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ABSTRACT

Synthesis, placement, and routing turnaround times are
some of the major bottlenecks in digital design produc-
tivity. Engineers usually wait several hours to get accu-
rate results to design changes that are often quite small.
Incremental synthesis has emerged as an attempt to re-
duce these long times, but research in incremental syn-
thesis currently lacks a consistent benchmark to enable
comparison between different flows and that is reflective
of real design changes. In this paper, we propose ANU-
BIS, a benchmark for incremental synthesis based on
real designs and real design changes. ANUBIS comes
with a standard score that allows for easily comparing
different flows. We evaluate ANUBIS using two incre-
mental commercial flows to give insights on its usage
and reporting.

1. INTRODUCTION

Synthesis? is a tedious and time consuming process
that is repeated multiple times during the design phase
of a project [IR]. Industry players have recognized this
problem and have been trying to reduce synthesis time
by taking different approaches [8,02]. Nevertheless, the
current standards are either limited in results or require
manual interactions, often increasing designer effort and
degrading Quality of Results (QoR).

Incremental synthesis techniques have been shown to
improve synthesis time by re-utilizing parts of the re-
sulting circuit. These techniques have been applied in
industry [B,24] and in academia [, 0R], but the lack
of standard benchmarks makes it hard to compare dif-
ferent approaches and to understand how the results
presented in a paper can be translated into “real-life”
expectations.

Moreover, different approaches target different steps
of the synthesis process, making it harder to directly
compare them, even if the benchmarks are the same.
For instance, the current version of Vivado includes
incremental placement and routing [4] but does not

l«Synthesis” is used here in a broad sense. Throughout this
paper we distinguish between synthesis and logic synthesis.
Logic synthesis includes RTL elaboration, logic optimization
and technology mapping. Synthesis is logic synthesis plus
placement plus routing.

perform incremental logic synthesis, while existing aca-
demic papers focus only on logic synthesis [i2, 5]

There are multiple sets of standard benchmarks used
by the design automation community, e.g., the ISCAS
benchmarks [B,6] or the ITC benchmarks [d] (among
others). However, these benchmarks do not target in-
cremental flows. This prevents them to be applied di-
rectly in incremental synthesis due to the lack of stan-
dard changes to those circuits. Incremental synthesis
benchmarks should be representative of real world de-
signs but they should also include representative changes
over which incremental synthesis is evaluated. More-
over, when comparing multiple flows, the same set of
changes needs to be used to allow for a fair comparison.

Previous papers dealing with incremental synthesis
have used ad-hoc benchmarks, that included a variable
number of designs, some of which that may have “real-
life,” but with rather arbitrary changes. For instance,
Chen and Singh [[@] used 40 industrial benchmarks with
hand made “small” changes; while it is more likely that
the designs come from actual industrial applications,
it is unclear whether the changes are reflective of real
changes. LiveSynth [I8] used three publicly available de-
signs and based their changes on commented out code
and repository history. This approach yields more rea-
sonable changes, but the designs used (except for the
MIPSfpga [7]) are not good representatives of indus-
trial designs.

In this paper, we aim to provide the first incremen-
tal synthesis benchmark suite, ANUBIS, which includes
a collection of open-source designs as well as standard
changes. The use of industrial benchmarks would cer-
tainly improve the representativeness of the benchmark
set. However, we want to stick with a set of designs
that is publicly available and can be freely used for aca-
demic research without licensing. On top of the designs
used, we introduced changes based on repository his-
tory and commented out code, when available, with the
addition of synthetic changes that aim to exercise the
case where RTL file changes do not result in any logic
change in the circuit (comments, variable renaming, so
forth), as those could be common and should not result
in any effort by an “ideal” flow.

We also propose a standard way of scoring and re-
porting results using ANUBIS. The goal is to have an
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equivalent to the popular SPECint benchmark typically
used to report performance numbers in CPUs. The
unified ANUBIS score provides an easy way to com-
pare different proposals for incremental synthesis, while
the standard reporting requirements provides insights
on where flows are doing a good or a poor job. The
ANUBIS score takes into account incremental synthesis
time but also includes QoR results.

To evaluate ANUBIS, we run two commercial incre-
mental synthesis flows over ANUBIS. The results are
reported in the proposed standard table, with the final
scores and provide some insights on the results found.
Our evaluation shows that both the flows considered
do a very good job in delivering the same QoR when
in incremental mode, with a maximum of 4% of area
degradation observed, and no more than 1% increase
in delay observed for both flows. However, we also ob-
serve that the incremental synthesis time is usually not
proportional to the amount of changes. For instance,
in cases where no actual change was made, runtime was
usually on the order of half of the full synthesis runtime.

The main contributions of this paper are:

e Propose ANUBIS, the first incremental synthesis
benchmark set

e Propose a standard score and report table to fa-
cilitate the comparison of flows using ANUBIS

e Evaluate ANUBIS using existing incremental syn-
thesis flows

2. RELATED WORK

The related work is split into two main parts: in-
cremental synthesis techniques and other benchmarks.
In the first part, we discuss the type of work that could
benefit from ANUBIS and the benchmarks used in their
evaluation. In the second part, we discuss how other
benchmarks (not necessarily for synthesis) work, how
they were created and how they are evaluated.

Incremental Synthesis: The first incremental syn-
thesis flow was proposed 30 years ago [I3] in order to
improve timing closure in digital design. The flow was
interactive and kept the design in memory while changes
were being made by the designer. The flow needed un-
der 30 minutes to evaluate large (at the time) designs,
but could compute the effects in frequency of a small
design change in only a few seconds. The main motiva-
tion of the flow was timing analysis, with an incremental
timer and the designer would manually indicate design
changes over the netlist to improve timing.

Incremental synthesis was revisited more recently by
other authors. Dehkordi et al. [[0] propose a flow that
partitions the design into independent synthesis regions.
After a change is introduced only the affected parti-
tion is re-synthesized. Due to the artificial partitioning
method, there is a significant hit on QoR depending on
the parameters choice. Authors used a set of 22 “indus-
trial benchmarks” with manually added changes. There
is no information about the changes added, but it is
clear that they were not based on real code changes.

To reduce the impact on QoR, newer approaches in-
clude detecting regions impacted by the changes, re-
gardless of an original partitioning of the design. A flow

coupled with Altera synthesis flows leverages informa-
tion of nets whose functionality is not modified during
synthesis. When a change is made to the RTL, the flow
maps that change to a specific region defined by those
“invariant” nets, replaces the synthesized of the affected
region by the elaborated netlist of the new code and
launch synthesis over the design. Since most of the de-
sign is already synthesized and optimized, there is little
work that needs to be done, reducing synthesis time [{].
A different approach is to only synthesize the modified
logic, which further reduces the synthesis time and has
been shown to maintain QoR [IR].

Incremental time analyses have recently been pointed
out to be a weakness in timing-driven flows [I1]. In
modern digital design flows, timing analysis is essen-
tial to identify critical paths and avoid optimizing non-
critical paths [d]. During performance-driven opti-
mization, timing analysis tools are used several times
to assess the impact of optimizations in the circuit [I2].
Since most of these changes are localized, running full
timing analysis is a waste of resources. The recogni-
tion of this problem led to an academic competition
in 20152 for incremental timers. Although incremental
timers are more geared towards the optimization pro-
cess of a static netlist, for instance, during placement,
it is also true that they could be used for incremental
changes to the RTL, specially during the timing closure
loop.

Other Benchmarks: In the Incremental Timing
and CPPR contest the evaluation of designs was done
by using standard circuit benchmarks with changes gen-
erated randomly by a computer program in the netlist
level and not from real ECO changes®. The changes
were described in the form of actions, such as “add/re-
move connection”, “add/remove cell”, and so forth. De-
spite being useful to evaluate and test incremental tim-
ing, those changes do not reflect real-world like changes
that would be done to a design.

The ISCAS benchmarks [B,6] are very popular in
the synthesis community and have been used by count-
less research papers to evaluate and compare different
proposals. The ISCAS benchmarks consist of a set of
netlists from real industrial designs. Another set of
benchmarks, the IWLS benchmark [?]-maintained by
this community—include RTL description of over 80 in-
dustrial designs, with the respective mapped netlists.
The IWLS benchmarks serve a more specific purpose
for use in logic synthesis, but can also be used to evalu-
ate parsers and elaboration tools. However, both these
benchmark sets are static, in the sense that they do
not include changes that were made to those designs
during their project and therefore are not suitable for
incremental synthesis evaluation.

Evaluating a benchmark is not an easy task. The
most common problem associated with creating and us-
ing a benchmark is to assess how representative it is of
the expected space of applications intended. For in-
stance, excessive benchmark redundancy was shown to
be an issue due to the added runtime to evaluate the

2TAU 2015 Contest:
cremental CPPR:
taucontest2015/.

3Personal communication with contest organizers.

Incremental Timing and In-
https://sites.google.com/site/
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suite, on the other hand reducing too much the num-
ber of entries in a benchmark can yield reduced cover-
age ['7]. Another issue is to define which metrics are the
most suited to evaluate a benchmark. For instance, the
placement community has been discussing between dif-
ferent metrics (wirelength, routability, so forth) and the
decision on which metric to use largely impacts which
placer will be considered the best [0]. A good bench-
mark should be able to tell which flow is the best, how-
ever in some cases, conflicting metrics make it hard to
intuitively determine which flow is in fact the best.

In the relatively new and largely unexplored field of
incremental synthesis methods, there is still need to de-
fine what it means to be the best. In this paper, we
discuss some of the metrics that we believe will be im-
portant and create a scoring system that is used to eval-
uate existing commercial flows.

3. ANUBIS

ANUBIS, A New Benchmark for Incremental Syn-
thesis, is a benchmark suite that considers incremental
changes in digital designs. The main premise of ANU-
BIS is that most of the time, during the design cycle of
digital circuits, small and localized changes are intro-
duced to the code. Still, current benchmarks for synthe-
sis (logical and physical) considers mostly static bench-
marks. ANUBIS tries to capture real changes that were
introduced into real designs. With ANUBIS researchers
working on incremental synthesis, placement, routing,
timing, bug finding techniques or others are provided
with a standard tool to compare their work more fairly.

ANUBIS consists of a collection of Verilog designs.
The benchmarks were chosen based on open-source sta-
tus, availability of design changes (as explained later)
and size/diversity. We tried to maximize the number
and type of designs and changes to be representative
of a large set of real-life cases. In the next subsec-
tions, we describe how the benchmarks were selected,
how changes were inserted into the benchmarks, and
how to run ANUBIS to compare multiple incremental
synthesis flows.

3.1 Benchmark Selection

The main objective of the benchmark selection cri-
teria is to allow for a good number of designs that are
as reflective of real world designs as possible and have
enough real code changes in them. We note that these
criteria are not very well defined or strict.

Closed source designs or code with limited distribu-
tion were not used since it would be impossible to dis-
tribute them without a license. We also have a par-
ticular interest in looking for code changes. This can
take two forms: commented out code or repository com-
mits. Given those two requirements, the main source of
benchmarks considered are open-source repositories on-
line, such as GitHub? and OpenCores®.

Another important source considered was from aca-
demic designs that were made available with changes,
for that we contacted some research groups in multiple
universities. In particular, we added the designs from

4 http://github.org.
5 http://www.opencores.org.

Bug Underground®, a project at University of Michigan
that aims to find bugs in RTL code of cores. They pro-
vide two processors with a large number of bugs that
are inspired into bugs found in commercial CPUs and
reported through erratas. Although those are not ac-
tual changes that were made to designs, they closely
reflect issues found in real commercial CPUs.

Generated code, such as from High-Level Synthesis
(HLS), Bluespec, Chisel, and so forth, were not consid-
ered. In theory, generated RTL could be used, but this
adds an extra layer to the benchmarks and is currently
out of the scope of our benchmark suite. In the future,
this decision may be reconsidered.

After gathering open-source design candidates, we
analyzed how many changes could be found for them.
We went over the code to look for commented out code,
and went over the commits in the repository. Open-
source designs with no design changes, as it is the case
of most of the designs in OpenCores, were excluded.

Other variables considered are the ability to fit the
design in a large high-end FPGA, to allow for flows to
place and route designs for FPGA and that the design
should not require specific vendors. For instance, some
designs use IPs specific to Altera or Xilinx, which pre-
vents them from being ported to other back-ends. Un-
fortunately, this leaves a very limited number of useful
designs, but more designs will be added to ANUBIS as
they are made available. The list of ANUBIS designs
is provided in Table 0. In the remaining of the paper,
the benchmarks will be referred to using the acronym
presented in Table M. ANUBIS will be provided under
the BDS License 2.0, and results of flows using ANU-
BIS will published on the official ANUBIS repository
http://github.com/masc-ucsc/anubis. Anyone us-
ing ANUBIS can submit results, and a list of top con-
tenders will be available in the official repository.

3.2 Change insertion

In order to emulate design changes, we inserted code
changes to the benchmarks. The changes can be acti-
vated or deactivated through define statements. To ap-
proximate real-world changes, changes were taken from
repository commits and commented out code. Some
synthetic changes were added to exercise some cases
that are interesting but did not appear in either of
the above, such as replacing a signal by a constant.
A change can be single-line, multi-line, or multi-file.
Changes include changing conditions in if statements,
changing logic to generate data, including/removing ports
on a module, and others.

The main source of code differences used was commits
in public repositories. We specifically looked for com-
mits in nearby dates, since we specifically target small
changes in code. Commits that added entire modules
or sub-systems were not considered. The idea of us-
ing commits from repositories is to try to mimic “real-
word” work. Commits of large amounts of code usually
reflect the changes over several days or weeks which is
not aligned with the incremental synthesis philosophy
that we are interested. Commented out code was used
when available, following a methodology similar to the
one proposed in [8]. In addition, we do not use changes

6http ://bugs.eecs.umich.edu.
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Table 1: ANUBIS consists of a collection of open-source benchmarks and standard changes applied to it. Lines of
Code (LoC), area and maximum frequency (Fmax) (for an ASIC 32nm library using a commercial flow) are included

as estimates of the design complexity.

Description Acronym LoC FMax (MHz) Cells
DLX core [4] DX 743 770 7152
ALPHA core [d] AL 1086 666 17558
IEEE 754 FPU® FP 4716 2500 58149
morlk RISC core [IH] MO 15012 2500 62752
OR1200 RISC core [I5) OR 19437 1300 329280

that would cause syntax errors, but do not make any
assumptions on functional correctness.

We also add some cases where no behavioral change is
inserted. For instance, we add/remove comments, white
space, change variable names, so forth. The rationale
behind this is to understand how good the system is
at detecting those corner cases where no re-synthesis is
needed. Ideally, a good implementation should be able
to detect that there was no change and return in almost
no time. In some cases, this will not happen and at
least a part of the flow will be triggered. Those changes
were artificially created by us, but were inspired in cases
observed in repository diffs.

Changes are divided into three categories: NoChanges,
LocalChanges, GlobalChanges. NoChanges does not re-
flect any real change in the behavior of a system, they
can be adding whitespace, double invertions, chang-
ing the name of a variable, or actual changes to un-
used parts of the circuit. The LocalChanges category
includes changes within a module, mostly single line
changes, or very localized changes, for instance chang-
ing the condition on an if-else if chain, changing the
constant values, arithmetic operations, so forth. Fi-
nally, GlobalChanges are changes that either affect mul-
tiple modules or a module that is instantiated multiple
times in the design. Although we split changes into Lo-
calChanges and GlobalChanges it is not necessarily the
case that the amount of reused cells will be lower for
GlobalChanges, since this is largely flow-dependent. We
also believe that researches could focus more on some
types of changes in a given work, since different types
of techniques will behave differently in each category.

A summary with the number of changes added to
each benchmark is given in Table B, with breakdown by
category and source (actual or synthetic). For DX and
AL, all changes are considered actual changes. We tried
to keep a distribution of largely LocalChanges, since
the idea behind ANUBIS is to leverage small incremen-
tal steps, although some GlobalChanges are expected.
The percentage of LocalChanges versus GlobalChanges
approximately reflects our observations from the repos-
itory histories that we looked at, although we did not
perform any statistical analysis over the histories.

3.3 Setup requirements to report ANUBIS re-
sults

For the sake of fairness, we assume that researchers
using ANUBIS will abide to ethics when reporting re-
sults. Nevertheless, we discuss some of the “minimum”
expected setup conditions for a fair reporting on ANU-
BIS.

Table 2: Summary of changes inserted in the bench-
marks with breakdown by category and source: actual
code changes including git and commented out code (A)
and synthetic (S).

. NoChanges | LocalChanges | GlobalChanges
Design  Total A g A g A g
DX 27 0 4 23 0 0 0
AL 15 1 5 9 0 0 0
FP 37 0 7 12 14 2 2
MO 34 0 7 20 0 4 3
OR 31 1 5 19 0 4 2

Equality in number of cores and resources used:
When running full synthesis, setup and incremental syn-
thesis the same number of cores and physical resources
(memory, IO and network bandwidth, so forth) should
be available. The workload on the computers running
the flow should also be consistent, and if at all possi-
ble only the benchmarks should be running. The server
configuration should be disclosed as much as possible,
but at least the number of cores used and the available
memory should be reported. Note that, if, for instance,
the setup flow is single threaded, the incremental syn-
thesis could be parallelized, but the results should be
reported with a single thread. This measure prevents
a flow of scoring artificially high due to higher paral-
lelism, and although we embrace parallel applications,
they are not the main target of ANUBIS.

High effort flow: Flow options should be chosen
to achieve the highest quality circuit. In general, that
means, maximum (or within 5%) achievable frequency.
The 5% is to allow for approximation to integer numbers
and to avoid pushing the flow to extremes, which could
incur in large optimization overheads. However, flow
options like “retiming” can be used at the researcher
discretion, but those should be consistent between full
and incremental flows and should be clearly disclosed.

Multiple runs: To reduce the effects of runtime
variability, we require ANUBIS to be run at least 3
times and the average to be used. If too much variabil-
ity is observed (i.e., the runtime between different runs
differs by more than 10%), 5 runs are recommended.

4. HOW TO SCORE ANUBIS

An important part of a benchmark is to have a fair
way of comparing different approaches that use the bench-
mark. The main question to be answered is what does
it mean to be the best approach? That can be broken
down into finding the metrics of interest for the problem
at hand and giving a relative weight to them.

For incremental synthesis, knowing the percentage of



reuse (changed cells, moved cells, wires that needed re-
routing) is an initial potential metric of interest, but as
it becomes clear in our evaluation, those do not nec-
essarily translate into saved runtime. At the end of
the day, designers doing incremental synthesis are in-
terested in reducing runtime and keeping quality of re-
sults. Runtime savings and QoR are easily accessible
from running the full and incremental flows, although it
is hard to place an absolute importance between them.
For instance, it is intuitive to think that a designer
would not use an incremental flow that saves 90% of
runtime but at the cost of doubling the delay. On the
other hand, an incremental flow that offers 10% speedup
with minimal QoR impact is possibly not appealing ei-
ther. However, it is not as simple to decide if a designer
would use a flow that reduces runtime by half with, say,
5% impact on delay. That may be acceptable in some
cases, for instance if a final optimization synthesis can
be performed later to catch up on the QoR gap. In
those corner cases, it may be harder to decide which of
two flows is better.

Given that, we believe that the ultimate metric for in-

cremental synthesis should be related to runtime speedup,

that is, how much time the incremental flow under eval-
uation can save compared to the full flow. However,
the flow should be penalized if it degrades QoR by a
“too much”, of course how much penalty for how much
degradation is an important point of discussion.
Runtime comparisons should be as independent of the
hardware in which a flow is running as possible, there-
fore we propose normalizing the runtime by the runtime
of running a standard flow, which serves as a baseline
for assessing the hardware power. We also note that any
incremental flow will require a setup phase, that consists
at least of an initial synthesis, but possibly additional
processing steps, such as the approach proposed in [{7],
change the regular synthesis flow to keep track of in-
formation needed later and include extra steps beyond
synthesis to prepare for the incremental steps. The run-
time of this setup phase is also considered, but with is
weighted less, since it should not need to be run often.
Our scoring system is such that higher scores indicate
better flows. The score system works as follows: first a
sub-score is calculated for each change in each bench-
mark and the baseline benchmark (i.e., no change case).
Then a benchmark score is calculated based on the sub-
scores. Finally, a global ANUBIS value is calculated
using the benchmark scores. The ANUBIS value takes
into account the time to perform synthesis, placement
and routing. To provide better insights on the speedup,
our standard reporting also includes breakdown for each
phase, as it will be discussed later in this manuscript.

4.1 QoR penalty

One important point to consider is QoR degradation.
When performing incremental synthesis, it is possible
that there will be degradation in QoR. This is not a
deal-breaker in the sense that non-incremental synthesis
may be used to close the QoR gap. Prior works on incre-
mental synthesis recommend running non-incremental
synthesis while no changes are being performed on the
design [I8]. Therefore, although it is important that a
flow can achieve accurate QoR, it is possible to tolerate

small losses. However, if the losses are significant, it
may be impractical to use the flow. Our scoring system
takes that into account.

The answer to the question of how much QoR degra-
dation can be tolerated may vary significantly from case
to case and from personal taste. Still, we want to sum-
marize what may be acceptable in general to most de-
signers and in most use-cases. Therefore, we look at this
question from multiple angles. First, we note that com-
mercial FPGAs are divided into speedgrade due to pro-
cess variation. For instance, in Xilinx FPGAs the differ-
ence in speed between grades is of about 14%-13% [23],
which indicates that 10% is too large of a variation to
be tolerated. Another insight is taken from industrial
blogs: for instance, setting different clock constraints
around the maximum achievable frequency can led to
Fmax differences of around 14% [09]. Another indus-
trial post suggests that there is a variation of around
4 — 5% in performance due to sign-off [20], which may
seem to suggest that 5% could be a tolerable error for
most designers. As a final argument, we performed 50
full synthesis using Quartus (more details in Section H)
over the same unmodified design to current variation in
synthesis flows due to randomness present in the flow®.
The results show a standard deviation of 3%, the over-
all range was of +7% of the average. This result also
seems to confirm that variability should be around 5%
to be tolerable by designers. In conclusion, we consider
that ~ 5% variation is acceptable, but ~ 10% is too
much. However, since there is not a definitive answer to
this question, we decide not to use a step function, but
rather have a sharp but continuous increase in penalty
as QoR degrades.

The other piece missing to this discussion is how much
penalty should be attributed to flows that “break” QoR.
The reasoning behind this is much simpler. If an incre-
mental flow is degrading QoR, it is natural to run the
full flow to recover the penalty. Therefore, our scoring
function should be such that if QoR is within 5% of the
full synthesis QoR, the score is inversely proportional
to the incremental synthesis time, and if the QoR is
degraded to unreasonable levels, the score is inversely
proportional to the incremental synthesis plus the full
synthesis time, remember that higher scores mean bet-
ter flows. We call this the corrected runtime for change
n of benchmark a: 7(ay), where a is one of the ANUBIS
benchmarks and 1 < n < n, is the change id and n,
is the number of changes for benchmark a. Given that,
the corrected runtime is given by:

tr(a

rlon) = ) + (o) x i, (O

where a and ( are constants, t;(a,) is the time it
takes to run the incremental flow on change 7 of the
benchmark a, t(ay) is the time it takes to run the non-
incremental flow on that change/benchmark, Q;(a,)
and Q;(a,) are the QoR metric of interest (critical path
delay, area or power) for the incremental and full syn-

8We note that, modern synthesis flow have been moving
away from randomness for the sake of repeatability, never-
theless, the results here are a rough estimation of what could
be acceptable in terms of QoR fluctuations.
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Figure 1: ANUBIS penalizes QoR loses. The penalty
is dependent on how much QoR was lost and on the
full synthesis time. The rationale is that, if there is too
much QoR degradation, the full synthesis will be run to
recover it.

thesis flows respectively. We choose a = 10% and 8 =
26 empirically, to match the insights described on the
previous paragraphs, i.e., very low penalty for flows
that degrade QoR by around 5% or less, and consider-
able penalty for flows that degrade QoR by more than
10%. We note that there is no benefit for improving
QoR. Figure M illustrates how this works, the x-axis
shows the percentage QoR change of the incremental
flow compared to the full synthesis flow (100% is the
same QoR, and lower than 100% indicates degradation).
The penalty rises sharply after around 5% degradation
in QoR up to the time it takes to perform full synthe-
sis. Note that this plots denote the corrected runtime
(1) of the flow for change i of benchmark a, and there-
fore higher is worse. This number will still be inverted
before calculating the final score.

4.2 Score

To make the score machine independent, i.e., to take
into account that more powerful machines would artifi-
cially improve the runtime, the score for each change in
each benchmark is normalized by the runtime of YOSYS
(version 0.74154) with a provided synthesis script for
that change in the same machine. YOSYS [21] is an
opensource synthesis tool that fully supports Verilog.
The correct YOSYS version, the library for techmap
and the standard synthesis scripts are provided with
ANUBIS, and will be run automatically. Changes to
any of those are not allowed. The ANUBIS score an(a,)
for each change is provided by:

anla = tY(an)
( n) T(an) (2)

where ty (ay,) is the YOSYS runtime for change n of
benchmark a. This score is calculated for: synthesis,
placement and routing independently, but we note that
since YOSYS only performs synthesis the baseline is
the same for the three. This is only to normalize for
computation power. One extra score an(ap) is added to
each benchmark and is calculated considering the setup
phase of the algorithm. The idea is that longer setup
times will result in a lower overall score.

4.3 ANUBIS Value

For each phase (synthesis, placement and routing)
and for each QoR metric (delay, energy and area), the
score an is calculated as the geometric mean (gmean) of
all the scores. This yields 9 values that are reported as
a table (QoRs vs phase), and 6 sub-scores are calculated
as the gmean of rows and lines. The final of the flow
ANUBIS score is calculated as the gmean of the those.
A sample standard report table is provided in Table B.
A set of scripts to calculate the scores and generate the
table is also provided with the benchmark code. In each
cell in the scoring table, a higher number indicates a
better flow. Researches focusing on a specific phase can
report a subset of the ANUBIS table and/or assume a
coupling with incremental approaches for other phases.

The table also include a column with the scores for
full synthesis flow. In this case there is no QoR penalty,
and thus there is only one column. The average speedus
can be obtained by dividing the gmean column by the
Full column for each task. This already takes into ac-
count any penalty in the incremental flow. We also sug-
gest reporting the average runtime for YOSYS, which
allows to get absolute average runtime numbers for each
task.

S. EVALUATION SETUP

To evaluate our benchmark set, we rely on two com-
mercial incremental synthesis flows (Flow 1 and Flow
2). There is little information publicly available about
how these flows are implemented, but the main focus of
both flows is to reduce the impact on QoR while lever-
aging as much as possible from the original design. For
this evaluation, both the flows are able to do incremen-
tal synthesis automatically, that is, without user inter-
vention such as user-defined partitioning and placement
constraints, that are common in FPGA flows.

We run ANUBIS for the two flows independently, in
a 32 core Intel Xeon E5-2689 with 64Gb of memory,
running ArchLinux-4.9.11-1. Timing measurement was
done using the tool provided time to avoid loading over-
heads. Delay, area and power were also used as provided
by the tool, post-routing.

6. EVALUATION

In the first part of our evaluation, we show the stan-
dard ANUBIS table for both the flows and discuss the
results obtained. We also look into the behavior of each
flow in the NoChanges category.

6.1 Overall Results

Incremental Flow 1 consists basically of regular elab-
oration and synthesis and incremental placement and
routing. Whenever a file is changed and saved, the reg-
ular frontend flow is run over the design, and the in-
cremental backend flow is ran over the changes. The
results for Flow 1 are shown in Table B. The best ab-
solute scores are for placement, even though routing is
also supposedly incremental the tool still takes consid-
erable time in routing which explains the low scores.
The results for synthesis are the worse among the three
phases, since it is not incremental. One good way to get
insights about the results is to look at the last column



Table 3: Sample report table for ANUBIS.

Phase | Delay Energy Area | gmean | Full
Synth ang g ans,e ans.a gmean (ans) fulls
Place any g anp,e anp,a gmean (anp) Sfully
Route any g anre anr,q gmean (an,) full,

gmean | gmean (ang) gmean (ane)

Table 4: ANUBIS table for incremental Flow 1.

Phase | Delay Energy Area | gmean | Full
Synth | 0.105 0.098 0.098 [ 0.100 | 0.105
Place 2.982 2.704 2704 | 2.794 | 0.175
Route | 0.148 0.136  0.136 | 0.140 | 0.042
gmean | 0.359  0.330 0.330 | 0.359 | 0.092

Table 5: ANUBIS table for incremental Flow 2.

Phase | Delay Energy Area | gmean | Full
Synth | 0.129 0.129 0.129 | 0.129 | 0.075
Place | 0.039  0.039 0.039 | 0.039 | 0.039
Route | 0.070 0.070 0.070 | 0.070 | 0.070
gmean | 0.065 0.065 0.065 | 0.065 | 0.059

of the ANUBIS table that reports the scores for the full
synthesis flow. In an ideal case, with no QoR degrada-
tion, the speedup of the incremental flow with regards
to the full synthesis flow can be obtained by dividing
the value in each the gmean column by the value in the
full column. In this case, we see no speedup for syn-
thesis, ~ 15 times speedup in placement and = 4 times
speedup for routing, on average.

Flow 2 also include a frontend incremental flow, that
feeds the incremental backend flow, thus we would ex-
pect better scores in the first row of the ANUBIS for
Flow 2, as compared to Flow 1 (higher scores is bet-
ter). The results are shown in Table B, and confirm this
expectation. However, the results for placement and
routing are worse when comparing to Flow 1. Overall,
the much better placement times for Flow I make it
have a higher, and thus better, ANUBIS number.

We also observe that all the columns of Table B are
basically the same. In fact, there was actually some
difference after the 5th decimal. This is because Flow 2
was very good at preserving the QoR, with less than 1%
differences between full and incremental flows. In Flow
1, it is possible to observe differences mainly in the delay
column, which has higher numbers. The variation in
delay for the Flow 1 flow was of up to 1%, but area and
power had differences of up to to 4%, which affects the
score a bit. Since the median was of ~ 1%, the penalty
is still pretty low. From the Flow 2 table, it seems
the only task performed incrementally is synthesis, and
there is no change for placement and routing.

One interesting note is that YOSYS took on average
8.83 seconds to complete synthesis in the machine used.
Thus it is possible to get average runtime, considering
the QoR penalty, for each task, multiplying the gmean
column by the YOSYS runtime. Although YOSYS is
pretty fast for current standards, we believe that incre-
mental synthesis should be able to beat YOSYS, one
evidence of that is the current score for placement in
Flow 1.

gmean (ang) | gmean (gmean) | gmean (full)

300

Full synthesis %

Time (s)
-
I
g
*

Flow 1 Flow 2

Figure 2: The flows tested cannot detect that no ac-
tual change was inserted and run at least partially the
incremental flows. Flow 1 does a very good job in place-
ment presenting a median runtime of zero for placement,
but it does a poor job in synthesis and routing. Flow 2
presents a 2x speedup in synthesis, but placement and
routing take a long time.

6.2 No change cases

A good way to gain insights on the flows is to look at
NoChanges. This is an interesting category to check
a flow behavior with no actual change inserted. In
these cases, we only added whitespace, changed variable
names, added comments, or inserted localized netlist
changes that do not alter the circuit functionality.

Due to space restrictions, we are reporting only re-
sults for the NoChanges category of changes for the
FPU design, as other benchmarks followed a similar
trend. Figure B shows the runtime achieved by both
flows for synthesis (s), placement (p) and routing (r)
when no actual changes are applied to the design. In
Flow 1, there is no change in synthesis compared to the
full flow. For placement, there is a reduction to zero
most of the time. Routing is roughly half of the full
flow. In Flow 2, the speedup observed for synthesis is
basically flat in all the cases, and of around 2x, while
placement and routing have more varying runtimes, but
in the order of up to 20%.

Although the NoChanges scenario is arguably less
important, from this data it looks like there is a lot
of room for improvement in current incremental com-
mercial flows. In theory, it should be relatively easy
to detect, at least after synthesis that no changes are
necessary in the physical implementation. This is an
unexpected result, given that the reports for both flows
show that over 99% of cells and nets were reused from
the original to the new implementation. Thus, it looks
like there is a lot of time spent in matching which cells
and nets can be reused, which eventually reduces the
gains from the incremental synthesis.



7. CONCLUSION

We present ANUBIS, a set of RTL designs and code
changes, the first benchmark set intended to be used for
incremental synthesis, placement and routing. In this
initial version, ANUBIS is a small set of designs, but
with a rich collection of changes that represent real code
changes applied to those designs during time. ANUBIS
considers both runtime and QoR to generate a final uni-
fied score that allows to easily compare multiple flows.

Incremental synthesis has been the subject of various
research in the past and has gained traction in the in-
dustry as a path to reduce the synthesis time, which is
recognized as one of the main bottlenecks in digital de-
sign. Other research areas may also leverage ANUBIS,
such as incremental timing analysis tools.

ANUBIS was evaluated using two incremental com-
mercial flows. Although there are not many public
available details on how those flows are implemented,
they are more focused on keeping QoR, since rather
no QoR degradation was observed. This comes with a
cost in runtime, which was relatively high when con-
sidering the high re-utilization of the designs. Other
approaches, such as LiveSynth [IR], advocate for small
QoR degradation for more aggressive runtime reduc-
tion. In that case, authors argue for the use of incre-
mental steps while the code is being changed, and full
synthesis to recover QoR, when there is no code change
being performed.

As new benchmarks with code changes become avail-
able, they will be added to future versions of ANU-
BIS, we are particularly interested in larger designs that
could help on the study of the scalability of incremental
flows and possibly reflect better industrial designs. We
are also interested in improving the scoring system as
new discussion and incremental flows emerge.
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