opass =2 X
class fxl x\/Z[E—U(x)]/m

) (12)

where E=(E,;,) and x, and x, are the classical turning
points where U (x)=E. Along the minimal potential line
in the y direction given by cos(27y /a)= —1, we can ex-
press the motion in the x direction in the present problem
by

m 172
Tclass=4a 2V0
x [ a6 1 oy, (13)
b1 E _ cos(2m8)+1
Vo 4

where 6, =x, /a and x, is the classical turning point with
0<x;<a/2. The divergence of the integrand at the
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turning point is like (6 —8,)~!/? and integrable as long as
6,70 or E is smaller than the saddle-point energy. The
numerical integration with E=kzT=0.362 meV and
Vo=10 meV gives 6,=0.413 and T, =2.43 ps, which
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FIG. 5. Simulation results for the potential amplitude
Vy=2.5, 5, and 10 meV under the electron-electron interaction
with impurity and phonon scattering at 4.2 K. (a) The normal-
ized velocity autocorrelation function. (b) The mean-square dis-
placement. (c) The radial distribution function where the dis-
tance is normalized to L.

recovers the observed value.

Figure 5(b) shows the mean-square displacement for
Vy=2.5, 5, and 10 meV. We have a linear time depen-
dence of the mean-square displacement, indicating that
electrons are still in the mobile phase, although the oscil-
lation in the velocity autocorrelation has already shown
that the electron confinement at the bottom of the poten-
tial minima is beginning. From the figure, we can esti-
mate the diffusion constant as D =6.1 cm?/s for V,=2.5
meV, D=2.5 cm?/s for ¥;=5 meV, and D=0.6 cm?/s
for ;=10 meV.

These situations become clearer by checking the rela-
tion of the saddle-point energy and the sum of electron
kinetic and 2D potential energy. For V;=2.5 meV, the
saddle-point energy V/2 is smaller than the sum. Most
electrons can overcome the 2D potential barrier and are
not confined in a unit cell. However, this relation re-
verses at V=5 meV and a majority of electrons now do
not have enough energy to overcome the barrier and are
confined in a unit cell. Coulomb energy increases with
potential, which is another manifestation that electrons
are gradually confined in a.cell, since spatially nonuni-
form distribution will raise Coulomb energy.

Figure 5(c) shows the radial distribution function for
three potential values. For clarity, the functions for
Vo=5 and 10 meV are offset by one and two units. The
first peak of the distribution function shifts to a smaller
distance with increasing potential, due to the increasing
confining effect in a unit cell. The electrons do not prefer
to stay around the normalized distance of 1, where the
potential barrier appears, with increasing potential. The
second peak for the normalized distance of 1 becomes
higher and corresponds to the 2D potential period, fur-
ther indicating confinement.

The situation changes drastically for V;=40 meV,
since electrons have already made a phase transition to
the localized state. Electrons oscillate at the bottom of
the potential minima and none can overcome the barrier.
The velocity autocorrelation in Fig. 6(a) has a clear oscil-
lation period. The Fourier-transform amplitude has a
peak at the frequency corresponding to a time period of
1.1 ps. Using the expression in (13) with ¥;=40 meV, we
have 6,=0.457 and T,,=1.10 ps. The mean-square
displacement in Fig. 6(b) is a bounded function of time
and therefore the diffusion constant is zero. The sum of
average kinetic and 2D potential energy is around 3.3
meV, which is much smaller than the saddle-point energy
of 20 meV. Practically, it is impossible for electrons to
overcome the barrier at this low temperature of 4.2 K.
Coulomb energy achieves the highest contribution be-
cause of the strong spatial confinement of electrons in the
potential minima. This is why the radial distribution
function in Fig. 6(c) shows a high first peak correspond-
ing to the mean distance of electrons in a unit cell, fol-
lowed by an essentially zero region due to high potential
barrier, and the second peak corresponds to the 2D po-
tential period at the normalized distance of 1. The third
peak at the normalized distance at V2 /3 is essentially the
manifestation of the 2D square-ordered structure in the
diagonal direction.
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ing at various temperatures. (a) The normalized velocity auto-
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the distance is normalized to L. (c) The mean-square displace-
ment.
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FIG. 8. The plot of the natural logarithm of the diffusion
constant (InD) as a function of inverse temperature (1/7). The
estimated activation energy is ~ 1.0 meV.

D. Effect of temperature

The effect of raising the temperature is obvious. As
long as phonon scattering remains small, a higher tem-
perature causes improvement in transport since electrons
have more energy to overcome the 2D potential barrier
or Coulomb potential barrier. In order to show this, we
have simulated several temperature points between 4.2
and 22 K for V;=2.5 meV. Figure 7(a) shows the veloci-
ty correlation function, Fig. 7(b) the radial distribution
function, and Fig. 7(c) the mean-square displacement, for
several temperatures. The velocity autocorrelation func-
tion begins to show a simple monotonic decay, rather
than an oscillation, with increasing temperature. With
increasing kinetic energy, the coherent collective oscilla-

cluding the Coulomb interaction. Excellent numerical
energy conservation is achieved by using the predictor-
corrector algorithm to integrate the equation of motion.
With increasing 2D potential amplitude, electrons show a
transition from a mobile phase of the electron gas, where
only short-range order is formed, to an immobile phase
where the radial distribution function has some charac-
teristic peaks, indicating the localization of the particles.
The velocity autocorrelation function in the mobile phase
shows a 2D plasma oscillation, while in the localized
phase it exhibits a classical oscillation at the bottom of
the potential well. Raising the temperature improves
transport, since electrons are released from the constraint
of the 2D potential or the Coulomb potential. The simu-
lation clearly illustrates the activated conductance in this
system.
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