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We have studied the temperature dependence of the transport properties of two-dimensional (2D) elec-
trons in a periodic potential, when the electrons interact through an interparticle Coulomb force. This
many-body problem is solved numerically, with a molecular-dynamics Monte Carlo technique. The
diffusion constant D shows a monotonic increase with temperature T, but the functional dependence is a
power-law type D ~ T rather than a simple activation type. This power-law dependence is due to the
effect of the 2D potential giving rise to a spatial transition of an electron from a potential minimum to
another equivalent potential minimum, together with an interparticle Coulomb interaction causing fric-
tion in the electron motion and hence forming a dressed electron. The result is fit to the previous theory
in the context of a particle moving in a periodic potential with a friction force, and the exponent K in the
power-law expression shows a consistent potential dependence with the model.

I. INTRODUCTION

Two-dimensional (2D) electrons in a superlattice po-
tential, with a potential period @ ~0.1 um, can now be
realized experimentally in a lateral surface superlattice
embedded in a field-effect transistor (FET) structure with
a mesh-gate electrode.”> The 2D superlattice potential
can be represented by the summation of two cosine func-
tions, Vix,y)=Vylcos(2mx /a)+cos(2my /a)+2]/4
with a peak-to-peak amplitude V,. If the electron
characteristic energy E is larger than the saddle-point en-
ergy V,/2 of the 2D potential, they are free to move ex-
cept for those regions where the 2D potential energy is
larger than E and an antidote array is formed. On the
contrary, if E <V,/2, electrons are mainly confined in
the 2D potential minima and a quantum dot array is
formed. The interparticle Coulomb interaction is known
to play an essential role in the context of Coulomb
blockade in small structures coupled with barriers,
through which the electrons tunnel.® In the present situ-
ation of electrons in a 2D periodic potential, the
Coulomb interaction has a significant influence on elec-
tron transport if the electron areal density is small
(~10' cm™?) so that the interparticle Coulomb interac-
tion will not be well screened.* A noninteracting, in-
dependent electron picture with the Fermi energy as the
characteristic electron energy is no longer adequate. The
motion of a particular electron affects that of other elec-
trons and there is nonlinear feedback to the original elec-
tron. The electrons do not populate the bottom of the 2D
potential and are driven apart some reasonable distance
to reduce the interparticle Coulomb energy, which in-
creases the average potential energy of these electrons. It
has been shown* that the velocity autocorrelation does
not show a simple exponential decay but a damped oscil-
lation, whose frequency is identified as that of the 2D
plasma oscillation for small V,,. The Coulomb interac-
tion also gives a considerable contribution to the
diffusivity.

In this paper, we study the temperature dependence of
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the transport properties of interacting electrons by calcu-
lation of the diffusivity using a molecular-dynamics
Monte Carlo technique.* Without the interparticle
Coulomb interaction, the diffusion constant D will just
show an activated temperature dependence’ as
D ~exp(—a/kyT) due to the 2D potential, where an ac-
tivation energy a can be related to the barrier height, kp
is the Boltzmann constant, and 7 is the temperature.
Only when having enough energy to overcome the poten-
tial barrier, an electron can contribute to the diffusion
and such probability is given by this formula. In the
presence of the interparticle Coulomb interaction, howev-
er, the temperature dependence changes drastically.
When one electron moves from one local potential
minimum to another local potential minimum, the move-
ment of the electron gives a perturbation to the neighbor-
ing electrons and they move in a manner correlated with
the first electron: the electron is dressed by the other
electrons and the transition probability from one poten-
tial minimum to another has to be renormalized. This
problem has been studied by Kondo® in the context of the
diffusion of an atom in a metal, where the atom interacts
with conduction electrons through a Coulomb interac-
tion. The important conclusion is that the transition ma-
trix element A from one potential minimum to another is
renormalized by a factor (kz T /W)X due to the Coulomb
interaction, where W is the bandwidth of the electrons
and X is the coupling constant. The diffusion constant D
is then given by the squared matrix element
A%k T /W )*X divided by the broadening of the electron
energy level T, resulting in D ~T?X ™1, This result is in-
dependent of the detail of the transition mechanism and
the interaction (the expressions of K and W are model
dependent), and is applicable to other systems like ours, if
there is a mechanism for a particle to move from one site
to another equivalent site, and there is an interaction be-
tween the particle and the surrounding environment so
that the particle is “dressed” by this interaction.®’ In the
present model, the transition of a particle between multi-
ple equivalent sites is provided by the 2D potential,
where an electron tends to move from one potential

8076 ©1993 The American Physical Society



48 MONTE CARLO SIMULATION OF DIFFUSION OF . ..

minimum to another, and the interaction with the sur-
rounding environment is provided by the interparticle
Coulomb interaction.

We have observed a power-law dependence of the
diffusion constant D in our simulation results. The ex-
ponent 2K —1 is positive for all the potential amplitudes
V,=2.5-20 meV studied here, and D is a monotone in-
creasing function of temperature. The interparticle
Coulomb interaction increases with ¥, due to the reduc-
tion of interparticle distance, and the exponent K indicat-
ing the interaction strength also increases with V,, and
this is consistent with Kondo’s theory. The result is fur-
ther compared to the theoretical model in the context of
a particle moving in a periodic potential proposed by
Weiss and Grabert,® and the observed exponent K in the
power law shows a consistent potential dependence with
the model. In Sec. II, the model and the numerical tech-
niques are explained, and in Sec. III, the results and dis-
cussion are given. Our conclusions are given in Sec. IV.

II. SIMULATION MODEL

Electrons are treated as particles, rather than
quantum-mechanical wave packets, moving in a 2D po-
tential created in a gated GaAs structure
Vix,y)=V,[cos(2mx /a)+cos(2my /a)+2]/4 with a po-
tential period @ =0.16 um. (The dimensions were taken
from the experiments of Ref. 1.) The electron areal densi-
ty is assumed to be 1.4X10° cm ™2 (on average, only 3.6
electrons per unit cell), for which the Fermi energy is
0.39 meV and we assume a parabolic band. We consider
electron transport for 4.2 < 7T <50 K, where the thermal
energy is larger than this Fermi energy and the classical
statistics prevail.’ In this situation, it has been shown
that the interparticle Coulomb interaction dominates
electron dynamics, due to the weak screening of the
Coulomb potential because of the small number of elec-
trons per unit cell, and scattering by phonons and impuri-
ties gives only a small perturbation to the system.* In
fact, the velocity autocorrelation function shows a
damped oscillation, whose frequency is identified as that
of the 2D plasma oscillation for small V,, and the
Coulomb interaction gives a significant contribution to
the diffusion.

The interparticle Coulomb interaction is treated with a
molecular-dynamics technique.*1®!! At each time step, a
Coulomb force is calculated for all pairs of electrons and
is used to update the position and the momentum of each
electron during the subsequent time step. In this way, we
include various many-body effects automatically without
artificial assumptions for the screening or collective exci-
tations.!? We simulate 32 electrons in 3 X 3 unit cells, cor-
responding to the electron areal density 1.4X 10'° ¢cm ™2
mentioned above, and a periodic boundary condition is
imposed for this simulation square, with side length
L =3a, to eliminate unwanted boundary effects. When
an electron leaves the square by crossing the boundary
x =L, another electron is input from the equivalent
boundary x =0 with the same y coordinate, momentum,
and energy. The number of electrons in the square
remains constant throughout the simulation.
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The Coulomb interaction has to be consistently defined
within the periodic boundary condition. The most ap-
propriate formulation of the Coulomb interaction, con-
sistent with the periodic boundary condition, is related to
the Ewald sum method and a minimum image approxi-
mation.*!®!! Ap electron is assumed to interact with the
other N —1 electrons in the L XL simulation square
through minimum image vectors. The minimum image
vector r; connecting electrons i and j is defined as
r;=x;—Xx;,—n,a,—n,a,  where a,=(L,0) and
a,=(0,L), and n, and n, are chosen to be the integers to
minimize the magnitude [r;;|. The Coulomb energy E,y
for electron j used for the.evaluation of the force is
defined by the summation of the interparticle Coulomb
energy within the minimum image approximation by

e? 1

_— —_, 1
Coul 41e Z rij (1)
where e is the unit charge, € is the dielectric constant, Fij
is the length of the minimum image vector for electrons i
and j, and the summation is taken over all the other
N —1 ensemble electrons in the simulation square except
electron j itself. The background positive charge to neu-
tralize the electron negative charges is irrelevant in
molecular dynamics as long as it is uniformly, continu-
ously distributed (jellium), and its contribution is not in-
cluded in (1). In the presence of the jellium background
charge, there are two more terms for the Coulomb ener-
gy, the negative energy between the electrons and the jel-
lium background charge, and the positive energy of the
jellium background charge itself. The absolute values of
those energies per simulation square (3X3 unit cells) can
be related to an ensemble average { Ec,, ) and are on the
order of 2N X Eqyy? and NX{Ec,y ) ({Ecoum) ~11.7
meV for a uniform electron distribution as shown in the
discussion of Fig. 4 in Sec. III), respectively, and they are
unchanged for different electron distributions by their
definitions. Therefore, they do not contribute to the in-
terparticle Coulomb force in molecular dynamics. Al-
though they are important for the evaluation of the inter-
nal energy for the system, they just shift the energy origin

and are not included in (1).

Once the force acting on a particle is well defined, it is
straightforward to solve Newton’s equations numerically.
We update the position x and the momentum p with a
predictor-corrector method by* 1°

x(i+1D)=x)+p(H)At+f[x()](A1)?/2, 0))
pli+D=p()+{flxD]+f[xG+1)]}At/2, (3

where x (i) and p (i) indicate the functional values of x (¢)
and p(¢) at the ith time step of period Az, and f is the
summation of the interparticle Coulomb force and the
2D potential force (in the units of m =1). This algorithm
is second-order accurate with respect to At and is quite
stable. In fact, the elimination of the momentum terms
from (2) and (3) results in Verlet’s algorithm!3 which is
known to be second-order accurate and also quite stable.
With the use of double precision variables to minimize
round-off errors, and with the choice of At=10"1 s to
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maintain high accuracy, excellent numerical energy con-
servation with an error as small as 0.01% is realized in
the electron dynamics during a typical simulation for
~10? ps.

Although the interparticle Coulomb interaction is
essential, realistic impurity'* and phonon'® scattering is
included for completeness as usual with the ensemble
Monte Carlo method. These occur as discrete events,
where the former scattering is much more frequent at the
low temperatures considered here. With the assumption
of ~10° cm™? interface impurities, the impurity-
scattering limited mobility reaches 1.3X10° cm?/V's at
4.2 K. Electrons perform a free flight between scattering
events, under the influence of the force caused by the in-
terparticle Coulomb potential and the 2D potential. If
scattering occurs, electrons suddenly change their
momentum (and energy in inelastic processes) and then
start another free flight. We have adopted an envelope
function'® corresponding to the lowest subband in an
FET channel and evaluated the quasi-2D scattering
rates'® in the inversion channel.

Finding an initial condition is not trivial, because of
the interparticle Coulomb interaction. If any electrons
are unusually close to one another in the initial condition,
the Coulomb energy will lead to a rapid rise in electron
kinetic energy and will cause an artificial heating of the
electron system. We perform a preliminary simulation,
before running the ‘“real” simulation, to find an appropri-
ate initial condition, using a molecular-dynamics Monte
Carlo code with a slight modification. This consists of
adding a perturbation to scale the electron momentum by
((E,;, ) /ksT)"/? at every ~ 10? time steps so that the en-
semble average of the electron kinetic energy {E,;,) is
reset to the thermal energy k7. Actually, the equiparti-
tion law in a 2D system requires that {E,;, ) =kpT in
thermal equilibrium and this treatment forces the system
to satisfy this requirement. This preliminary simulation
can start with any conditions but (E,;, ) is usually
chosen much larger than kz7T. Typically within ~ 10 ps,
(Ey,? is smoothly reduced to kT and maintains that
value. As (E,,,) approaches kT, the scaling perturba-
tion is gradually turned off since the scaling factor ap-
proaches unity. When average energies are essentially
time independent, an appropriate initial condition is ob-
tained, which is characterized by (E;,» =kzT. In this
preliminary simulation, electrons have exchanged ener-
gies with a heat bath through the momentum scaling per-
turbation and also exchanged energies among themselves
through interparticle Coulomb interaction, and then
reached an equilibrium. In essence, this is quite similar
to a simulated annealing* of the electron system to find
the proper initial condition that is allowed by equilibrium
statistical mechanics.

The “real” simulation is performed without any
momentum scaling perturbation being necessary, and
therefore the total energy of the entire system is practi-
cally fixed (negligible inelastic phonon scattering at the
low temperatures here). Although the interaction with
the heat bath is terminated, the electrons still continue to
exchange energies among themselves through the inter-
particle Coulomb interaction. However, this Coulomb
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interaction does not change the equilibrium properties of
the system as is obvious in our method to find an initial
condition. In fact, the kinetic-energy distribution func-
tion f(Ey,) of an electron is expected to be time in-
dependent and proportional to exp(—E,/kgT) in
thermal equilibrium. This point is checked in our numer-
ical simulations, as will be discussed in the next section.

The “real” simulation provides raw data consisting of
the position and the momentum of each electron at every
time step. Using these values, we can evaluate the veloci-
ty autocorrelation function (v,(i)v,(0)), the mean-
square displacement { Ax2(i)), and the radial distribution
function g (7), where ( - - - ) indicates the ensemble aver-
age. We create an Einstein plot of the mean-square dis-
placement and evaluate the diffusion constant D from its
temporal gradient by

:ii 2
F(Ax D) @)

rather than using the Kubo-Greenwood formula to in-
tegrate the correlation function.* 1°

III. RESULTS AND DISCUSSION

Before analysis of the diffusivity as a function of tem-
perature, it is important to see what kind of thermal equi-
librium is realized in the simulation. Figure 1 shows en-
ergy densities log[n,(Ey;,)],log[n,(Ey,+E )], and
log[n;(Ey, +E o +Ecoy)] in arbitrary units as a func-
tion of energy for V=5 meV at (a) 5.9 K and (b) 40 K in
thermal equilibrium. Here, E;, is the kinetic energy of
an electron, E is the 2D potential energy at the elec-
tron site, and E,, is the Coulomb energy of the electron
defined in Sec. II, within the minimum image approxima-
tion (without the compensation of positive background).
These energy densities are histograms of the number of
electrons for the specified energy, and are combined by
obvious relations, which are

n(En)= 3 ny(Evin tEpo) » 5
Epot
nZ(Ekin+Epot): 2 n3(Ekin+Ep0t+ECoul) ’ (6)
E

Coul

where the summations are taken over the ensemble elec-
trons. They are calculated in the ‘“‘real” simulation and
show no time dependence. The energies E, =E,;, +E
or E3=E, + E 1+ Ecg are no longer a simple quadra-
tic function of the momentum (also a function of the posi-
tion) due to the 2D potential and the interparticle
Coulomb interaction. Then, the corresponding state den-
sity p,(E,) or p;(E;) are not constant, and n,(E,) and
n3(E;) are not proportional to the energy distribution
function. However, E,=E,;, is a quadratic function of
momentum and the state density p,(E;) is constant as
usual in a 2D system. As shown in the figure, the energy
density log[n;(E;)] can be well fit by a straight line
defined by the thermal energy, and therefore the Maxwell
distribution is empirically realized. The high-energy tails
of log[n,(E,)] and log[n;(E;)] are almost the same as
that of log[n{(E;)]. The shapes of n,(E,) and n;(E;)
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are similar and this indicates that the Coulomb interac-
tion basically gives an energy offset. Because of the inter-
particle Coulomb interaction included, electrons have to
move away from the bottom of the potential well, which
increases the ensemble average (E, ) and makes the
state densities p,(E,) and p3(E;) small for small argu-
ments of E, and E;. This causes small energy densities
n,(E,) and n3(E;) for small E, and E;.

This can be also seen in the radial distribution function
g (r), which is shown in Fig. 2 for T=5.9 and 40 K. For
clarity, the function for 40 K is offset by unity. In both
cases, g (7) is essentially zero for small r, rises at some r,
and has a finite value around unity for larger r. The pres-
ence of the interparticle Coulomb interaction makes g (#)
practically zero for small » for the same reason as given
above. At T=5.9 K, g(r) shows an oscillation with the
first peak around r/L =0.13, a little smaller than the
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FIG. 1. Energy densities log[n,(Ey;,)], log[n,(Ey, +Ey.)],
and log[n;(Eyy, T Eyo +Ecou)] at (a) 5.9 K and (b) 40 K for
Vo=5meV.
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FIG. 2. Radial distribution function g(r) as a function of
normalized distance r /L at 5.9 and 40 K for ¥;=5 meV.

interparticle distance of a uniform 2D electron gas
r/L=1/v"32=0.17 due to the effect of the 2D potential,
and the second peak around r /L =1/3, corresponding to
the 2D potential period. The first peak corresponds to a
spatial order of electrons inside the unit cell and the
second corresponds to a spatial order of electrons among
the unit cells. At T'=40 K, the oscillation in g (r) practi-
cally disappears and g(r) approaches that of a uniform
2D electron gas, which is g (r)=1, although g (r) is still
zero for small r.

Figure 3 shows the summation of ensemble averages
(Eyn? and (E,, ) in thermal equilibrium as a function
of temperature T from 4.2 to 50 K for various potential
amplitudes V,=2.5 (white circle), 5 (black circle), 10
(white square), 15 (black square), and 20 meV (white dia-
mond). The apparent relation seen in the figure is that
(Ekm+Epot) increases with V, at any temperature.
Since (E,, ) is equal to the thermal energy kT, E )
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FIG. 3. Plot of (Ey;,+E,,) in thermal equilibrium as a
function of temperature T from 4.2 to 50 K for various potential
amplitudes V,=2.5 (white circle), 5 (black circle), 10 (white
square), 15 (black square), and 20 meV (white diamond).
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is responsible for this increase with V. In fact, electrons
always have to keep some reasonable separation to reduce
the interparticle Coulomb energy and this causes the in-
crease in (E,,) with V,, although there is a slight
change in the Coulomb energy itself with ¥, as will be
seen below. The quantity (Ekin+Epot) is a monotone
function of T, but it is not a simple linear function over
the temperature range. The nonlinearity is noticeable at
low temperatures, especially for large V,,. At high tem-
peratures, the characteristics can be fit by straight lines
but each has a different gradient. Because of the inter-
particle Coulomb interaction, the curves will have a finite
value of (E, ) even if they are extrapolated to T =0 as
was discussed above. The saddle-point energy E 4 of the
2D potential is ¥j/2 and it can be seen in the figure that
(Eyin+E ) is larger than E,4 over the entire tempera-
ture range for V,=2.5 meV, while (E, +E ) <Egyq
for V3=20 meV. However, the Einstein plot of the
mean-square displacement as a function of time shows a
linear behavior in the long-time limit for both cases, and
the diffusion constant is well defined for both. The
change is continuous from nearly-free-electron transport
(Vy=2.5 meV) to classical-hopping transport (V,=20
meV) as ¥, increases, due to the smooth shape of the en-
ergy density n,(Ey,+E,,) at finite temperatures dis-
cussed above. No sharp, discontinuous transition from a
mobile phase to an immobile phase is observed.

Figure 4 shows the ensemble average of the interparti-
cle Coulomb energy per electron { Ec,, ) as a function of
temperature for various potential amplitudes. Compared
to the larger variation of (Ey;,+E,,) as a function of
temperature in Fig. 3, (Eg,, ) shows a much smaller
change. The Coulomb energy increases with potential
amplitude V, at any temperature. This is due to the de-
creasing interparticle distance as ¥ is increased. In the
high-temperature limit, all the curves converge to one en-
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FIG. 4. Plot of interparticle Coulomb energy per electron
(Ecou ) as a function of temperature T from 4.2 to 50 K for
various potential amplitudes ¥, =2.5 (white circle), 5 (black cir-
cle), 10 (white square), 15 (black square), and 20 meV (white dia-
mond).
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ergy value, which is the Coulomb energy of a spatially
uniform 2D electron gas. The Coulomb energy is an in-
creasing function of temperature for a small potential
amplitude, such as V;=2.5 meV, and is a decreasing
function for a large potential amplitude, such as V,=20
meV. The 2D potential with small ¥, helps electrons
align in an orderly manner with a reasonable interparticle
distance, and this reduces the Coulomb energy compared
to that of a uniform 2D electron gas. However, the 2D
potential with large ¥, acts to reduce the interparticle
distance, which increases the Coulomb energy instead.
The diffusion constant D is readily evaluated by pro-
ducing an Einstein plot of the mean-square displacement
as a function of time. The phonon scattering is infre-
quent in the temperature range considered here (4.2-50
K). The electron dynamics within classical statistics are
dominated by the Coulomb interaction and the 2D
periodic potential, with a small perturbation from impur-
ity scattering (and negligible phonon scattering).* Figure
5(a) shows a logarithmic plot of the diffusion constant as
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FIG. 5. Diffusion constant D as a function of temperature 7’
from 4.2 to 50 K for various potential amplitudes V,=2.5
(white circle), 5 (black circle), 10 (white square), 15 (black
square), and 20 meV (white diamond): (a) log[D (cm?/s)] as a
function of 77! (K™!), and (b) log[D cm?/s)] as a function of
log[ T (K)].
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a function of the inverse temperature for various poten-
tial amplitudes. If the diffusion is well described by the
activation law D ~exp(—a/kpT), then the results
should be fit to straight lines. However, data points seem
to form a downward convex curve for each ¥, where the
second derivative of the curve d?logD /d(T~!)? is not
zero but a finite positive value. This suggests that the ac-
tivation law does not apply to the present situation and
another physical picture has to be sought. Figure 5(b), on
the other hand, shows a log-log plot of the diffusion con-
stant as a function of temperature, where each line is a
straight-line fit. The diffusivity can be best described by a
power law D ~ T", rather than the activation law by com-
parison of Figs. 5(a) and 5(b). This power-law depen-
dence is not surprising but is expected to be commonly
observed in a system with an interparticle interaction
that causes friction to the particle motion. According to
Kondo,® the transition matrix element A corresponding
to the probability of a particle moving from one site to
another equivalent site is dressed by the (interparticle) in-
teraction to give A(T/ W)X where W is the bandwidth of
the electrons and K is the coupling of the interaction.
The diffusion constant D is given the squared matrix ele-
ment ~ 72X divided by the effective level broadening T,
resulting in D~T?X~!. The assumption made in the
derivation of this theory is kpT >>27#A,° where # is
Planck’s constant, and this will be shown to be satisfied
later. This result of the power-law relation is quite
universal and does not depend on the detail of the physi-
cal transition mechanism (tunneling or excitation, etc.)
nor the detail of the interaction (Coulomb interaction or
electron-phonon interaction, etc.),’ although the expres-
sions for K and W are model dependent. In the present
model, the 2D periodic potential gives rise to A, and the
interparticle Coulomb interaction is responsible for the
renormalization of A by A(T /W )X. The coupling K has
a monotone increasing dependence on ¥, as shown in
the figure. In fact, as shown in Fig. 4, the interparticle
Coulomb energy increases with ¥V, and therefore causes
larger coupling K.

A theory more specific to the present model was
developed in the context of electrons in a periodic poten-
tial well by Weiss and Grabert,® although they assume
tunneling for the transition mechanism and an electron-
phonon interaction for the friction mechanism. The tun-
neling is characterized by a transition matrix element A
and the electron-phonon interaction is characterized by a
friction force 1 dx /dt appearing in a Newton’s equation,
with 7 being the friction coefficient. Because of the fric-
tion, A is renormalized and is given by A(wky T /#w,)X,
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where K =na?/27# and a is the potential period. The
frequency o is defined by the curvature of the potential
well by V"'(x,)=m w3, where x, is the bottom of the po-
tential well. The diffusion constant D is then given by®

12 A T(K)

D= TR+ 1)

(mkgT /g 1, @)
where I' indicates the gamma function. From our simu-
lation result, we can estimate K and evaluate the magni-
tude of the undressed transition matrix element A.!7
This is summarized in Table I. The second column #w, is
determined from the curvature of the potential V''(x)
and the third column K is obtained from our simulation
result in Fig. 5(b). The fourth column of undressed ma-
trix element A is calculated by using (7), with D values
evaluated in Fig. 5(b). The undressed matrix element A
should be constant if the theory applies to the present
model, and we can observe that this is the case here: the
undressed matrix element is A=(1.5-1.7)Xx 10" s71,
The dilute bounce gas approximation® was assumed to
derive (7), which can be stated by a condition
(A/wy)*<<1 when K>1. As is seen in Table I,
(A/wy)* <1072 and this condition is satisfied. The theory
considers a tunneling for a transition mechanism of an
electron from cell to cell and the applicability of the
theory is limited to the temperature range of kT < iy,
We do not have this restriction since the present transi-
tion is not due to tunneling but to the excitation by the
other electrons through the interparticle Coulomb in-
teraction, and the power law works beyond that tempera-
ture in our simulation. It should also be noted that the
assumption made in the derivation of Kondo’s theory re-
quires kzT >>27#iA, and this is satisfied in the tempera-
ture range here, as can be seen in Table I.

If we examine the experimental possibility to observe
the predicted power-law dependence, we notice that the
discrete nature of the dopants would give an amplitude
fluctuation to the periodic potential assumed here and in
the Weiss and Grabert’s theory, and as a result, the per-
fect periodicity of the potential might be lost. However,
the perfect periodicity is not an essential requirement for
the power-law dependence of the diffusion constant:
Kondo’s theory in Refs. 6 and 7 considers a hopping or
tunneling of a particle from one potential minimum to
another potential minimum, and no spatial order of these
sites is assumed. Thus, the power-law dependence is still
expected in the presence of this fluctuation, but the ex-
pression (7) may have to be modified accordingly. The
study of such potential fluctuation effects is left to a fu-
ture work.

TABLE I. Fitting to the power-law relation.

Vy (meV) o (10'2/s) fiw, (K) observed K observed A (10'!/s)
2.5 2.31 17.6 1.19 1.5
5 3.27 249 1.31 1.7
10 4.63 35.2 1.59 1.7
15 5.66 43.1 1.69 1.7
20 6.56 499 1.89 1.5
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IV. CONCLUSION

The temperature dependence of the transport property
of 2D electrons in a 2D periodic potential with an inter-
particle Coulomb interaction has been studied by
molecular-dynamics Monte Carlo technique. The
diffusion constant D shows a monotonic increase with
temperature but the functional dependence is not a sim-
ple activation type D ~exp( —a/kyT). The study shows
that the curve is best fit by a power law D ~T*X~!, This
power-law dependence is due to the effect of a spatial
transition of an electron from a potential minimum to
another equivalent potential minimum, together with an
interparticle Coulomb interaction causing a friction to
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the electron motion and hence forming a dressed elec-
tron. It is observed that the interparticle Coulomb ener-
gy increases with the 2D potential amplitude V,, due to
the reduction of the interparticle distance, and the ex-
ponent K indicating the interaction strength increases
with ¥, which is consistent with Kondo’s theory. The
result is further fit to a model by Weiss and Grabert in
the context of a particle moving in a periodic potential,
and the exponent K in the power-law expression shows a
consistent potential dependence with the model.
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