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ABSTRACT

In this paper an upper bound on the decay rate of the mean-

squared error for global image denoising is derived. As im-

age size increases, this upper bound decays to zero; that is,

the global denoising is asymptotically optimal. Unlike patch-

based methods such as BM3D, this property only holds for

global denoising schemes. In practice, and as demonstrated

in this work, this performance gap between patch-based and

global denoisers can grow rapidly with image size.

Index Terms— Global Denoising, Denoising Bound

1. INTRODUCTION

We begin with the model of additive noise problem:

y = z + e (1)

where the zero-mean white noise vector e with variance σ2 is

added to the latent signal vector z of length n to get the noisy

observation y. The following filtering scheme summarizes the

existing restoration methods [1]:

ẑ = Wy (2)

where the n× n matrix W denotes the employed filter to ob-

tain the estimated image ẑ. We highlight that even if the pixels

are estimated locally, the effect of overlapped patches and the

corresponding aggregations can be reflected in this global fil-

tering scheme. The matrix W can be decomposed using the

eigen-decomposition of the filter and the aggregation matrix

A:

W = AVSV−1 (3)

where S = diag[λ1, ..., λn] represents the shrinkage factors

and columns of the matrix V = [v1, ..., vn] contain the eigen-

vectors.

A vast number of denoising algorithms have been pro-

posed to find the optimal basis, shrinkage and aggregation

strategy. Typically, most of these methods use a set of locally

sparse basis functions to effectively separate the noise from

latent patches. Training based dictionaries [2, 3], fixed basis

functions such as wavelet and DCT [4, 5] and data adapted

functions obtained from principle component analysis (PCA)

[6, 7] are a few examples of the commonly used bases for

the purpose of denoising. Although the basis functions vary

for different methods, the optimal shrinkage strategy has been

shown to be the Wiener criterion [8].

Sparse image representations are facilitated by image

redundancies. Henceforth, a good denoiser should demon-

strate performance improvement as the number of samples

increases. This fact was evidenced for the case of restor-

ing binary images from context in [9, 10]. More recent, the

Non-Local Means (NLM) method [11] was inspired in part

by [9,10] and itself gave a proof of the asymptotic consistency

of the NLM method.

Recently we proposed a truly global scheme [12] where

all the existing pixels in the image were considered in devel-

oping a denosing filter, and the computational complexity was

also notably lowered by using a subsampling strategy based

on the Nyström extension. This current work is motivated

by our observation in [12] that unlike the patch-based meth-

ods, performance of the global approach was consistently im-

proved with image size. In the patch-based scenario, as the

image size grows, the performance improvement is limited

by the lower likelihood of finding closely similar patches (see

Fig. 1). Increasing the size of the patches reduces the number

of available similar patches (see Fig. 2), but is not enough to

force the error to zero asymptotically. Consequently, perfor-

mance stays almost constant with increasing image size (see

Fig. 6).

To alleviate the limitations imposed by the patch-based

denoisers, we can consider an alternative scenario where first,

the patch matching is replaced by matching similar pixels and

second, all the pixels in the image are contributing in denois-

ing every single pixel (Equivalently an identity aggregation

matrix A = I and a global rather than local basis in (3)). In

the current work, we show that the denoising performance of

the global filter always improves as a function of the image

size. The rate of this improvement is a function of the sparsity

of the image in a naturally constructed adapted basis. More

specifically, for an image of size n pixels, our oracle upper

bound on the mean-squared-error of the estimated image has

a decay rate of at least n−1.

The paper is organized as follows. Section 2 describes our

statistical analysis of the global filter and behavior of its MSE



(a) 64×64 (b) 128×128  (c) 192×192 (d) 256×256  

Fig. 1. Image size effect on patch matching. As the window size increases, patches with less similarities are matched.

(a) Small Patches (b) Similar Patches for (a)  (c) Large Patches (d) Similar Patches for (c)  

Fig. 2. Patch size effect on patch matching. As the patch size grows, fewer similar patches are available.

function. Section 3 represents the proposed MSE bound and

Section 4 provides some experiments to evaluate performance

of the global denosier and its bound. Finally we conclude this

paper in Section 5.

2. MINIMUM MSE ESTIMATION

In general, the filter matrix W is defined by affinity weights

between pixels, or patches around pixels [1]. While any valid

kernel [1] could be employed, here for simplicity we use the

NLM kernel weights [11] to measure the similarity between

the samples yi and yj as:

Kij = exp

{
−‖yi − yj‖

2

h2

}
, (4)

where yi and yj are patches centered at yi and yj , respec-

tively. Then, the denoiser performing normalized weighted

averaging using this kernel is:

ẑ =




wT
1

wT
2

...

wT
n


 y = Wy, (5)

where the i-th row of the matrix W has the corresponding

normalized weights as:

wi =
1∑n

j=1
Kij

[Ki1,Ki2, . . . ,Kin]
T . (6)

The filter matrix W can be closely approximated with a

positive, doubly-stochastic and symmetric matrix [1, 13], and

its eigen-decomposition can be expressed as:

W = VSVT , (7)

in which S = diag[λ1, ..., λn] denotes the shrinkage factors in

decreasing order 0 ≤ λn ≤ ... < λ1 = 1 and the orthonormal

basis is the columns of the matrix V = [v1, ..., vn]. Since

the filter W is affected by the noise in the given image, in

practice the filter is never computed directly from the input

noisy image. To have the filter stochastically decoupled from

noise, the kernel weights are typically computed from a “pre-

filtered” version of y. In the current work, for the purpose of

oracle performance evaluation, the filter is directly computed

from the clean latent image z and as a result is deterministic.

As was shown in [1], the squared bias of the estimate

given in (2) is:

‖bias(̂z)‖2 = ‖z − E(̂z)‖2

= ‖(I − VSVT )z‖2 =

n∑

j=1

(1− λj)
2b2j (8)

where b = VT z = [b1, ..., bn]
T contains the coefficients rep-

resenting the latent image in the global basis. The variance,

for its part, has the following form:

var(̂z) = tr (cov(̂z)) = σ2

n∑

j=1

λ2
j (9)

Therefore, the (oracle) MSE of the estimated image is:

MSE =
1

n

(
‖bias(̂z)‖2 + var(̂z)

)

=
1

n

n∑

j=1

(1− λj)
2b2j + σ2λ2

j (10)



Minimizing the MSE with respect to the eigenvalues λj re-

quires a simple differentiation:

∂MSE(λ)

∂λ
= 0 =⇒ λ∗

j =
1

1 + snr−1

j

, (11)

where, somewhat unsurprisingly, the “optimal” eigenvalues

{λ∗

j} are the Wiener coefficients with snrj =
b2j
σ2 . This shrink-

age strategy leads to the minimum value of the MSE1

MSE(λ∗) =
σ2

n

n∑

j=1

λ∗

j (12)

3. ORACLE MSE BOUND

The minimum MSE given by (12) can be written as:

MSE(λ∗) =
σ2

n

n∑

j=1

λ∗

j =
1

n

n∑

j=1

σ2b2j
σ2 + b2j

(13)

This equality can be expressed as:

MSE(λ∗) =
1

2n

n∑

j=1

σ|bj |
σ2+b2

j

2

σ|bj | (14)

Using the Arithmetic-Geometric Means inequality [14]

we have σ|bj | ≤
σ2

+b2j
2

, then:

1

2n

n∑

j=1

σ|bj |
σ2+b2

j

2

σ|bj | ≤
1

2n

n∑

j=1

σ|bj | (15)

And this in turn means

MSE(λ∗) ≤
σ

2n
‖b‖1 (16)

The l1 norm of the projection coefficients b gives a bound

on the oracle MSE. This indicates that the more sparse the sig-

nal is in the basis, the smaller the MSE error will be. More-

over, for a signal (image) with finite energy, the 1-norm of

b can not grow faster than n with increasing dimension, so

the upper bound must collapse to zero asymptotically. In

the worst case scenario wherein |bj | = c where c is con-

stant (This essentially corresponds to the signal being “white

noise” in the basis defined by the kernel), the MSE will be up-

per bounded by a constant cσ
2

. In general, however, we expect

the coefficients to decay at some α > 0 rate where |bj | =
c
jα

.

This means that

σ

2n

n∑

j=1

|bj | =
σ

2n

n∑

j=1

c

jα
(17)

1Technically, λ∗

1
have to be fixed at 1, but this would result in a very small

increase in the minimum MSE, on the order of 1/n. For sufficiently large n,

this difference is negligible.

For all α > 0, MSE(λ∗) will tend to zero as n → ∞. This

describes the most general case of MSE convergence. On a

more detailed analysis of the convergence rate, it is useful

to consider the coefficients bj as samples of the continuous

function |b(t)| = c/tα as bj = b(j).
The following lower and upper bounds are obtained us-

ing the integral test for convergence (Maclaurlin-Cauchy test)

[15]:

1

n

∫ n+1

1

c

tα
dt ≤

1

n

n∑

j=1

|bj| ≤
1

n
(c+

∫ n

1

c

tα
dt) (18)

For 0 < α < 1 we have:

c(
(n+ 1)1−α − 1

(1− α)n
) ≤

1

n

n∑

j=1

c

jα
≤ c(

n1−α − α

(1− α)n
) (19)

which is corresponding to a convergence rate of 1

nα .

On the other hand, for α = 1 we have:

c ln(n+ 1)

n
≤

1

n

n∑

j=1

c

j
≤

c(1 + ln(n))

n
(20)

which means a rate of ln(n)/n. Finally, the decay rate is at

least 1

n
for α > 1 since the summation in (17) converges to a

finite constant. In summary, as long as the coefficients decay

at all, at whatever rate, the minimum MSE is guaranteed to

approach zero. These results are evaluated with some experi-

ments in the following.

4. EXPERIMENTS

Some benchmark images used in our denoising evaluations

are shown in Fig. 3. Effect of the image size on the denoising

performance is explored in the first set of experiments in Fig.

4. For this experiment we denoised different image windows

with increasing size. As can be seen, the increment in the

number of pixels consistently leads to lower MSE. It is also

important to highlight that the MSE values of the full size

image (256× 256) are very small and some of them are even

below round off error. It is worth mentioning that for practical

purposes, our experiments are carried out using a truncated

filter with only a small number of the leading eigenvectors of

W [12].

The average MSE of the images in Fig. 4 is shown in Fig.

5 where the MSE and the bound given in (16) are plotted for

different window sizes. Clearly the estimated bound captures

the decay rate of the averaged MSEs.

(a) Parrot (b) House (c) Monarch (d) Cameraman

Fig. 3. Some benchmark images used in our experiments.
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Window 

Size 
128×128 192×192 256×256 128×128 192×192 256×256 128×128 192×192 256×256 128×128 192×192 256×256 

�=20 2.68 1.06 0.58 0.74 0.45 0.27 1.73 0.72 0.45 2.12 1.07 0.63 

�=40 6.78 2.86 1.62 2.04 1.31 0.76 4.34 1.83 1.19 5.54 3.04 1.74 

�=60 11.62 5.02 2.98 3.63 2.37 1.38 7.19 3.10 2.08 9.35 5.42 3.07 

Fig. 4. Oracle performance of the global denoising scheme for different window sizes. MSE values are averaged over 20

different white Gaussian noise realizations.

0

10

20

30

40

50

60

64×64 128×128 192×192 256×256

Window Size 

MSE

Bound

(a) σ = 20

0

20

40

60

80

100

120

64×64 128×128 192×192 256×256

Window Size 

MSE

Bound

(b) σ = 40

0

20

40

60

80

100

120

64×64 128×128 192×192 256×256

Window Size 

MSE

Bound

(c) σ = 60

Fig. 5. The estimated bound is evaluated for three noise levels and different window sizes. For each noise level, the bound in

(16) and the oracle MSE values are computed and then averaged across images given in Fig. 3.

Image size effect on the BM3D [5] and the proposed

method are compared in Fig. 6. The selected Building image

has locally and globally repetitive patterns which fit both

BM3D and our scheme to achieve the best results. As can

be seen in Fig. 6, our method has a very large performance

advantage over oracle BM3D even for small window sizes,

Noisy Building Image 

Fig. 6. Left: Building image corrupted by white Gaussian

noise of standard deviation σ = 40. Right: Averaged oracle

PSNR of the denoised window size for BM3D [5], and our

method.

and as the window size increases, the advantage grows. Also

as predicted, BM3D results are not showing any consistent

improvement by enlarging the image size2.

5. CONCLUSION

Although the oracle results do not correspond to practical

denoising algorithms, interestingly, the existing patch-based

bounds are improved upon by the asymptotic behavior of the

global filtering. Unlike oracle versions of algorithms like

BM3D, the oracle global filter is able to almost perfectly re-

construct the input image. This distinguishes global filtering

as an interesting area of future work to further push the per-

formance bound of practical algorithms.

2BM3D consists of two similar denoising stages in which the first stage,

as a pre-filter, provides a “pilot” estimate of the noise free image. The second

stage uses the pre-filtered image to obtain the near optimal Wiener shrinkage

using an estimate of the SNR and also to perform a more accurate patch

matching. Consequently, feeding the clean image to the second stage can

lead to the oracle BM3D.
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