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ABSTRACT

In this paper we discuss a class of multiresolution
models of random fields based on a generalization of
the midpoint deflection construction of the 1-D Brow-
nian motion. We then present Least Squares (LS) al-
gorithms for the estimation of parameters which define
these models and hence provide a framework for syn-
thesizing and analyzing images with fractal-like proper-
ties such as those found in statistical representation of
natural terrain and other geophysical phenomena. We
also briefly discuss possible applications of this model-
ing framework to target detection in images.

1. INTRODUCTION

Random field models based on differential and spectral
structures have a great deal of difficulty synthesizing
realistic images of common physical entities such as
terrain. The emerging field of wavelets and multires-
olution modeling (2, 5, 4] can be viewed as providing
an alternative for more accurate representation of non-
linear and non-stationary effects in images. As with
most multiscale models proposed to date such as [4, 1],
our proposed models are based on the notion of causal-
ity in scale. That is, finer scale features of the images
depend upon the presence or absence of coarser-scale
features. Indeed, the finer scale features of the images
are derived from the coarser scales by way of dynamical
models evolving in scale. What distinguishes our mod-
els from those proposed in [4, 1] and elsewhere is the
algebraic structure over which these dynamical mod-
els evolve in addition to the fact that, as a result of
the underlying structure, our models can be described
by linear or non-linear dynamical evolution equations
in scale. Hence, the general modeling paradigm pre-
sented here is exceedingly rich and therefore capable
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of synthesizing realistic correlation structures such as
those which characterize natural terrain.

An important feature of our proposed modeling frame-
work is that in our setting the problem of multiscale
system identification becomes quite easy to solve. This
problem has, in fact, received little attention despite
much recent activity in the area of multiscale stochas-
tic modeling of signals and images [3]. Models such as
[4, 1], while leading to efficient optimal estimation al-
gorithms, inherently lead to quite complex multiscale
system identification problems. In contrast, while our
framework is not particularly well-suited to efficient op-
timal estimation algorithms, it yields a simple, pow-
erful, and efficient framework for multiscale parame-
ter estimation (system identification). We exploit this
important property to advantage and develop Least
Squares (LS) algorithms which estimate the multiscale
model paraneters recursively within each scale, and
evolve from fine to coarse scale. We will show that once
these parameters have been estimated from a given im-
age, they can be used to generate detail (interpolation
error) statistics at every scale. These can, in turn, be
used to derive various useful quantities such as an in-
dicator of fractal dimension for the given image. In
addition, for a large class of natural images, these de-
tail signals have been shown to be significantly spatially
decorrelated within each scale. When these detail sig-
nals have ensemble variances that decay sufficiently fast
as a function of increasing scale, the above properties
may allow us to build efficient multiscale image com-
pression algorithms.

2. MODELING

To see how the proposed multiscale image models work,
let us first consider the synthesis of images. Without
loss of generality, assume four pixel values to be given
in a 2 pixel array. See Figure 1. A midpoint construc-
tion process then generates values along the boundaries
of the image and at its center. A similar operation at



each scale produces the successive pixel values at the
next scale as shown in Figure 1. In its most general
formulation, this midpoint construction process need
not be linear. However, linear midpoint construction
processes are sufficiently rich that we choose to concen-
trate the remainder of this paper only on these models.

Referring to Figure 1, we define the linear mid-point
construction process as follows. First, we define the
following vectors of image pixel values:

¥(s) 1)

T
z(s) [ T, T2 T3 T4 ] (2)
Given these vectors, the midpoint construction pro-
cesse is defined by

y(s) = A(s)z(s) + B(s)w(s), ®)
where A(s) is a 5-by-4 linear interpolation kernel at
scale s given by

[yl Y2 Y3 Ya Ys ]T

I(s) 1-=1(s) 0 0
0 u(s) 1—u(s) 0
A(s) = 0 0 1-1(s) I(s)
u(s) 0 0 1~ u(s)
my(s) - ma(s) ma(s) 1-— E‘?:l m;(s)

w(s) is a zero-mean process assumed white both s(()%?
tially and in scale; and finally, B(s) is a noise shaping
matrix given by

B(s)B(s)T = diag [ qi(s) qu(s) @(s) qu(s) gm(s) ].

Note that in the definition of A(s), each row sum 512
equal to one so that each new pixel value at the next
scale is the weighted average of a set of two or four
pixels at the previous scale. Furthermore, the apparent
symmetry in the definition of the elements of the first
and third (and second and fourth) rows of A(s) ensures
that the resulting image has a self-simliar structure and
that no ambiguity arises in assigning a value to a pixel
that is shared by two 3 x 3 pixel fields (An example is
pixel z in Figure 1). For these same reasons, the matrix
B(s) is chosen as above.

To produce the pixel values at the next scale, the
midpoint construction process can then be applied to
the following four sets of 2-by-2 pixel sets:

fM(s+1) = [z1 41 ys val” (6)
eD(s+1) = [nn 22 92 ys]T (N
s®(s+1) = [ys v2 73 ya” ®)
(s +1) = [ys ys ys ) 9)

Finally, the scale-to-scale evolution of the vectors z(s)
can be written as

z0(s + 1) = TO(5)2W)(s) + UD(s)wl(s)  (10)
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fori=1,---,4and j=1, 2, --.,4*. where T,(j) and
U,(j) depend linearly on A(s) and B(s) respectively.
(Note that a nonlinear midpoint construction process
would have resulted in a nonliear evolution equation
for the vectors z(s).)

The dynamic model in (10) is composed of two
terms. The term T()(s)z()(s) denotes interpolation
down to the next scale, while the term UW)(s)w()(s)
represents new information (detail) added as the pro-
cess evolves from one scale to the next. This process,
and more generally most multiscale models proposed
to date, are motivated by similar dynamical equations
describing the scale-to-scale evolution of wavelet scal-
ing coefficients. These coefficients can be generated as
outputs of a bank of filters which satisfy certain orthog-
onality conditions (Quadrature Mirror Filters). Hence
it is natural to expect that the 2-D process described
by (10) may also be realized by a successive filtering
process in the image domain. This is indeed the case
as graphically depicted in Figure 2. In this Figure, a
(2" + 1) x (2" + 1) pixel field I, is assumed given. An
upsampling process interleaves each row and column of
this image with zeros, yielding I?,,. This resulting im-
age is then convolved with a k x k kernel H(s) to yield
It,1. This convolution process introduces k — 2 ex-
traneous pixels which are deleted next. Finally, detail
(with statistics given by B(s)) is added to the appropri-
ate “new” pixels where zeros were inserted. This last
step yields the image I,4; at scale s + 1. It is easy to
check that the choice of the following 3 x 3 convolution
kernel yields ezactly the same result as the midpoint
deflection process depicted in Figure 1.

my(s) u(s) ma(s)
H(s) = (s) 1 1-1s) |
1-%,mi(s) 1-wu(s) ma(s)

3. PARAMETER ESTIMATION

Having established the linear midpoint construction
image model, we can construct a model of this type
for a given image f(i,j) with 1 <4,j < 2" + 1, by esti-
mating the parameters A(s) and B(s) at every scale’.
Given the image pixel values at two consecutive scales,
we have

y9(s) = A(s)e¥(s) + B(s)uwlil(s)  (12)
for j =1, ---, 4°. We wish to estimate the parameters
A(s) and B(s) from the given data. We proceed by first
computing LS estimates of the parameters I(s), u(s),
and m,(s), mo(s), and mg(s) which uniquely determine

INote that for this f, the scale parameter s takes integer
values between 1 and n



A(s). Next, we estimate the parameters g(s), qu(s),
and g, (s) which determine B(s).

By simply rewriting (12), we derive a recursive LS
(RLS) estimate of the parameter vector p(s) defined as
follows

ps)=[1 I(s) u(s) my(s) ma(s) ma(s) ]T.

In particular, we have (13)
¥9(s) = XU(s)p(s) + B(s)uli)(s)  (14)
where
XU)(s) =
&) Az 0 0 0 0
)0 Az, 0 0 0
&) —Az; 0 0 0 0
£ 0 -Azy 0 0 0
:cgj) 0 0 —Azy Azy+ Azs Axs
and (15)
Az, = zgj)—zgj) (16)
Az, = ;cgj) - :cgj) (17)
Azz = .‘L‘gj) - :r:(4j) (18)
Ary = zgj) — :z:(lj) (19)

The LS estimate of the desired parameters is ob-
tained by computing the LS estimate of the vector p(s)
subject to the following linear constraint

vTp(s) =1, (20)
where
v=[1000 0 0]. (21)
That is to say, we solve the following consirained least
squares problem

.
minZ”y(j)(s) - XD(s)p(s)|]?, . t. vTp(s) =1
j=1
T ’ . L . (222
o find the unique solution p(s) to this problem.
first compute the unconstrained solution p*(s) recur-
sively, and then derive the constrained solution from
this [6]. To this end, the unconstrained solution is given
by the following RLS procedure.
First define the following quantities:

k
Z X(j)T(s)X(j)(s)

Te(s) = (23)
j=1
1 A -
To(n) = 52 X (GN-D1  (29)
ij=1
To(s —1) = Ty(s) (25)
pas) = [0 0 00 0 0] (2
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where f denotes the average value of f(7,j), and I de-
notes the 6 x 6 identity matrix. Note that in the above,
the “sample covariance” matrix T at a given scale is
initialized with the computed covariance at the next
higher scale to reflect the relative a-priori uncertainty
in the starting guess.

We carry out the following recursions [6] starting at
the finest scale n to arrive at the solution.

Pi(s) = pioa(s) + Ga(s)yP(s) - X B s)pi_y(s))
Gi(s) = Tica()X® (s)(I + XBITy_y(s)XBT)-1
Pe(s) = Tioa(s) = Gr(8)XM(s)Tu_y(s)

After 4° iterations, the resulting unconstrained esti-
mate p*(s) is then used to compute the constrained
estimate as follows:

P(s) = p"(s) + T(s)o(1 — o7 " (s)) (v T(s)v) ™1, (27)
where I'(s) = [y (s).

Given the RLS estimate of p(s) (and hence A(s)),
we estimate the parameters of the noise shaping matrix
B(s) by defining the residual vectors

eD(s) = y9(s) = XD (s)p(s). (28)
By referring to Figure 1, it becomes evident that the
vectors e/)(s) contain redundant elements at every scale.
For instance, for s = 2, the second element in the vector
e())(2) coincides with the fourth element in the vector
e®(2). To estimate the parameters of B(s), we re-
move these redundancies first 2. Define the following
non-redundant column vectors

Ei(s) = vector of 1** and 3" elements of e@)(s)
Eu(s) = vector of 2" and 4'" elements of e/)(s)
Em(s) = vector of 5** elements of e(i)(s)

Given these vectors, the LS estimates of the desired
parameters is given by:

(Ei(s) = Eu(s))” (Ei(s) — Bi(s))

ails) T . (29)

) (Bu(s) = Bu(s))" (Eu(s) - Eu(s))

qu(s) T +92 —1 v(30)
= T —

gm(s) = (En(s) - E’"(Siz —(fj,,.(s) — Em(sl%&)

where * denotes the mean of the argument.

4. NUMERICAL RESULTS AND
CONCLUSIONS

The results presented above have been applied to a va-
riety of real images from a number of different sources,

2We note that we have ignored an analogous redundancy in
the measurement equations (14) which lead to an estimate of
A(s).



including SAR, elevation maps, and satellite imagery.
The results show that, overall, the above proposed mod-
eling framework is very rich and is capable of mod-
eling the spatial characteristics of a wide variety of
random fields. In particular, those of images of nat-
ural scenes. Preliminary analysis has also shown that
the detail images® resulting from this framework can
in many cases be compressed efficiently due to result-
ing small spatial correlations and very Gaussian-like
aggregate histogram statistics. In addition, the inher-
ently efficient and simple process of calculating the de-
tail images makes them extremely amenable to target
detection problem where the multiscale model may be
used to model the background, hence enhancing the
target visibility within the resulting detail images. Due
to limited space, below we present only one simple ap-
plication of our modeling framework to the target de-
tection problem.

Figure 3 shows a 257 x 257 image of a helicopter
against a natural background. The corresponding es-
timated multiscale parameters are shown in Figure 4.
We can see that these parameters evolve in a non-trivial
fashion as a function of scale. In particular, the evo-
lution of the B(s) parameters shows that the detail
signals have monotonically smaller variances between
scales 4 and 8. In fact, these estimated variances decay
rather quickly as a function of increasing scale.

In the finest scale detail signal shown in Figure
5, it is apparent that the size of the detail is rela-
tively large where the “target” (chopper) was present.
This indicates that the multiscale modeling framework
proposed here has captured the background reasonably
well. Hence, the chopper, being different from the back-
ground stands out in the detail image (at the finest
scale). To further illustrate the point, consider the
cross correlation of the columns of the resulting de-
tail image in Figure 5. This is plotted as an image
itself in Figure 6. Large correlation is evident where
the chopper was present in the original image.
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Figure 2: The filterbank interpretation.

Figure 3: Chopper Image
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Figure 4: Estimated multiscale parameters
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Figure 5: Detail image at the finest scale

Figure 6: Horizontal correlation matrix



