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Abstract
Typically,  autonomous  believable  agents  are  im-
plemented using static, hand-authored reactive be-
haviors or scripts. This hand-authoring allows de-
signers to craft expressive behavior for characters, 
but can lead to excessive authorial burden, as well 
as result in characters that are brittle to changing 
world dynamics.  In this paper  we present an ap-
proach for the runtime adaptation of reactive be-
haviors for autonomous believable characters. Ex-
tending transformational  planning, our system al-
lows autonomous characters to monitor and reason 
about their behavior execution, and to use this rea-
soning to  dynamically rewrite  their  behaviors.  In 
our  evaluation, we transplant  two characters in a 
sample tag game from the original world they were 
written for into a different one, resulting in behav-
ior  that  violates  the  author  intended  personality. 
The reasoning layer successfully adapts the charac-
ter's behaviors so as to bring its long-term behavior 
back into agreement with its personality.

1 Introduction
In  interactive  games,  embodied  characters  typically  have 
their  own  personalities,  affecting the  way they act  in  the 
game. Authors usually create such characters by writing be-
haviors or scripts that describes the character's reaction to 
all imaginable circumstances within the game world. This 
approach of authoring characters presents several difficul-
ties.  First, when authoring a character's behavior set, it  is 
hard to imagine and plan for all possible scenarios it might 
encounter. Given the rich, dynamic nature of game worlds, 
this can require extensive programming effort [Mateas and 
Stern, 2003]. Second, over long game sessions, a character's 
static behavioral repertoire may result in repetitive behavior. 
Such  repetition  harms  the  believability  of  the  characters. 
Third, when behaviors fail to achieve their desired purpose, 
characters are unable to identify such failure and will con-
tinue them. Ideally, we want a self-adapting behavior set for 
characters,  allowing  characters  to  autonomously  exhibit 
their  author-specified personalities in new and unforeseen 
circumstances, and relieving authors of the burden of writ-
ing behaviors for every possible situation.

In the field of embodied characters, there has been little 
work on characters that are introspectively aware of their in-
ternal state, let alone characters that can rewrite themselves 
based on deliberating over their internal state. In this paper, 
we introduce an approach to runtime rewriting of character 
behaviors. Agents keep track of the status of their executing 
behaviors,  infer from their  execution trace what might be 
wrong, and perform appropriate revisions to their behaviors. 
This approach to runtime behavior transformation enables 
characters  to  autonomously  adapt  during  execution  to 
changing game situations, taking a first step towards auto-
matic generation of behavior that maintains desired person-
ality characteristics.

The rest of this paper is organized as follows. We first 
discuss  various  approaches to  this  problem and introduce 
our specific approach.  We then present our system in Sec-
tion 3. In Section 4, we discuss our empirical evaluation. Fi-
nally, we situate our work in the literature and conclude.

2 Approaches to behavior transformation
A character's behavior set can be considered a reactive plan 
dictating what it should do under various conditions. Run-
time behavior modifications can be considered a problem of 
runtime reactive-plan revision. 

One approach to runtime plan revision is to simply apply 
classical  planning techniques to  replan upon encountering 
failure.  Such  techniques,  however,  are  ill-suited  to  the 
unique requirements of our domain. They typically assume 
the agent is the sole source of change, actions are determin-
istic and their effects well defined, that actions are sequen-
tial and take unit time, and that the world is fully observ-
able. In an interactive, real-time domain, all these assump-
tions are violated. Characters are constantly interacting with 
the user, actions are non-deterministic and their effects are 
often difficult to quantify. Furthermore, as we are interested 
in  believable,  embodied  characters,  additional  challenges 
are imposed.  For instance, parallel actions and the ability 
for characters to change and express emotion are key for 
characters to maintain their believability [Loyall, 1997]. Fi-
nally, our domains are typically not fully observable. There 
are often occlusions blocking sensors from reaching the en-
tire world.
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Some of the more recent work in planning has focused on 
relaxing  these  assumptions.  Conditional  planners  such  as 
Conditional Non Linear Planner [Peot and Smith, 1992] and 
Sensory Graph Plan [Weld et. al, 1998] support sensing ac-
tions so that during execution, changing environmental in-
fluences can be ascertained and the appropriate conditional 
branch of the plan taken based on the sensor values. Unfor-
tunately, as the number of sensing actions and conditional 
branches increase, the size of the plan will grow exponen-
tially. These techniques are mostly suited to deterministic 
domains with occasional exogenous or non-deterministic ef-
fects, not to continuously changing interactive domains. 

Approaches  that  deal  best  with  exogenous  events  and 
non-determinism  are  decision-theoretic  planners.  These 
planners share much with reinforcement learning, common-
ly  modeling  the  problem  as  a  Markov  decision  process 
(MDP) and focusing on learning a policy. Partially observ-
able MDPs can be used when the world is not fully observ-
able. These approaches, however, require a large number of 
iterations to converge and only do so if certain conditions 
are met. In complex game domains, these techniques are in-
tractable.  Physical  states  alone  are complex,  upon adding 
game  state  information  and  the  status,  level  and  internal 
states of various characters, the state space quickly grows 
untenable. Further, these approaches generalize poorly. An 
interactive player can significantly change the virtual world; 
a learned static policy cannot be re-trained online during ac-
tual game play to accommodate such changes. Finally, these 
approaches invariably require significant engineering of for 
example, the state space and reward signal to make its appli-
cation feasible. They provide poor affordances for authorial-
specified, expressive control of behavior. In game worlds, it 
is imperative that game designers retain control of the over-
all flavor of character behavior. 

Transformational planning (TP) is an approach that can 
potentially deal with the complexity and nondeterminism of 
our problem domain. This technique isolates itself from the 
difficulties in the problem domain by focusing on reasoning 
about the plan itself. In TP, the goal is not to reason about 
the domain to generate a plan but to reason about a failing 
plan and transform it so as to fix the failing case without 
breaking the rest. This insight is key, but we cannot directly 
apply  such  a  technique.  TP  is  generally  applied  to  plans 
consisting of STRIPS operators (or plan languages that pro-
vide relatively minor extensions of STRIPS); it is unsuitable 
for rich reactive planning languages such as ABL (see Sec-
tion 3). Thus we developed novel behavior transformations 
and techniques for blame assignment, extending TP such as 
to enable us to leverage this approach in our system.

3. Behavior Transformation System
Before detailing our approach and system, we first present 
our  game scenario which will  help frame our  discussion. 
Our current game scenario consists of two embodied charac-
ters named Jack and Jill. They are involved in a game of 
Tag where they chase the character who is “It” around the 
game area. Each character has its own personality that af-
fects the way they approach play. Jack for example, likes to 

daydream and is not particularly interested in the game. If 
he has to play he would prefer to hide somewhere where he 
can relax. Jill on the other hand, likes to be the center of at-
tention. She is bored if she is not being chased or chasing 
someone. The behaviors authored for each character reflect 
their personalities. Each character's behavior library current-
ly consists of about 50 behaviors and contains approximate-
ly 1200 lines of ABL code (see below).  Our system (see 
Figure 1) is composed of a reactive layer which handles the 
real-time interactions, and a reasoning layer responsible for 
monitoring the character's state and making repairs as need-
ed.

3.1 The Reactive Layer
Our game environment presents a certain set of challenges 
for  the reactive  layer.  First,  a  real-time game domain re-
quires the reactive layer to have a fast runtime processing 
component with a short sense-decide-act loop. Second, the 
game world's interactive nature entails that the reactive layer 
handles conditional execution appropriately and provide the 
ability to  support  varying behaviors under  different  situa-
tions at runtime. Finally,  for game worlds containing em-
bodied, believable characters, the reactive layer must pro-
vide support for the execution of multiple, simultaneous be-
haviors,  allowing characters  to  gaze,  speak,  walk around, 
gesture with their hands and convey facial expressions, all at 
the same time. 

To meet these requirements for our domain we use A Be-
havior Language (ABL) as the reactive layer. ABL is ex-
plicitly designed to support programming idioms for the cre-
ation  of  reactive,  believable  agents  [Mateas  and  Stern, 
2004]. Its fast runtime execution module makes it suitable 
for real-time scenarios. ABL is a proven language for be-
lievable characters, having been successfully used to author 
the central characters Trip and Grace for the interactive dra-
ma Facade [Mateas and Stern, 2003]. To facilitate our dis-
cussion of the reasoning layer, we first describe ABL

3.1.1 ABL as a programming Language
A character authored in ABL is composed of a library of be-
haviors,  capturing the  various  activities  the  character  can 
perform in the world. Behaviors are dynamically selected to 
accomplish goals -  different behaviors are appropriate  for 
accomplishing the same goal in different contexts. For ex-
ample,  the goal  of  expressing anger  can be accomplished 
through either  a  behavior  that  screams or  a  behavior  that 

Figure 1: The figure shows the architectural diagram for our be-
havior transformation system.
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punches a hole in the wall. Behaviors themselves consist of 
a collection of sequential or parallel steps. Steps can be sub-
goals, mental acts (bits of computation, often used to update 
character memory), or primitive acts (actions, such as per-
forming an arm gesture, that are native to the game world). 
The currently active goals and behaviors are captured in an 
intention structure  called the  active behavior  tree.  During 
execution, steps may fail (e.g. no behavior can be found to 
accomplish a subgoal,  or a physical act fails in the game 
world),  potentially  causing the enclosing behavior to  fail. 
ABL provides numerous step and behavior annotations that 
modify the cascading effects of success and failure. When a 
behavior fails, ABL typically attempts to find an alternate 
behavior to accomplish the goal; if no appropriate alterna-
tive behavior is found, the goal fails. Behavior preconditions 
are used to find appropriate behaviors for accomplishing a 
goal in the current context. Continuously monitored condi-
tions, such as context conditions and success tests, provide 
immediate, reactive response. The various kinds of condi-
tions test against working memory, which contains various 
working memory elements (WMEs) that encode both cur-
rently sensed information and agent-specific  internal  state 
(e.g. emotional state). 

3.2.2 ABL as a runtime execution architecture
ABL's runtime execution module acts as the front-end for 
communication  with  the  game  environment.  It  constantly 
senses the world, keeps track of the current game state, up-
dates  the  active  behavior  tree  and  initiates  and  monitors 
primitive actions in the game world. Furthermore, the run-
time system provides  support  for  meta-behaviors  that  can 
monitor (and potentially change) the active behavior  tree. 
For our reasoning module, we have utilized this meta-rea-
soning capability of ABL to trace agent execution. We also 
modified ABL's runtime system and compiler so that behav-
iors generated by the reasoning layer can be reloaded.

3.2 The Reasoning Layer
The reasoning layer consists of two components. The first 
component tracks long-term patterns in the character's be-
havior execution and detects violations of the author-speci-
fied behavior contract (see below). When a contract viola-
tion is detected, it uses the execution trace to perform blame 
assignment, identifying one or more behaviors that should 
be changed. The second component applies behavior modi-
fication operators  so as  to  repair  the  offending  behaviors 
identified during blame assignment. 

3.2.1 Anomaly detection and blame assignment
One of the essential requirements of a reasoning system re-
sponsible  for  runtime  behavior  modification  is  to  detect 
when modification should be carried out. We need a way for 
authors to specify contracts about long-term character be-
havior;  when the contract  is  violated,  the reasoning layer 
should modify the behavior library. To accomplish this, we 
use a simple emotion model based on Em, an OCC model of 
emotion [Reilly,  1996].  Emotion values serve as  compact 
representations of long-term behavior. The author specifies 
personality-specific  constraints  on  behavior  by  specifying 

nominal bounds for emotion values. When an emotion value 
exceeds the bounds specified by the author,  this  tells  the 
reasoning layer that the current behavior library is creating 
inappropriate long-term behavior and that it should seek to 
assign blame and change its behavior. At runtime, a charac-
ter's emotional state is incremented when specific behaviors, 
annotated by the author, succeed or fail. The emotion incre-
ment value per behavior is defined by the author as part of 
specifying the character personality. 

A second requirement on the reasoning module is to de-
termine the behavior(s) that should be revised in response to 
a violation of the personality contract (in our case, an emo-
tion value exceeding a bound).  This process involves ana-
lyzing the past execution trace and identifying the behavior 
with the maximal contribution to the out-of-bound emotion 
value, amortized over time, as the responsible behavior.

3.2.2 Reasoning about traces
Once the reasoning module has detected the behavior(s) that 
need to be modified, the next step is to identify the appropri-
ate  set  of  behavior  modification  operators  (also  called 
tweaks) that can be applied to the offending behavior(s). We 
would like our behavior modification operators to be as do-
main-independent  as  possible.  However,  domain-specific 
knowledge about particular game worlds is necessary in or-
der to reason about which operators to apply to a given be-
havior. Rather than rolling such knowledge into the opera-
tors,  we factor  it  into  author-provided  declarative  knowl-
edge about the character's behavior library. This declarative 
knowledge consists of two parts: annotations on the behav-
iors themselves (see Table 1 for a subset of the annotations 
used in our current system) and an ontological description 
of the behaviors, their types, their relationships, and what 
they accomplish (see Figure 2 for a subset of the ontology). 

Annotation Meaning
SMF/S Semantically Meaningful Failure/Success: failure/suc-

cess of this behavior implies something that the goal is 
important in the game world  wrt. author intent ( Avoid-
itPerson shown in Fig 6 is SMF because it is important 
to avoid the person who is “it “ in the game )

FI Fully Implementing: the behavior in and of itself is a 
complete and independent method of achieving goal.

Table 1: Some example annotations.

Figure 2:  The figure shows the concepts hierarchy and relation-
ships used during the tweaking process
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Our system contains a collection of modification opera-
tors based on the currently defined ontological categories. 
Given  that  blame assignment  has  provided  a  behavior  to 
modify, the applicability of a modification operator depends 
on the role the problematic behavior plays in the execution 
trace, that is, an explanation of how the problematic behav-
ior contributed to a contract violation. Thus,  modification 
operators are categorized according to failure patterns.  The 
failure patterns provide an abstraction mechanism over the 
execution trace to detect the type of failure that is taking 
place. On an implementation level, these failure patterns are 
encoded loosely as finite state machines that look for pat-
terns in the execution trace. Figure 3 shows an example fail-
ure pattern that recognizes when a problematic behavior is 
repeatedly failing.  Table 2 shows the association between 
modification operators and failure patterns.

Now that  the major  components  of  the reasoning layer 
have been described, we can provide a brief summary of the 
behavior modification process.  At runtime, the system de-
tects when the author-provided behavior contract has been 
violated. Once blame assignment has determined the offend-
ing behavior, the system uses the failure patterns to explain 

the behavior's role in the contract violation. This involves 
matching each of the finite state machines associated with 
failure pattern against the execution trace. 

The set of matching failure patterns provide an associated 
set of applicable behavior modification operators to try on 
the offending behavior. The order in which the operators are 
tried  is  defined  through  annotated  priority  specifications. 
Operators are tried one at a time until one succeeds (opera-
tors  can  fail  if  the  behavior  they  are  tweaking  lacks  the 
structural prerequisites for the application of the operator). 
The modified behavior  is  compiled and reloaded into the 
agent. 

3.5. An illustrative example
To better  understand the inner  workings of  the reasoning 
module,  let's  look  at  an  illustrative  example.  In  our  tag 
game, when Jack is chasing Jill, he will use behavior  Run-
TowardsPlayer_1 to run towards Jill and tag her when he 
sees her (see Figure 4). Unfortunately, this behavior fails if 
Jill is standing on an elevated surface. Although Jack is able 
to see Jill, he cannot reach her without jumping. The behav-
ior author forgot to handle this case, being either unaware 
that there were elevated surfaces in the world or perhaps be-
cause the world has changed since the characters were au-
thored. Due to this deficiency, behavior  RunTowardsPlay-
er_1 will  persistently fail.  Since it  has been marked with 
emotion annotations (not shown), Jack's stress level will rise 
as the behavior persistently fails, eventually going beyond 
his nominal bounds for stress, triggering the behavior modi-
fication reasoning layer.

The reasoning module first analyzes the execution trace. 
The blame assignment module identifies the responsible be-
havior  by  calculating  a  temporally  normalized  emotional 
contribution for each behavior.  In the current example, it 
detects that RunTowardsPlayer_1 is the offending behavior. 
Analyzing  the  trace  based  on  this  behavior,  the  matcher 
identifies the failure pattern as  continuously repeating be-
havior (Table 2). The set of associated behavior modifica-

Figure 3 : The figure shows a matcher for the failure pattern: per-
sistent failing behavior.  In this diagram, <X> denotes the behavior 
in question, STRT (start), FAIL and ANY (start, fail, succeed) rep-
resents the status of the behavior and “after MINFAILs” or “within 
MINTIME” are conditions

Failure Pattern Behavior Modification Operator (modops)
Insufficiently instantiated goal.  Goal must be SMF Loosen preconditions of behavior closest to matching (or a clone thereof)

Failing goal, all behaviors fail.  Goal must have the annota-
tion SMF.  Modops only applicable to MBIG behaviors.

Recursively fix one of the failing behaviors (or a clone thereof)

If some behaviors are never run, try loosening preconditions of those behaviors (or a clone).

Modify goal annotations (eg. priority of the goal)

Failing sequential behavior.  Behavior must be SMF Replace failing step with a sibling (closest equivalent behavior from the ontology)

Modify step annotations or change its parameters

Remove failing step or reorder steps

Failing parallel behavior.  Behavior must be SMF Modify failing step annotations or change its parameters

Make behavior sequential.

Continuously repeating behavior. If behavior is part of a persistent goal, halt persistent goal.

Use alternate behavior or alternate parent behavior.

Recursively fix the behavior itself.

Make the stopping condition succeed 
Table 2: Some example failure patterns and their associated behavior modification operators.



International Joint Conference on Artificial Intelligence (IJCAI, 2007)

tion operators are then tried. Because the system is unable to 
find a stopping condition for the parent persistent goal  to 
halt it, nor to find an alternative behavior, the first applica-
ble operator  instructs the reasoning module to recursively 
modify the steps of the behavior itself. Sending this back to 
the matcher, leads us to the failure pattern Failing Sequen-
tial Behavior. The first associated operator is applicable and 
involves replacing the failing step in the behavior with the 
closest ontological match that  achieves the same purpose. 
The  failing  step  in  our  case  is  walkto, which  is  of  type 
Movement. Querying the ontology, we see that GoToElevat-
edPosition_1, one of Jack's behaviors defined for him to lo-
cate and hide on an elevated platform, is also of type Move-
ment.  Thus, we can apply the tweak, replacing the  walkto 
step with GoToElevatedPosition_1. Finally the modified be-
havior library is reloaded into the character.

4. Experimental Evaluation
We evaluated our behavior adaptation system on two hand-
authored  embodied  characters,  Jack  and  Jill,  designed  to 
play a game of Tag. Jack and Jill were initially authored by 
people on a different research project. This provided a great 
opportunity for us to evaluate our system. Their fixed be-
havior set must invariably make assumptions about world 
dynamics and thus will be ineffective at maintaining person-
ality invariants in the face of change. If our system can help 
maintain those invariants then it is an effective means of be-
havior adaptation.

Specifically, we provided emotion annotations by associ-
ating a stress emotion with being chased and placing nomi-
nal bounds on stress, specifying a contract on Jack's intend-
ed personality. We then tested whether our system is able to 
successfully modify the behavior library to changing envi-
ronments.   In  our  experiment,  we  simulated  a  changing 
world by moving the tag agent whose behaviors had been 
built for a specific map into a larger and sparser version. 

Our  experimental  procedure  involves  first  running  the 
game scenario without the adaptation mechanisms and con-
tinuously observing Jack's  stress  level.  We then run Jack 
with  the  adaptation  mechanisms.  Figure  5  shows  Jack's 
stress  levels  averaged  over  five  10-minute  games  before 
adaptation, and with two different behavior libraries modi-
fied by our system. Blame assignment found that the behav-
ior Run_Away_1 is responsible for stress exceeding bounds. 
In the ideal case, Jack would run away for a while, until he 
was able to escape out of sight, at which point, he would 
head for a hiding place. Trace analysis however shows that 
Jack turning around to ensure he is not being followed al-
ways fails. Jack is never able to run away and escape out of 

sight long enough to risk going to a hiding place. This situa-
tion tends to occur on our test maps because they are sparse; 
with fewer obstacles it is more difficult for Jack to ever es-
cape out of sight.  As a result, Jack is continuously under 
immediate  pursuit  and  his  stress  level  quickly  exceeds 
bounds.

In our  runs,  the  behavior  adaptation system found two 
different modifications that brought stress back in bounds. 
In the first case, the system changed the  AvoidItPerson_3 
behavior (see Figure 6) from a sequential behavior to a par-
allel behavior. Originally the authors had expected Jack to 
first ensure no one is following before hiding, but the sys-
tem's change is actually quite reasonable. When pressed, it 
makes  sense  to  keep  running  while  turning  around.  If  it 
turns out some one is following you, you can always change 
course and not go to the secret hiding place. Visually, this 
change  was  quite  appealing.  Jack,  when  running  away, 
would start strafing towards his hiding place, allowing him 
to move towards his destination while keeping a look out. 
Unfortunately, this change was unstable. Due to how Jack 
navigates, if he cannot see his next navigation point, he will 
stall  (a  defect  in  his  navigation  behaviors).  Surprisingly, 
even with this defect, Jack with this change is able to stay 
within his normal stress bounds. We initially assumed this 
was because the defect happened rarely, but in fact it was 
the opposite. While running away, Jack was always getting 
stuck, allowing Jill to tag him. This decreases stress because 
Jack is not as stressed when he is the pursuer; he can take 
his time and is not pressed. This change is nevertheless un-
desirable. Jack is violating an implicit behavior contract that 
Jack should try to escape when he is “It” and not allow him-
self to be tagged. The adaptation system essentially found a 
clever way to take advantage of the under specification of 
the author's  intent.  After amending the specifications,  our 
behavior adaptation system found an alternate change: to re-
order the steps inside AvoidItPerson_3.  In the new behavior 
set, AvoidItPerson_3 first hides and then turns around to en-
sure no one is following instead of the other way around. 
This results in behavior as good if not better than the paral-
lel version. 

sequential behavior RunTowardsPlayer(){
  precondition{ (ItWME itPlayerName :: itAgent)
    !(AgentPositionWME x::x y::y z::z 
      objectID == itAgent)}
      act Walkto(x,y,z)}
sequential behavior GoToElevatedPos(double x,
    double y, double z){
    mental_act{ pathplan_closest(x,y,z);}
    subgoal walkpath();
    act jump();}

Figure 4: Example behaviors defined in ABL

Figure 5: The figure shows the results for average stress level from 
the evaluation experiment
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5. Related Work
A character's behavior set can be considered a reactive plan 
which dictates what they should do under different condi-
tions. Runtime behavior modifications can thus be consid-
ered a problem of runtime reactive-plan revision. One ap-
proach to runtime plan revision is to combine deliberative or 
generative planning with a reactive layer such that the delib-
erative planner can regenerate and replace failing portions 
of the reactive plan. 

In the AI planning community, there has been previous 
work on techniques for combining deliberative and reactive 
planning. For example, Atlantis [Gat, 1992] and 3T [Bonas-
so et. al., 1997] are all aimed at combining deliberative and 
reactive components. Unfortunately they all, to varying de-
grees, make classical planning assumptions and are thus not 
applicable  to  our  domain  of  interest,  real-time interactive 
games. These approaches, furthermore, treat reactive plans 
as black boxes; planning sequences of black-boxed reactive 
plans, but not modifying the internals of the reactive plans 
themselves.  Our  approach  directly  modifies  the  internal 
structure of existing reactive behaviors. 

Behavior-set rewriting can be cast as a transformational 
planning problem. In transformational planning, the goal is 
to improve an existing reactive plan by applying a set of 
plan transformations. [McDermott, 1992] describes such an 
approach where the agent tries to improve the expected utili-
ty of its plan in a world where its job is to transport balls 
from  one  location  to  another  through  an  obstacle-filled 
space.  More  recently,  other  transformational  planning ap-
proaches have used temporal projection of a robot's plan to 
detect problems with the plans using a causal model of the 
world to represent the effects of their actions [Beetz, 2000]. 
These approaches, although promising, are of limited use-
fulness for us. They require a detailed casual model of the 
world. In our domain, we have neither the time for extended 
projective reasoning nor can we perform accurate projection 
due  to  the  interactive  and  stochastic  nature  of  game  do-
mains.

6. Conclusion
Our goal is to relieve the human author of the burden of pro-
gramming behaviors for  all  possible situations,  while  still 
providing the author with expressive control over a charac-
ter's behavior through both the hand-authoring of some be-
haviors plus the specification of a behavior contract. In this 
paper, we presented an approach for runtime behavior trans-
formation for reactive, real-time agents (with a focus on be-
lievable, embodied characters) that achieves this. It is based 
on the idea that it is much more efficient to reason about 
plans and how to fix them than it is to reason directly about 
an interactive, real-time and non-deterministic domain in an 
effort  to  plan  a  course  of  action.  This  is  exemplified  by 
transformational  planning, which we extended in order to 

apply to such a domain.  In particular, we developed novel 
behavior transformations,  specification of  a  behavior con-
tract capturing personality invariants the author wishes the 
character to maintain, and a mechanism for blame assign-
ment that uses the violated constraints plus behavior ontolo-
gy to determine which behavior(s) must be repaired. Experi-
ments showed that when Jack's emotion levels violated con-
straints  due  to  unexpected  world  conditions,  our  system 
found transformations which generated a modified behavior 
set that  was able to successfully satisfy the emotion con-
straints and maintain Jack's personality.
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sequential behavior AvoidItPerson() {
precondition {(ItWME itPlayerName :: itAgent)
        !(AgentPositionWME objectID == itAgent)}
    with(post) subgoal Hide();        
    with(post) subgoal TurnAroundEnsureEscape();}

Figure 6: The figure shows the modified behavior


