

Object and Action Detection from a Single Example

Peyman Milanfar* EE Department University of California, Santa Cruz

*Joint work with Hae Jong Seo

AFOSR Program Review, June 4-5, 2009

Take a look at this:

See it here?

How about here?

Or here?

Single Example, No Training!

(Most) people can find the Dragon Fruit from one look.

Even if they've never seen it before.

Outline

- I. Motivation
- II. Overview
- III. Object Detection
- **IV.** Action Detection
- V. Conclusion and Future work

Fundamental Problems in Machine Vision

Develop a unified framework that can robustly detect objects/actions of interest within images/videos without training

- 1) Whether objects (actions) are present or not,
- 2) How many objects (actions)?
- 3) Where are they located?

Challenges in Detection

***Objects**

*Actions

- 1) different clothes,
- 2) different illumination,
- 3) different background
- 4) action speed

Outline

- I. Motivation
- II. System Overview
- III. Object Detection
- **IV.** Action Detection
- V. Conclusion and Future work

Object Detection using Local Regression Kernels

- Local Steering Kernels as Descriptors
- Using a <u>single</u> example

"Resemblance Map"

Detected Similar Objects

Object Detection System Overview

H. Seo and P. Milanfar, "Training-free, Generic Object Detection using Locally Adaptive Regression Kernels", Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence Milanfar et al. EE Dept, UCSC

Stage 1: Calculation of Local Descriptors

Robustness of LSK Descriptors

Original **Brightness** Contrast WGN image change change sigma = 10 $W_Q(\mathbf{x}_l - \mathbf{x})$ (1)2 3

System Overview : Stage 2

Apply PCA to \mathbf{W}_Q for dimensionality reduction

→ Retain the d largest principal components $\mathbf{A}_Q \in \mathbb{R}^{P \times d}$ → Project \mathbf{W}_Q and \mathbf{W}_T onto \mathbf{A}_Q

$$\mathbf{F}_{Q} = [\underline{\mathbf{f}}_{Q}^{1}, \cdots, \underline{\mathbf{f}}_{Q}^{n}] = \mathbf{A}_{Q}^{'} \mathbf{W}_{Q}$$
$$\mathbf{F}_{T} = [\underline{\mathbf{f}}_{T}^{1}, \cdots, \underline{\mathbf{f}}_{T}^{n_{T}}] = \mathbf{A}_{Q}^{'} \mathbf{W}_{T}$$

Eigenvalue rank

Stage 2: Salient features after PCA

Object: Helicopter

Stage 2: Salient features after PCA

System Overview : Stage 3

Stage 3: Finding similarity between features

Target image is divided into a set of overlapping patches

Stage 3: Correlation based Metric

The vector cosine similarity

$$\rho(\mathbf{a}, \mathbf{b}) = <\frac{\mathbf{a}}{\|\mathbf{a}\|}, \frac{\mathbf{b}}{\|\mathbf{b}\|} > = \frac{\mathbf{a}'\mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|} = \cos\theta \in [-1, 1],$$

$$\mathbf{Q}$$

Inner product between two normalized vectors

Measures angle while discarding the magnitude

Stage 3: Correlation based Metric

The vector cosine similarity

$$\rho(\mathbf{f}_{Q}, \mathbf{f}_{T_{i}}) = \langle \frac{\mathbf{f}_{Q}}{\|\mathbf{f}_{Q}\|}, \frac{\mathbf{f}_{T_{i}}}{\|\mathbf{f}_{T_{i}}\|} \rangle = \frac{\mathbf{f}_{Q}'\mathbf{f}_{T_{i}}}{\|\mathbf{f}_{Q}\|\|\underline{\mathbf{f}}_{T_{i}}\|} = \cos\theta_{i} \in [-1, 1],$$
$$\mathbf{f}_{Q}, \mathbf{f}_{T_{i}} \in \mathbb{R}^{d}$$
$$\mathbf{Q}$$
$$\mathbf{Q}$$
$$\mathbf{f}_{Q}^{\mathbf{f}_{Q}} = \frac{\mathbf{f}_{Q}'\mathbf{f}_{T_{i}}}{T_{0}}$$
$$\mathbf{T}_{0}$$
$$\mathbf{T}_{0}$$
$$\mathbf{T}_{0}$$
$$\mathbf{T}_{0}$$
$$\mathbf{T}_{0}$$
$$\mathbf{T}_{0}$$
$$\mathbf{T}_{0}$$

Inner product between two normalized vectors

Measures angle while discarding the magnitude

Stage 3: Matrix Cosine Similarity

What about a set of vectors? Matrix Cosine Similarity

→ Frobenius Inner product between normalized matrices

Stage 3: Matrix Cosine Similarity

What about a set of vectors? Matrix Cosine Similarity

\rightarrow Frobenius Inner product between normalized matrices

A weighted sum of the column-wise vector cosine similarities

 $= \rho(\text{colstack}(\mathbf{F}_Q), \text{colstack}(\mathbf{F}_{T_i}))$

We can prove optimality of this approach in a naïve Bayes sense.

Stage 3: Generate Resemblance Map

Resemblance Map (RM)

 RM : $|
ho_i|$

Stage 3: Non-parametric Significance Tests

1. Is any sufficiently similar object present?

 $\max f(\rho_i) > \tau_0$

i.e., $\tau_o = 0.96$ so that ~ 50 % of variance in common

2. How many objects of interest are present?

Dataset from Weizmann Inst.

query

query

target

target

query

target

target

target

Experimental Results

query

target

target

query

target

target

Higher resemblance

Lower resemblance

Weizmann Inst. Object Test Set

False positive rate = FP/(FP+TN)

Experimental Results The MIT-CMU Face Test Set

Gallery Set:10 subjects x 25 different conditions

Query

Gallery Set:10 subjects x 25 different conditions

Query

output

1.8 1.6 1.4

- 0.8 - 0.6 - 0.4 - 0.2 - 0 - -0.2

query

output

target

target

Outline

- I. Motivation
- II. System Overview
- III. Object Detection
- **IV.** Action Detection
- V. Conclusion and Future work

Action Detection System Overview

H. Seo and P. Milanfar, "Generic Action Recognition from a Single Example", Submitted to International Journal of Computer Vision (IJCV), March 2009

Stage 1: Space – Time Descriptors

$$K(\mathbf{x}_l - \mathbf{x}) = \frac{\sqrt{\det(\mathbf{C}_l)}}{2h^2} \exp\left\{-\frac{(\mathbf{x}_l - \mathbf{x})'\mathbf{C}_l(\mathbf{x}_l - \mathbf{x})}{2h^2}\right\}$$

- C_l : 3x3 local covariance matrix
- **x** : space-time coordinates $[x_1, x_2, t]$

Shechtman's action test set (Beach walk)

Query

Typical run time for target (50 frames of 144 x 192) and query (13 frames of 90 x 110) : a little over 1 minute

Experimental Results (Multiple Actions)

Multiple queries Automatic cropping

Action Classification Performance

Average confusion matrices

Classification rate = 1 - (# of miss classification) / (total # of sequences)

Evaluation setting: Leave-one-out

Classify each testing video as one of the predefined classes by 3-NN (nearest neighbor)

Action Classification Performance

Comparison with state-of-the art methods (KTH dataset)

Our Approach (1-NN)	89%			
Our Approach (2-NN)	93%			
Our Approach (3-NN)	95.66%	\Longrightarrow	Our Approach (3-NN)	95.66%
			Kim et al. (2008)	95.33%
			Ali et al.(2008)	87.7%
			Dollar et al. (2005)	81.17%
			Ning et al. (2008)	92.31%
			Niebles et al. (2008)	81.5%
			Wong et al. (2007)	71.16%

Classification rate = 1 - (# of miss classification) / (total # of sequences)

We outperform all the state-of-the art methods on KTH dataset.

Publications

- H. Seo and P. Milanfar, "Training-free, Generic Object Detection using Locally Adaptive Regression Kernels", Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008
- H. Seo and P. Milanfar, "Generic Action Recognition from a Single Example", Submitted to International Journal of Computer Vision (IJCV), March 2009
- H. Seo and P. Milanfar, "Static and Space-time Visual Saliency Detection by Self-Resemblance ", Submitted to *Journal of Vision* (JoV), May 2009
- H. Seo and P. Milanfar, "Detection of Human Actions from a Single Example", Accepted for publication in International Conference on Computer Vision (ICCV), March 2009
- H. Seo and P. Milanfar, "Nonparametric Bottom-Up Saliency Detection by Self-Resemblance", Accepted for IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1st International Workshop on Visual Scene Understanding (ViSU'09), Miami, June, 2009
- H. Seo and P. Milanfar, "Using Local Regression Kernels for Statistical Object Detection", Proceedings of IEEE International Conference on Image Processing (ICIP), San Diego, 2008

Conclusions & Future Work

- Local Steering Kernels are Very Effective Descriptors
- Simple Approach: PCA + Matrix Cosine Similarity
- Excellent Detection and Recognition is Achieved without Training
- Make algorithm scalable for image and (video) retrieval
- Increase accuracy by incorporating "context"
- Detect /recognize objects of interest in general degraded data without explicit restoration