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The magnetotransport properties of a lateral-surface superlattice, a two-dimensional (2D) electron sys-
tem in a 2D periodic potential, are studied with use of a Monte Carlo technique, where the effect of the
magnetic field is included through a Lorentz force and the interparticle Coulomb interaction is included
with a molecular-dynamics method. Excellent numerical energy conservation is achieved by adopting a
predictor-corrector algorithm to integrate the equations of motion. The simulation shows that the
diffusion constant, as a function of the magnetic field, is not a simple monotone function but has a struc-
ture with multiple minima. This structure is attributed to the correlated circular electron motion, and
this is reminiscent of classical pinning orbits in a 2D antidot array, even in the presence of the Coulomb
interaction. The radial-distribution function shows no significant dependence upon the magnetic field up

to ten flux quanta per unit cell.

I. INTRODUCTION

A two-dimensional (2D) electron gas in a 2D periodic
potential with the period @ ~0.1 um can now experimen-
tally be achieved in lateral-surface superlattices (LSSL’s)
embedded in field-effect transistor (FET) structures with
a mesh-gate electrode.! ~® In these systems, the magnetic
length (#/eB)'/? for one flux quanta per unit cell is
~0.04 pum (®/®P,=a?/2ml}). The 2D potential can
often be represented by a smooth function, which is the
summation of the two cosine functions, V(x,y)=V,/4
[cos(2mx /a)+cos(2my /a)+2] with peak-to-peak ampli-
tude V,,. If the characteristic electron energy E is smaller
than the saddle-point energy ¥V, /2, electrons are mainly
confined in the 2D potential minima and an array of
quantum dots is formed. If V,/2 <E <V, electrons ba-
sically move freely except for those regions where the 2D
potential energy is larger than E and an array of antidots
is formed. Recently, the magnetotransport properties of
2D electrons, in the latter case of a 2D antidot array,
have been studied experimentally,* and the magnetoresis-
tance shows peaks when the cyclotron radius can enclose
a fixed number of antidots (n =1,2,4,9,21 in the experi-
ment). This “pinning” of the cyclotron orbit is explained
by a classical pinball model.* Resistance minima occur
when the cyclotron orbit is not commensurate with the
lattice period, resulting in diffusive transport where the
orbit is specularly reflected by the antidot potential.

The key assumption for the pinball model is that the
number of electrons in a unit cell is so large that the in-
terparticle Coulomb interaction is well screened, and as a
result, a noninteracting, independent electron picture
prevails with the Fermi energy as the characteristic elec-
tron energy. If we reduce the number of electrons in a
unit cell, the screening becomes weaker and all electrons
are bound to one another through the Coulomb interac-
tion. The motion of a particular electron affects that of
other electrons and there is nonlinear feedback to the
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original electron. In thermal equilibrium without the
Coulomb interaction when ¥V >>ky T, electrons prefer to
stay near the bottom of the 2D potential well. The typi-
cal separation of electrons for a potential depth ~ 10k, T
would be d ~a/10~0.01 um.’> This small separation
causes an unscreened interparticle Coulomb energy
1/(41med) as large as ~11 meV (in a GaAs channel). At
4.2 K, this value is much larger than the thermal energy
and electrons are driven apart some reasonable distance,
which increases the average potential energy of these
electrons. Under this situation, the Coulomb interaction
is expected to have a significant effect on the dynamics of
the carriers.

In order to clarify this, we have studied the effect of
the Coulomb interaction on the magnetotransport prop-
erties with a Monte Carlo model incorporating a
molecular-dynamics technique,5 the latter of which is a
straightforward method to include the Coulomb interac-
tion.® At each time step, the Coulomb force is calculated
for all pairs of electrons and their positions and momenta
are updated according to this force. The advantage of
this method is that it makes no assumption about screen-
ing or collective mode excitations. These effects are au-
tomatically included in molecular dynamics. In order to
eliminate unwanted effects from the use of the finite num-
ber of electrons in simulations, periodic boundary condi-
tions are adopted and the Coulomb force is calculated
with a method based on the Ewald sum. These treat-
ments enable us to simulate virtually an infinitely large
system. The effect of the magnetic field is included
through a Lorentz force. Thermal equilibrium is as-
sumed in all the simulations here and the diffusion con-
stant is evaluated by the temporal derivative of an Ein-
stein plot, i.e., the plot of the mean-square displacement
of electrons versus time. Scattering by both impurity
(with a concentration of Ny=3.3X 10" cm ™3, uniformly
distributed through the Ga,_, Al As layer of the hetero-
structure) and by phonons is included in the simulation
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with a usual Monte Carlo technique, using an envelope
function’ for the lowest subband in the heterojunction in-
version layer channel to calculate the scattering rates.
Phonon scattering is infrequent on the time scale of in-
terest at this low temperature, and the number of elec-
trons is fixed. Thus, the total electron energy, which is
the summation of the particle’s kinetic energy, their po-
tential energy, and the interparticle Coulomb energy, has
to be conserved (even with phonon emission/absorption,
the energy conservation can be extended to include the
phonon energy transfer). In this situation, achieving
good numerical energy conservation is necessary. We
have used an algorithm, stable to ‘second order, based
upon a predictor-corrector method to integrate the equa-
tions of motion, with double precision used in the code to
minimize round-off error, and succeeded in achieving en-
ergy conservation, to five significant digit numerical accu-
racy, during typical simulation runs.

The simulation results show that the diffusion constant
does not decrease monotonically with the magnetic field,
but has a structure with several minima. This structure
is attributed to the correlated circular electron motion,
and is reminiscent of the classical pinning orbits in the
2D antidot array, even at low density and in the presence
of the Coulomb interaction. This indicates that the pin-
ball model has a much wider applicability than expected
originally, and can explain magnetoconductance oscilla-
tions that are experimentally observed.

In Sec. II, the model and the numerical techniques are
explained, and in Sec. III, the results and discussion are
given. This system, a 2D electron gas subject to both a
2D periodic potential and a magnetic field, also has been
attracting considerable attention for decades because of
the quantum-mechanical energy-band structure, often
called a “Hofstadter butterfly,” which is a fractal energy
band structure with the period of either the number of
flux quanta per unit cell or the number of unit cell per
flux quanta.! This formal aspect of the system has
motivated an extensive study of transport properties, and
the magnetoresistance shows periodicity either with
respect to the magnetic field! or with the inverse of the
magnetic field.>® The present semiclassical approach
cannot predict these quantum structure effects, but we do
discuss some of the quantum connections in the Appen-
dix.

II. SIMULATION METHOD

The electrons are considered as classical particles, rath-
er than quantum-mechanical wave packets, moving in a
2D potential, created in a gated GaAs structure,
Vix,y)=V,/4[cos(2mx /a)+cos(2my /a)+2] with
a =0.16 um. (The dimensions were chosen to agree with
the experiments of Ref. 1.) The electron area density is
taken to be 1.4X10'° ¢cm ™2, for which the Fermi wave
vector and the Fermi energy are 3.0X 10° cm ! and 0.39
meV, respectively, with a parabolic-band assumption.
Since the Fermi energy is on the order of the thermal en-
ergy, 0.36 meV (at 4.2 K), degeneracy is not an important
effect and we use a classical particle picture.!® On the
other hand, because of the low areal density, the screen-

ing is weak and the Coulomb interaction is essential in
the present case,!! as was discussed in the preceding sec-
tion. The effects of the Coulomb interaction and the
magnetic field are included directly in the electron dy-
namics and the energy band is assumed to remain para-
bolic.

We have chosen the 2D potential amplitude V;,=2.5
meV since the electrons have previously been found to be
in a mobile phase,’ and the average electron energy lies
between the saddle-point energy ¥V, /2 and the maximum
barrier height V. This situation also is comparable to
that of the antidot experiments.* Realistic impurity and
phonon scattering are included in the ensemble Monte
Carlo method as discrete events, although impurity
scattering dominates at this low temperature. The
strength of the impurity scattering is such that the mobil-
ity is 1.3X 10> cm?/Vs. Electrons perform a free flight
under the influence of a Lorentz force caused by the in-
terparticle potential, the 2D potential,12 and the magnetic
field. If scattering occurs, the electrons suddenly change
their momentum (and energy in inelastic processes) and
then start another free flight. The scattering is a stochas-
tic process and whether or not it occurs is determined in
the Monte Carlo code with the usual help of random
numbers. We have adopted an envelope function corre-
sponding to the lowest subband in the FET channel after
Fang, Howard, and Stern’ to evaluate the scattering rates
in the quasi-two-dimensional inversion channel.

The interparticle Coulomb interaction is treated
through a molecular-dynamics technique.® At each time
step, the Coulomb force is calculated for all electrons and
this is used to update the position and momentum of each
electron during the subsequent time step through the
Lorentz force. In this way, we include various many-
body effects automatically without using any artificial as-
sumptions for the screening or the collective excitation
mode. In order to eliminate unwanted boundary effects
due to the finite number of electrons used, a periodic
boundary condition is employed, which enables us to
simulate virtually an infinitely large system.” We simu-
late 32 electrons in 3 X3 unit cells, corresponding to the
electron areal density 1.4X10'° cm ™2, and the periodic
boundary condition is imposed for this simulation square
with side length L =3a. When an electron leaves the
square by crossing the boundary x =L, another electron
is input from the equivalent boundary x =0 with the
same y coordinate and the same momentum and energy.
The number of electrons in the square remains constant
throughout the simulation.

The Coulomb interaction has to be consistently defined
with the periodic boundary condition so that the total en-
ergy is conserved. The most appropriate formulation of
the Coulomb interaction consistent with the periodic
boundary condition is related to the Ewald sum method
with a minimum image approximation.®!> An electron is
assumed to interact with N —1 other electrons in the
L XL simulation square through specifically defined dis-
tances. The distance of electrons i and j in the minimum
image approximation is given by the length of the
minimum image vector r;; defined as follows. Let
a, =(L,0) and a, =(0,L). Then the minimum image vec-
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tor is given by r;;=x;—Xx;—n,a,—n,a,, where n, and
n, are chosen to be the integers to minimize the length
lr,-j|.

When electron i or j crosses the axis x =L, the integer
n, giving the minimum image vector r;; changes by uni-
ty, but the distance itself remains the same, causing no
artificial change in the Coulomb energy. Thus, the
minimum image approximation satisfies two require-
ments: do not break the energy conservation law and
have an electron interact with the same number of other
electrons throughout the simulation. The approximation
has an important translational symmetry that the original
Ewald sum possesses, which is that the Coulomb poten-
tial of an electron does not change under a spatial
translation by a, or a, and this makes the approximation
completely different from a usual simple truncation.®!?

In molecular dynamics, we update the position x and
momentum p with the predictor-corrector method by!?

x(i+1)=x(i)+p (DAt + f[x (D) ](A)? /2, (1
pli+D)=pO)+{flxD]+fIxG+1D]}Art/2, (@)

where x (i) and p (i) indicate the functional values of x (#)
and p(¢) at the ith time step of period At, and f is the
force, which is a function of the electron coordinate x (in
the units of m =1). This algorithm is second order accu-
rate with respect to At and is quite stable since the future
force term f[x (i +1)] gives feedback in (2) to determine
p(i+1). In fact, the elimination of the momentum terms
from (1) and (2) results in Verlet’s algorithm,14 which is
known to be second order accurate and also quite stable.
With the use of double precision variables in the program
to minimize round-off errors, and with the choice of
At =10"!" s to maintain the high accuracy, the summa-
tions of electron kinetic energy, 2D potential energy, and
interparticle Coulomb energy remains constant to five
significant digits for standard runs of ~10? ps in simula-
tions started with an appropriate initial condition (on this
time scale, practically no phonon scattering occurs, but it
is easy to include the phonon events in the energy conser-
vation determination).

Finding an initial condition is not trivial, because of
the Coulomb interaction. If any electrons are unusually
close to one another in an initial condition, the interparti-
cle Coulomb energy will lead to a rapid rise in electron
kinetic energy and will cause an artificial heating of the
electron system. We perform a preliminary simulation,
before running a real simulation, to find an appropriate
initial condition, using a molecular-dynamics Monte Car-
lo code with a slight modification. This consists of add-
ing a perturbation to scale the x and y components of the
electron momentum by ({E,,, ) /kzT)'/? at every ~ 10?
time steps so that the average electron kinetic energy
(E,;, is reset to the thermal energy kz 7. This prelimi-
nary simulation can start with any conditions but ( E,;, )
is usually chosen much larger than kp7T. Typically
within ~10 ps, (E,;,) is smoothly reduced to k5T and
maintains that value. As (E,;, ) approaches kT, the
scaling perturbation is gradually turned off since the scal-
ing factor approaches unity. At this stage, an appropri-
ate initial condition is obtained. In essence, this is quite
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similar to a simulated annealing of the electron system to
find a proper initial condition that is allowed by equilibri-
um statistical mechanics. This momentum scaling is
done only to find an initial condition. After finding an
appropriate initial condition, a real simulation is per-
formed using the algorithm discussed above, without any
momentum scaling perturbation being necessary. With a
properly chosen initial condition, found in the above
manner, it is found that the real simulation remains
stable and gives excellent energy conservation as noted
above.

The real simulation gives raw data consisting of each
electron position and momentum at every time step. Us-
ing these values, we can evaluate the velocity autocorrela-
tion function (v, (i)v,(0)), the mean-square displacement
{Ax?(i)), and the radial-distribution function g (r). We
create an Einstein plot of the square of the variance in
the particle positions and evaluate the diffusion constant
D from its temporal gradient by

_14d 2

D 2dt<Ax (1), 3)
which can apply to interacting particles, rather than us-
ing the Green-Kubo formula to integrate the correlation

function.'®
The validity of the present treatment for the Coulomb
interaction is examined by checking the plasma oscilla-
tion period in zero 2D potential. This oscillation can be
observed in the velocity autocorrelation function in the
present case. Since the dispersion relation for the 2D
plasma oscillation is w(q)=(e?nqg /2em)'’? in the lowest-
order calculation,!® there is no definite frequency in the
limit ¢ —0.'7 However, others using 2D molecular dy-
namics, based on the treatment of the Ewald sum with a
much larger number of electrons, see a clear oscilla-
tion.!”!®  This puzzling situation has been further
clarified by several authors,!® who examined the disper-
sion characteristics by studying the peaks of the dynamic
structure factor S(q,w), which was directly calculated
with molecular dynamics. These authors noted that the
dispersion curve rises with ¢ and becomes almost flat
around qo,=Vmn. The obtained dispersion shows a
discrepancy from the curve w(q)=/(e’ng /2em)'/?, due to
higher-order effects that are automatically included in
molecular dynamics. The coupling between the single-
particle motion and the collective modes is appreciable
only near the flat portion of the spectrum, where the den-
sity of states is high. The period corresponding to the flat
part of the dispersion is empirically given by 5.2
(4em /e?q3)'/%.'7 The present model also has shown an
oscillation, with a period 3.5 ps in the velocity autocorre-
lation function, which is consistent with the above empir-
ical expression. We have also run a simulation reducing
the box size L, with the same choice of At =107 7 s, with
the same number of electrons at the same temperature so
that the plasma coupling constant I'=e%q,/(4mekyT),
which is 6.4 for the present model, increases to 36 to
make the Coulomb interaction more dominant. The os-
cillation in the velocity autocorrelation function has a
period 0.20-0.22 ps in this case and it is consistent with
the above empirical expression. These agreements sug-
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gest that the present approach is viable and yields accu-
rate results. We would further remark that since the
structure factor can be calculated in this manner, it
should be easy to construct the frequency and wave-
vector-dependent dielectric function from it, but leave
this to further work.

III. RESULTS AND DISCUSSION

The Coulomb interaction changes the thermal equilib-
rium distribution of the electrons significantly and is not
a small perturbation in transport. The electrons in the
2D potential, with ¥V;=2.5 meV at 4.2 K, are apparently
localized in the potential minima in the absence of the
Coulomb interaction, as the mean-square displacement is
a bounded function of time.> They stay near the bottom
of the potential well and none overcome the potential
barrier. However, they are in a mobile phase with the
Coulomb interaction present, and the mean-square dis-
placement increases linearly with time.> With the
Coulomb interaction present, interparticle force spreads
the electrons in position, raising their energy state (more
potential energy), and allows them to overcome the po-
tential barrier more easily. For this reason, the direct
comparison of the magnetoconductance with and without
the Coulomb interaction does not make sense, and does
not characterize the effect of Coulomb interaction. Thus,
only the results with the interaction included will be con-
sidered.

In studying the magnetoconductance, we need to simu-
late for a long time since the magnetic field introduces
another time scale—the period of cyclotron motion. Be-
cause of impurity scattering and the Coulomb interac-
tion, an electron cannot complete one period of the cyclo-
tron motion unless w.7>>1. Thus, the effect of the mag-
netic field seems important only when the field is strong
so that the cyclotron period is shorter than the mean free
time determined by scatterings. However, it has been ob-
served in our simulations that the effect of the magnetic
field sometimes persists even if this is not the case. The
mean-square displacement shows a small amplitude oscil-
lation around the straight line in the Einstein plot. This
has to be accommodated by choosing an appropriately
long simulation time, or by an appropriate coarse-
graining process. The cyclotron motion period for one
flux quantum per unit cell is 14 ps, and the impurity-
limited mean free time is 4.6 ps. The correlation time for
the Coulomb interaction is estimated to be 3.5 ps, which
is the interparticle oscillation period observed in the ve-
locity autocorrelation function.’ Taking into account
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FIG. 1. Conductance as a function of the number of flux
quanta per unit cell.

these numbers, we have simulated up to 200 ps to create
an Einstein plot for the calculation of the diffusion con-
stant in magnetic fields less than one flux quantum per
unit cell, and up to 50 ps for higher fields.

Since the saddle points of the 2D periodic potential are
located at (a /2,0), (0,a/2), (a/2,a), and (a,a /2) in the
unit cell defined by the two vectors (@,0) and (0,a), the
likely diffusion directions for an electron in the middle of
the unit cell are (+1,0) and (0,%1). This, along with the
small number of particles being used in the simulations,
sometimes causes discrepancies in (Ax?) and (Ay?), al-
though these are averaged from the data with long
enough simulation times. In order to minimize statistical
error, simulations with several different initial
configurations of electrons are performed and a further
average is taken.

Figure 1 shows the calculated magnetoconductance as
a function of the number of flux quanta per unit cell.
(For the cell dimensions chosen, one flux quantum per
unit cell corresponds to 0.162 T.) The magnetoconduc-
tance shows an irregular oscillation which, as a general
trend, seems to decrease with the magnetic field. Accord-
ing to the pinball model,* resistance maxima (conduc-
tance minima) occur when the cyclotron orbit encloses a
specific number of antidots with the orbit center fixed in
space, called a pinning orbit, while resistance minima
(conductance maxima) occur when the cyclotron orbit is
not commensurate with the lattice period. In Table I, the

TABLE I. Magnetic fields for pinning orbits.

Calculated B with

Calculated B with

Antidots Radius (Eyn)=0.36 meV (Eyin)=0.50 meV Observed B
1 0.50a 1.249, 1.469, 1.209,—1.409,
2 0.81a 0.76%, 0.909, 0.95%,
4 1.14a 0.54®, 0.64d, 0.66®,
9 1.71a 0.369, 0.439, 0.509,
21 2.53a 0.249, 0.299, 0.25®,—0.309,
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first two columns show the number of antidots and the
corresponding pinning orbit radius, respectively, for pin-
ing orbits in the pinball model. The third column shows
the calculated magnetic fields for pinning orbits with the
assumption that the average electron kinetic energy
(Eyn) is 0.36 meV, and the fourth column also shows
the calculated magnetic fields with the assumption that
(Ey,) is 0.50 meV. The observed magnetic fields for the
local conductance minima are listed in the fifth column.
In the original pinball model,* the potential is constant
except at the antidot sites and the Fermi energy can be
safely used when evaluating the cyclotron radius since
the kinetic energy does not change with the spatial posi-
tion of an electron. On the other hand, with the summa-
tion of the cosine functions used here, the kinetic energy
changes with the spatial position of an electron and an
average value has to be used. One possibility is the
thermal energy 0.36 meV and another is the average ki-
netic energy 0.50 meV when the electrons are near the
bottom of the potential well. This will be discussed later.

The second assumption, the average kinetic energy
(Eyy,)=0.50 meV, seems better able to explain the ob-
served magnetic fields for the conductance minima.
However, two important characteristics in the original
pinball model are not observed. First, the pinning orbit
n =1 should have the strongest localization effect, giving
the smallest conductance. The pinning effect should be
weaker with increasing » and the oscillation should fade
out in smaller magnetic fields. Second, geometrically, no
pinning orbit should be allowed in magnetic fields higher
than that of » =1. Thus, the conductance should in-
crease for these higher fields. These two characteristics
are not observed in Fig. 1. We also note that the oscilla-
tions are not periodic in 1/B, or in B, which are the ex-
pectations from a quantum-mechanical model.®

Figure 2 shows the real-space trajectory of a typical
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FIG. 2. Real-space trajectory of a typical electron for 0.3 flux
quanta per unit cell during 100 ps. The distance is normalized
to the side length of the simulation box L and the dotted lines
indicate the unit cells.
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electron during 100 ps, for 0.3 flux quanta per unit cell,
which corresponds to a small conductance case. The
magnetic-field direction is into the page, so that the cy-
clotron motion of an electron is clockwise. Because of
the impurity scattering and the Coulomb interaction, the
real-space trajectory is very complicated. The electron
changes its velocity suddenly due to scattering and the
cyclotron motion cannot be completed. In the figure, the
electron starts at the upper-middle unit cell (where the
row of the unit cell is first specified by upper, middle, or
lower, and the column of the unit cell is then specified by
left, middle, or right, respectively). The electron moves
along the direction specified by arrow 1 and leaves the
upper-right unit cell, as indicated by arrow 2. Because of
the periodic boundary condition, the electron enters the
lower-right unit cell, as indicated by arrow 3, and moves
along the directions of arrows 4, 5, 6, and 7, forming a
clockwise trajectory. During this travel, the electron
shows a complicated, singular trajectory due to the
Coulomb interaction and the impurity scattering. At 100
ps, the electron finally arrives at the upper-middle unit
cell. Since this electron performs a clockwise correlated
motion and tends to return to the starting point, this elec-
tron gives only a small contribution to the conductance,
and can be thought of as being “pinned” in an orbit cen-
tered around as many as 21 antidots.

In Fig. 3, the chaotic change of the energy for the same
electron is shown. Although the individual kinetic and
2D potential energies change significantly with time as
shown in the figure, the total energy of the particles is
again conserved. The electron kinetic energy for this par-
ticle oscillates in the range 0—2.2 meV with time due to
the 2D plasma oscillation. The average total maximum
of the kinetic energy is estimated to be 0.5 meV, and this
is the motivation to use this value when evaluating the
cyclotron radius in Table I. The kinetic energy is almost
zero either when the electron is overcoming the potential
barrier or when the electron has a maximum displace-
ment in the 2D plasma oscillation. The oscillation in the
2D potential energy is mostly in phase with that in the ki-
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FIG. 3. Time evolution of the energy for the electron of Fig.
2 for 0.3 flux quanta per unit cell during 100 ps. The solid line
is the kinetic energy and the dotted line is the summation of the
kinetic energy and the 2D potential energy.
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FIG. 4. Real-space trajectory of a second electron for 0.3 flux
quanta per unit cell during 100 ps. The distance is normalized
to the side length of the simulation box L and the dotted lines
indicate the unit cells.

netic energy and this is evidence that the oscillation is
mainly due to the 2D plasma oscillation, rather than the
classical single-particle oscillation at the bottom of the
well. If it were a classical oscillation at the bottom of the
well, then the 2D potential energy would be out of phase
with the kinetic energy and the summation of the 2D po-
tential energy and the kinetic energy would be constant,
which is not the case here.

We can find similar characteristics in the real-space
trajectory and the time evolution of energy for a second
electron, shown in Figs. 4 and 5, respectively. The elec-
tron starts at the lower-right unit cell, moves along arrow
1, and leaves the unit cell. Because of the periodic
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B C Kinetic energy ]
& 30 r .
5 C 4
5 r 1
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e :
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FIG. 5. Time evolution of the energy for the electron of Fig.
4 for 0.3 flux quanta per unit cell during 100 ps. The solid line
is the kinetic energy and the dotted line is the summation of the
kinetic energy and the 2D potential energy.

boundary condition, the electron enters the upper-right
unit cell and performs a clockwise motion as indicated by
arrows 2, 3, and 4. The electron again leaves the upper-
right unit cell, reenters the lower-right unit cell, and per-
forms a circular motion along arrows 5 and 6. Then the
electron leaves the lower-right unit cell and enters the
upper-left unit cell. The electron moves along arrows 7,
8, 9, and 10 and leaves the lower-left unit cell. The elec-
tron enters the upper-left unit cell by the periodic bound-
ary condition, and performs a clockwise circular motion
as indicated by arrows 11 and 12, finishing the motion in
the middle-middle unit cell at 100 ps. This electron drew
a closed orbit twice: one is the orbit along arrows 1
through 6 and the other is the orbit along arrows 7
through 11, again resulting in “pinning” behavior. The
time evolution of the energy shown in Fig. S is essentially
the same. The oscillation in the 2D potential energy is in
phase with that in the kinetic energy and this indicates
that the oscillation is mainly due to the 2D plasma oscil-
lation.

Figure 6 shows the real-space trajectory of a typical
electron, during 100 ps, for 0.1 flux quanta per unit cell,
which corresponds to a large conductance case, and Fig.
7 is the corresponding time evolution of the energy. The
magnetic-field direction is also into the figure so that the
cyclotron motion of an electron is clockwise, but the
clockwise trajectory is not clear because of the weak in-
commensurate magnetic field. In Fig. 6, the electron
starts in the middle-right unit cell. The electron moves
along arrows 1, 2, 3, and 4. It just wanders the potential
minima and a systematic clockwise motion is not ob-
served. The electron leaves the middle-right unit cell and
enters the middle-left unit cell. Then the electron moves
straight as indicated by arrows 6, 7, and 8, and leaves the
upper-middle unit cell. The electron enters the lower-

1.00 T T —T—
2 ]
<
R 3 M¢2
| 067 \
g j 4
o
Ly 57
RS
g 0.33
[=} 4
Z
[ @/, =0.1 I
0.00 EEEE—
0.00 0.33 0.67 1.00

Normalized x coordinate

FIG. 6. Real-space trajectory of a typical electron for 0.1 flux
quanta per unit cell during 100 ps. The distance is normalized
to the side length of the simulation box L and the dotted lines
indicate the unit cells.
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FIG. 7. Time evolution of the energy for the electron of Fig.
6 for 0.1 flux quanta per unit cell during 100 ps. The solid line
is the kinetic energy and the dotted line is the summation of the
kinetic energy and the 2D potential energy.

middle unit cell and moves along arrows 9 and 10. Sys-
tematic, correlated circular motion is not observed and
therefore the conductance is larger. The time evolution
of the energy in Fig. 7 shows the same characteristics as
that in Fig. 5. The oscillation in energy can be attributed
to the 2D plasma oscillation and the magnetic field does
not change the thermodynamical property of the system.

As has been discussed so far, the presence of the
Coulomb interaction does not destroy the mechanism of
the pinball model. No distinct cyclotron orbit can be
completed, but the correlated circular motion is still ob-
served in the small conductance cases, corresponding to
pinning orbits, and this is the mechanism of the structure
seen in Fig. 1 (and, presumably in the experiments). Be-
cause of the Coulomb interaction and impurity scatter-
ing, the electrons may change their orbit suddenly. How-
ever, this at most causes a short stay in a particular unit
cell. The electrons will move to neighboring unit cells
and the magnetic field determines which cells are pre-
ferred. This indicates that the pinball model has a much
wider applicability than expected originally, and can ex-
plain the magnetoresistance peaks experimentally ob-
served. The model can be applicable even to the case of
lower electron densities where the screening is not strong
and the Fermi energy is comparable to the thermal ener-
gy-

The change in magnetoconductance is due to the corre-
lated circular motion and not due to the real-space rear-
rangement (or localization) of the electrons for different
magnetic fields. In order to see this, the radial-
distribution functions for three magnetic fields, 0.1, 0.3,
and 10 flux quanta per unit cell, are shown in Fig. 8. For
clarity, the functions for 0.3 and 10 flux quanta are offset
by 0.2 and 0.4 units, respectively. The case with 10 flux
quanta per unit cell is a special trial simulation to see
whether spatial order is observed in this range of the
magnetic field. The corresponding diffusion constant is
significantly different for these three cases, 6.0, 5.3, and
1.9 cm?/s, respectively. The diffusion constant for 10 flux
quanta is quite small and this is because the diffusion con-
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FIG. 8. Radial-distribution function for 0.1, 0.3, and 10 flux
quanta per unit cell. For clarity, the functions for 0.3 and 10
flux quanta are shifted by 0.2 and 0.4, respectively.

stant is expected to behave as 1/[1+4(w,7)?] in larger
magnetic fields, if the 2D periodic potential plays a negli-
gible role. As a general trend, the diffusion constant de-
creases with increasing magnetic field. As is obvious in
Fig. 8, no essential difference can be seen in the radial-
distribution functions, in spite of a change in the magne-
toconductance, even in the case of 10 flux quanta. Thus,
the change in magnetoconductance is not due to a change
in spatial order of electrons.

One possible reason why scatterings do not destroy the
pinball picture completely is the nature of the Coulomb
interaction. The Coulomb interaction conserves the total
momentum of the entire electron system. An individual
electron may create a singular trajectory, but if we gather
several electrons and observe the motion of the center of
mass, it will not be significantly different from a cyclotron
orbit, although there would be an exchange of electrons
among groups whose centers of mass perform a cyclotron
motion.

IV. CONCLUSIONS

We have studied the magnetotransport properties of
the LSSL, a 2D electron system in a 2D periodic poten-
tial, with a Monte Carlo technique, where the effect of
the magnetic field and the interparticle Coulomb interac-
tion are included through a Lorentz force, with the latter
interaction treated via a molecular-dynamics method
within a minimum image approximation. Excellent nu-
merical energy conservation is achieved by adopting a
predictor-corrector algorithm to integrate the equations
of motion. The simulation shows that the diffusion con-
stant is not a simple decreasing function of the magnetic
field, but has a structure with several local minima. This
structure is attributed to the correlated circular electron
motion, and this is reminiscent of the classical pinning
orbits in the pinball machine model for a 2D antidot ar-
ray, even in the presence of the Coulomb interaction.
The radial-distribution function shows no significant
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difference for different magnetic fields up to ten flux
quanta per unit cell, and the magnetoconductance change
is not due to a change in the spatial structure of elec-
trons. The present approach can be applicable even to
the case of higher electron densities, where the screening
is stronger.
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APPENDIX: 2D ELECTRONS
IN A 2D PERIODIC POTENTIAL
UNDER A MAGNETIC FIELD

A system of 2D electrons in a 2D periodic potential,
with a perpendicular magnetic field oriented normal to
the 2D plane, has an unusual energy band structure in
the quantum limit. This quantum-mechanical picture
does not have a direct connection to the present semiclas-
sical simulation, but the transition should be considered,
since some characteristics may survive in the classical
counterpart. In most treatments, only two limits are con-
sidered: the Onsager limit (#iw, <<V,) and the Landau
limit (%iw, >> V). The smaller of the two energies is then
taken to be a perturbation of the larger energy unit, lead-
ing either to miniband formation within the Landau lev-
els in the latter case, or to magnetic breakup of the bands
formed in the former case. However, there is a third en-
ergy. Typically, the LSSL is thought of as a tight-binding
superlattice in which the potential amplitude is related to
the interaction potential between neighboring quantum
wells. But this is a very limited view.

One should consider the quantum wells separately
from the interaction potential. Then it is recognized that
there are three energies in the problem: the Landau ener-
gy, the quantum-well depth, and the interaction potential
between neighboring wells. The first of these is set by the
magnetic field, and the second by the amplitude of the
periodic potential which creates the quantum wells. The
third, however, can be varied through the Fermi energy,
and hence through the density. If the density is small,
and the potential amplitude high, the electrons will be
completely localized within the quantum wells, both
quantum mechanically and classically. This is observed
for the case of V;=2.5 meV, discussed in the text, in the
absence of the Coulomb interaction. In this case, locali-
zation is complete, regardless of the strength of the mag-
netic field. The magnetic field only serves to split the
quantum levels in the largely cylindrical quantum
wells. 202!

On the other hand, if the density is high, so that the

Fermi energy lies above the saddle-point energies of the
2D potential, the electrons behave as nearly free elec-
trons. In fact, for higher densities and Fermi energy, the
presence of the potential is largely completely screened
and not at all sensed by the electrons. In the high-density
regime, the role of the 2D potential is as a perturbation
around the nearly-free-electron dynamics, and the Lan-
dau regime is recovered. Note, however, that the 2D po-
tential is a perturbation on the nearly-free-electron dy-
namics, regardless of the strength of the magnetic field.

The interesting regime lies between the two limits dis-
cussed above, where the electrons are largely localized in
the quantum wells, but transfer (by tunneling, for exam- -
ple) between the wells leads to an interaction potential
and 2D superlattice minibands, which are mainly formed
by tight binding around the quantum-well energy levels
(in a magnetic field). Here, however, the strength of the
interaction potential is crucial. If the width of the mini-
bands formed from each quantum level is smaller than
the separation between these levels, a simple tight-
binding picture holds. However, if the width of the mini-
band formed in this manner is larger than the spacing of
the quantum-well levels, an entire new energy structure
formed from the hybridization of the many quantum-well
levels will occur. This is now the Onsager limit (for small
magnetic fields). Again, note that the hybridization
occurs for any value of magnetic field, and the critical en-
ergy is the interaction overlap energy and its size relative
to the quantum-well energy-level spacings (which are
magnetic field dependent). It is interesting to note that
much of the differences in experimental observations of
Refs. 1-3 treat different regimes discussed above.

Finally, we note that the major effect of the quantiza-
tion is the change in the density of states. As quantiza-
tion occurs, states are pulled from the continuum into the
quantized levels, forming the quantum-well energy levels
or the Landau levels. This modification of the density of
states cannot be seen in the semiclassical treatment used
in the present work. However, if the minibands, be they
in the quantum well or in the Landau levels, are closer
than k57, it is unlikely that the modifications of the den-
sity of states can be observed. In the present simulations,
the thermal energy is 0.36 meV. At ten flux quanta per
unit cell, for the dimensions used in the simulation, the
Landau-level separation is about 2.8 meV. The density in
the simulation is sufficiently large to put the Fermi ener-
gy into the second miniband, but the miniband spacing is
only expected to be of the order of 0.3 meV from experi-
ments on structures similar to the parameters assumed
here.?? These numbers suggest that the density-of-states
quantization is largely washed out by the thermal effects,
and indeed only small effects are observed at the low
magnetic field considered here.!
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