
International Joint Conference on Artificial Intelligence (IJCAI, 2007)

Abstract
Typically, autonomous believable agents are im-
plemented using static, hand-authored reactive be-
haviors or scripts. This hand-authoring allows de-
signers to craft expressive behavior for characters,
but can lead to excessive authorial burden, as well
as result in characters that are brittle to changing
world dynamics. In this paper we present an ap-
proach for the runtime adaptation of reactive be-
haviors for autonomous believable characters. Ex-
tending transformational planning, our system al-
lows autonomous characters to monitor and reason
about their behavior execution, and to use this rea-
soning to dynamically rewrite their behaviors. In
our evaluation, we transplant two characters in a
sample tag game from the original world they were
written for into a different one, resulting in behav-
ior that violates the author intended personality.
The reasoning layer successfully adapts the charac-
ter's behaviors so as to bring its long-term behavior
back into agreement with its personality.

1 Introduction
In interactive games, embodied characters typically have
their own personalities, affecting the way they act in the
game. Authors usually create such characters by writing be-
haviors or scripts that describes the character's reaction to
all imaginable circumstances within the game world. This
approach of authoring characters presents several difficul-
ties. First, when authoring a character's behavior set, it is
hard to imagine and plan for all possible scenarios it might
encounter. Given the rich, dynamic nature of game worlds,
this can require extensive programming effort [Mateas and
Stern, 2003]. Second, over long game sessions, a character's
static behavioral repertoire may result in repetitive behavior.
Such repetition harms the believability of the characters.
Third, when behaviors fail to achieve their desired purpose,
characters are unable to identify such failure and will con-
tinue them. Ideally, we want a self-adapting behavior set for
characters, allowing characters to autonomously exhibit
their author-specified personalities in new and unforeseen
circumstances, and relieving authors of the burden of writ-
ing behaviors for every possible situation.

In the field of embodied characters, there has been little
work on characters that are introspectively aware of their in-
ternal state, let alone characters that can rewrite themselves
based on deliberating over their internal state. In this paper,
we introduce an approach to runtime rewriting of character
behaviors. Agents keep track of the status of their executing
behaviors, infer from their execution trace what might be
wrong, and perform appropriate revisions to their behaviors.
This approach to runtime behavior transformation enables
characters to autonomously adapt during execution to
changing game situations, taking a first step towards auto-
matic generation of behavior that maintains desired person-
ality characteristics.

The rest of this paper is organized as follows. We first
discuss various approaches to this problem and introduce
our specific approach. We then present our system in Sec-
tion 3. In Section 4, we discuss our empirical evaluation. Fi-
nally, we situate our work in the literature and conclude.

2 Approaches to behavior transformation
A character's behavior set can be considered a reactive plan
dictating what it should do under various conditions. Run-
time behavior modifications can be considered a problem of
runtime reactive-plan revision.

One approach to runtime plan revision is to simply apply
classical planning techniques to replan upon encountering
failure. Such techniques, however, are ill-suited to the
unique requirements of our domain. They typically assume
the agent is the sole source of change, actions are determin-
istic and their effects well defined, that actions are sequen-
tial and take unit time, and that the world is fully observ-
able. In an interactive, real-time domain, all these assump-
tions are violated. Characters are constantly interacting with
the user, actions are non-deterministic and their effects are
often difficult to quantify. Furthermore, as we are interested
in believable, embodied characters, additional challenges
are imposed. For instance, parallel actions and the ability
for characters to change and express emotion are key for
characters to maintain their believability [Loyall, 1997]. Fi-
nally, our domains are typically not fully observable. There
are often occlusions blocking sensors from reaching the en-
tire world.

Towards Runtime Behavior Adaptation for Embodied Characters

 Peng Zang1, Manish Mehta1, Michael Mateas2, Ashwin Ram1

1. College of Computing, 2. Computer Science Department
Georgia Institute of technology University of Santa Cruz
Atlanta, GA Santa Cruz, CA

International Joint Conference on Artificial Intelligence (IJCAI, 2007)

Some of the more recent work in planning has focused on
relaxing these assumptions. Conditional planners such as
Conditional Non Linear Planner [Peot and Smith, 1992] and
Sensory Graph Plan [Weld et. al, 1998] support sensing ac-
tions so that during execution, changing environmental in-
fluences can be ascertained and the appropriate conditional
branch of the plan taken based on the sensor values. Unfor-
tunately, as the number of sensing actions and conditional
branches increase, the size of the plan will grow exponen-
tially. These techniques are mostly suited to deterministic
domains with occasional exogenous or non-deterministic ef-
fects, not to continuously changing interactive domains.

Approaches that deal best with exogenous events and
non-determinism are decision-theoretic planners. These
planners share much with reinforcement learning, common-
ly modeling the problem as a Markov decision process
(MDP) and focusing on learning a policy. Partially observ-
able MDPs can be used when the world is not fully observ-
able. These approaches, however, require a large number of
iterations to converge and only do so if certain conditions
are met. In complex game domains, these techniques are in-
tractable. Physical states alone are complex, upon adding
game state information and the status, level and internal
states of various characters, the state space quickly grows
untenable. Further, these approaches generalize poorly. An
interactive player can significantly change the virtual world;
a learned static policy cannot be re-trained online during ac-
tual game play to accommodate such changes. Finally, these
approaches invariably require significant engineering of for
example, the state space and reward signal to make its appli-
cation feasible. They provide poor affordances for authorial-
specified, expressive control of behavior. In game worlds, it
is imperative that game designers retain control of the over-
all flavor of character behavior.

Transformational planning (TP) is an approach that can
potentially deal with the complexity and nondeterminism of
our problem domain. This technique isolates itself from the
difficulties in the problem domain by focusing on reasoning
about the plan itself. In TP, the goal is not to reason about
the domain to generate a plan but to reason about a failing
plan and transform it so as to fix the failing case without
breaking the rest. This insight is key, but we cannot directly
apply such a technique. TP is generally applied to plans
consisting of STRIPS operators (or plan languages that pro-
vide relatively minor extensions of STRIPS); it is unsuitable
for rich reactive planning languages such as ABL (see Sec-
tion 3). Thus we developed novel behavior transformations
and techniques for blame assignment, extending TP such as
to enable us to leverage this approach in our system.

3. Behavior Transformation System
Before detailing our approach and system, we first present
our game scenario which will help frame our discussion.
Our current game scenario consists of two embodied charac-
ters named Jack and Jill. They are involved in a game of
Tag where they chase the character who is “It” around the
game area. Each character has its own personality that af-
fects the way they approach play. Jack for example, likes to

daydream and is not particularly interested in the game. If
he has to play he would prefer to hide somewhere where he
can relax. Jill on the other hand, likes to be the center of at-
tention. She is bored if she is not being chased or chasing
someone. The behaviors authored for each character reflect
their personalities. Each character's behavior library current-
ly consists of about 50 behaviors and contains approximate-
ly 1200 lines of ABL code (see below). Our system (see
Figure 1) is composed of a reactive layer which handles the
real-time interactions, and a reasoning layer responsible for
monitoring the character's state and making repairs as need-
ed.

3.1 The Reactive Layer
Our game environment presents a certain set of challenges
for the reactive layer. First, a real-time game domain re-
quires the reactive layer to have a fast runtime processing
component with a short sense-decide-act loop. Second, the
game world's interactive nature entails that the reactive layer
handles conditional execution appropriately and provide the
ability to support varying behaviors under different situa-
tions at runtime. Finally, for game worlds containing em-
bodied, believable characters, the reactive layer must pro-
vide support for the execution of multiple, simultaneous be-
haviors, allowing characters to gaze, speak, walk around,
gesture with their hands and convey facial expressions, all at
the same time.

To meet these requirements for our domain we use A Be-
havior Language (ABL) as the reactive layer. ABL is ex-
plicitly designed to support programming idioms for the cre-
ation of reactive, believable agents [Mateas and Stern,
2004]. Its fast runtime execution module makes it suitable
for real-time scenarios. ABL is a proven language for be-
lievable characters, having been successfully used to author
the central characters Trip and Grace for the interactive dra-
ma Facade [Mateas and Stern, 2003]. To facilitate our dis-
cussion of the reasoning layer, we first describe ABL

3.1.1 ABL as a programming Language
A character authored in ABL is composed of a library of be-
haviors, capturing the various activities the character can
perform in the world. Behaviors are dynamically selected to
accomplish goals - different behaviors are appropriate for
accomplishing the same goal in different contexts. For ex-
ample, the goal of expressing anger can be accomplished
through either a behavior that screams or a behavior that

Figure 1: The figure shows the architectural diagram for our be-
havior transformation system.

International Joint Conference on Artificial Intelligence (IJCAI, 2007)

punches a hole in the wall. Behaviors themselves consist of
a collection of sequential or parallel steps. Steps can be sub-
goals, mental acts (bits of computation, often used to update
character memory), or primitive acts (actions, such as per-
forming an arm gesture, that are native to the game world).
The currently active goals and behaviors are captured in an
intention structure called the active behavior tree. During
execution, steps may fail (e.g. no behavior can be found to
accomplish a subgoal, or a physical act fails in the game
world), potentially causing the enclosing behavior to fail.
ABL provides numerous step and behavior annotations that
modify the cascading effects of success and failure. When a
behavior fails, ABL typically attempts to find an alternate
behavior to accomplish the goal; if no appropriate alterna-
tive behavior is found, the goal fails. Behavior preconditions
are used to find appropriate behaviors for accomplishing a
goal in the current context. Continuously monitored condi-
tions, such as context conditions and success tests, provide
immediate, reactive response. The various kinds of condi-
tions test against working memory, which contains various
working memory elements (WMEs) that encode both cur-
rently sensed information and agent-specific internal state
(e.g. emotional state).

3.2.2 ABL as a runtime execution architecture
ABL's runtime execution module acts as the front-end for
communication with the game environment. It constantly
senses the world, keeps track of the current game state, up-
dates the active behavior tree and initiates and monitors
primitive actions in the game world. Furthermore, the run-
time system provides support for meta-behaviors that can
monitor (and potentially change) the active behavior tree.
For our reasoning module, we have utilized this meta-rea-
soning capability of ABL to trace agent execution. We also
modified ABL's runtime system and compiler so that behav-
iors generated by the reasoning layer can be reloaded.

3.2 The Reasoning Layer
The reasoning layer consists of two components. The first
component tracks long-term patterns in the character's be-
havior execution and detects violations of the author-speci-
fied behavior contract (see below). When a contract viola-
tion is detected, it uses the execution trace to perform blame
assignment, identifying one or more behaviors that should
be changed. The second component applies behavior modi-
fication operators so as to repair the offending behaviors
identified during blame assignment.

3.2.1 Anomaly detection and blame assignment
One of the essential requirements of a reasoning system re-
sponsible for runtime behavior modification is to detect
when modification should be carried out. We need a way for
authors to specify contracts about long-term character be-
havior; when the contract is violated, the reasoning layer
should modify the behavior library. To accomplish this, we
use a simple emotion model based on Em, an OCC model of
emotion [Reilly, 1996]. Emotion values serve as compact
representations of long-term behavior. The author specifies
personality-specific constraints on behavior by specifying

nominal bounds for emotion values. When an emotion value
exceeds the bounds specified by the author, this tells the
reasoning layer that the current behavior library is creating
inappropriate long-term behavior and that it should seek to
assign blame and change its behavior. At runtime, a charac-
ter's emotional state is incremented when specific behaviors,
annotated by the author, succeed or fail. The emotion incre-
ment value per behavior is defined by the author as part of
specifying the character personality.

A second requirement on the reasoning module is to de-
termine the behavior(s) that should be revised in response to
a violation of the personality contract (in our case, an emo-
tion value exceeding a bound). This process involves ana-
lyzing the past execution trace and identifying the behavior
with the maximal contribution to the out-of-bound emotion
value, amortized over time, as the responsible behavior.

3.2.2 Reasoning about traces
Once the reasoning module has detected the behavior(s) that
need to be modified, the next step is to identify the appropri-
ate set of behavior modification operators (also called
tweaks) that can be applied to the offending behavior(s). We
would like our behavior modification operators to be as do-
main-independent as possible. However, domain-specific
knowledge about particular game worlds is necessary in or-
der to reason about which operators to apply to a given be-
havior. Rather than rolling such knowledge into the opera-
tors, we factor it into author-provided declarative knowl-
edge about the character's behavior library. This declarative
knowledge consists of two parts: annotations on the behav-
iors themselves (see Table 1 for a subset of the annotations
used in our current system) and an ontological description
of the behaviors, their types, their relationships, and what
they accomplish (see Figure 2 for a subset of the ontology).

Annotation Meaning
SMF/S Semantically Meaningful Failure/Success: failure/suc-

cess of this behavior implies something that the goal is
important in the game world wrt. author intent (Avoid-
itPerson shown in Fig 6 is SMF because it is important
to avoid the person who is “it “ in the game)

FI Fully Implementing: the behavior in and of itself is a
complete and independent method of achieving goal.

Table 1: Some example annotations.

Figure 2: The figure shows the concepts hierarchy and relation-
ships used during the tweaking process

International Joint Conference on Artificial Intelligence (IJCAI, 2007)

Our system contains a collection of modification opera-
tors based on the currently defined ontological categories.
Given that blame assignment has provided a behavior to
modify, the applicability of a modification operator depends
on the role the problematic behavior plays in the execution
trace, that is, an explanation of how the problematic behav-
ior contributed to a contract violation. Thus, modification
operators are categorized according to failure patterns. The
failure patterns provide an abstraction mechanism over the
execution trace to detect the type of failure that is taking
place. On an implementation level, these failure patterns are
encoded loosely as finite state machines that look for pat-
terns in the execution trace. Figure 3 shows an example fail-
ure pattern that recognizes when a problematic behavior is
repeatedly failing. Table 2 shows the association between
modification operators and failure patterns.

Now that the major components of the reasoning layer
have been described, we can provide a brief summary of the
behavior modification process. At runtime, the system de-
tects when the author-provided behavior contract has been
violated. Once blame assignment has determined the offend-
ing behavior, the system uses the failure patterns to explain

the behavior's role in the contract violation. This involves
matching each of the finite state machines associated with
failure pattern against the execution trace.

The set of matching failure patterns provide an associated
set of applicable behavior modification operators to try on
the offending behavior. The order in which the operators are
tried is defined through annotated priority specifications.
Operators are tried one at a time until one succeeds (opera-
tors can fail if the behavior they are tweaking lacks the
structural prerequisites for the application of the operator).
The modified behavior is compiled and reloaded into the
agent.

3.5. An illustrative example
To better understand the inner workings of the reasoning
module, let's look at an illustrative example. In our tag
game, when Jack is chasing Jill, he will use behavior Run-
TowardsPlayer_1 to run towards Jill and tag her when he
sees her (see Figure 4). Unfortunately, this behavior fails if
Jill is standing on an elevated surface. Although Jack is able
to see Jill, he cannot reach her without jumping. The behav-
ior author forgot to handle this case, being either unaware
that there were elevated surfaces in the world or perhaps be-
cause the world has changed since the characters were au-
thored. Due to this deficiency, behavior RunTowardsPlay-
er_1 will persistently fail. Since it has been marked with
emotion annotations (not shown), Jack's stress level will rise
as the behavior persistently fails, eventually going beyond
his nominal bounds for stress, triggering the behavior modi-
fication reasoning layer.

The reasoning module first analyzes the execution trace.
The blame assignment module identifies the responsible be-
havior by calculating a temporally normalized emotional
contribution for each behavior. In the current example, it
detects that RunTowardsPlayer_1 is the offending behavior.
Analyzing the trace based on this behavior, the matcher
identifies the failure pattern as continuously repeating be-
havior (Table 2). The set of associated behavior modifica-

Figure 3 : The figure shows a matcher for the failure pattern: per-
sistent failing behavior. In this diagram, <X> denotes the behavior
in question, STRT (start), FAIL and ANY (start, fail, succeed) rep-
resents the status of the behavior and “after MINFAILs” or “within
MINTIME” are conditions

Failure Pattern Behavior Modification Operator (modops)
Insufficiently instantiated goal. Goal must be SMF Loosen preconditions of behavior closest to matching (or a clone thereof)

Failing goal, all behaviors fail. Goal must have the annota-
tion SMF. Modops only applicable to MBIG behaviors.

Recursively fix one of the failing behaviors (or a clone thereof)

If some behaviors are never run, try loosening preconditions of those behaviors (or a clone).

Modify goal annotations (eg. priority of the goal)

Failing sequential behavior. Behavior must be SMF Replace failing step with a sibling (closest equivalent behavior from the ontology)

Modify step annotations or change its parameters

Remove failing step or reorder steps

Failing parallel behavior. Behavior must be SMF Modify failing step annotations or change its parameters

Make behavior sequential.

Continuously repeating behavior. If behavior is part of a persistent goal, halt persistent goal.

Use alternate behavior or alternate parent behavior.

Recursively fix the behavior itself.

Make the stopping condition succeed
Table 2: Some example failure patterns and their associated behavior modification operators.

International Joint Conference on Artificial Intelligence (IJCAI, 2007)

tion operators are then tried. Because the system is unable to
find a stopping condition for the parent persistent goal to
halt it, nor to find an alternative behavior, the first applica-
ble operator instructs the reasoning module to recursively
modify the steps of the behavior itself. Sending this back to
the matcher, leads us to the failure pattern Failing Sequen-
tial Behavior. The first associated operator is applicable and
involves replacing the failing step in the behavior with the
closest ontological match that achieves the same purpose.
The failing step in our case is walkto, which is of type
Movement. Querying the ontology, we see that GoToElevat-
edPosition_1, one of Jack's behaviors defined for him to lo-
cate and hide on an elevated platform, is also of type Move-
ment. Thus, we can apply the tweak, replacing the walkto
step with GoToElevatedPosition_1. Finally the modified be-
havior library is reloaded into the character.

4. Experimental Evaluation
We evaluated our behavior adaptation system on two hand-
authored embodied characters, Jack and Jill, designed to
play a game of Tag. Jack and Jill were initially authored by
people on a different research project. This provided a great
opportunity for us to evaluate our system. Their fixed be-
havior set must invariably make assumptions about world
dynamics and thus will be ineffective at maintaining person-
ality invariants in the face of change. If our system can help
maintain those invariants then it is an effective means of be-
havior adaptation.

Specifically, we provided emotion annotations by associ-
ating a stress emotion with being chased and placing nomi-
nal bounds on stress, specifying a contract on Jack's intend-
ed personality. We then tested whether our system is able to
successfully modify the behavior library to changing envi-
ronments. In our experiment, we simulated a changing
world by moving the tag agent whose behaviors had been
built for a specific map into a larger and sparser version.

Our experimental procedure involves first running the
game scenario without the adaptation mechanisms and con-
tinuously observing Jack's stress level. We then run Jack
with the adaptation mechanisms. Figure 5 shows Jack's
stress levels averaged over five 10-minute games before
adaptation, and with two different behavior libraries modi-
fied by our system. Blame assignment found that the behav-
ior Run_Away_1 is responsible for stress exceeding bounds.
In the ideal case, Jack would run away for a while, until he
was able to escape out of sight, at which point, he would
head for a hiding place. Trace analysis however shows that
Jack turning around to ensure he is not being followed al-
ways fails. Jack is never able to run away and escape out of

sight long enough to risk going to a hiding place. This situa-
tion tends to occur on our test maps because they are sparse;
with fewer obstacles it is more difficult for Jack to ever es-
cape out of sight. As a result, Jack is continuously under
immediate pursuit and his stress level quickly exceeds
bounds.

In our runs, the behavior adaptation system found two
different modifications that brought stress back in bounds.
In the first case, the system changed the AvoidItPerson_3
behavior (see Figure 6) from a sequential behavior to a par-
allel behavior. Originally the authors had expected Jack to
first ensure no one is following before hiding, but the sys-
tem's change is actually quite reasonable. When pressed, it
makes sense to keep running while turning around. If it
turns out some one is following you, you can always change
course and not go to the secret hiding place. Visually, this
change was quite appealing. Jack, when running away,
would start strafing towards his hiding place, allowing him
to move towards his destination while keeping a look out.
Unfortunately, this change was unstable. Due to how Jack
navigates, if he cannot see his next navigation point, he will
stall (a defect in his navigation behaviors). Surprisingly,
even with this defect, Jack with this change is able to stay
within his normal stress bounds. We initially assumed this
was because the defect happened rarely, but in fact it was
the opposite. While running away, Jack was always getting
stuck, allowing Jill to tag him. This decreases stress because
Jack is not as stressed when he is the pursuer; he can take
his time and is not pressed. This change is nevertheless un-
desirable. Jack is violating an implicit behavior contract that
Jack should try to escape when he is “It” and not allow him-
self to be tagged. The adaptation system essentially found a
clever way to take advantage of the under specification of
the author's intent. After amending the specifications, our
behavior adaptation system found an alternate change: to re-
order the steps inside AvoidItPerson_3. In the new behavior
set, AvoidItPerson_3 first hides and then turns around to en-
sure no one is following instead of the other way around.
This results in behavior as good if not better than the paral-
lel version.

sequential behavior RunTowardsPlayer(){
 precondition{ (ItWME itPlayerName :: itAgent)
 !(AgentPositionWME x::x y::y z::z
 objectID == itAgent)}
 act Walkto(x,y,z)}
sequential behavior GoToElevatedPos(double x,
 double y, double z){
 mental_act{ pathplan_closest(x,y,z);}
 subgoal walkpath();
 act jump();}

Figure 4: Example behaviors defined in ABL

Figure 5: The figure shows the results for average stress level from
the evaluation experiment

International Joint Conference on Artificial Intelligence (IJCAI, 2007)

5. Related Work
A character's behavior set can be considered a reactive plan
which dictates what they should do under different condi-
tions. Runtime behavior modifications can thus be consid-
ered a problem of runtime reactive-plan revision. One ap-
proach to runtime plan revision is to combine deliberative or
generative planning with a reactive layer such that the delib-
erative planner can regenerate and replace failing portions
of the reactive plan.

In the AI planning community, there has been previous
work on techniques for combining deliberative and reactive
planning. For example, Atlantis [Gat, 1992] and 3T [Bonas-
so et. al., 1997] are all aimed at combining deliberative and
reactive components. Unfortunately they all, to varying de-
grees, make classical planning assumptions and are thus not
applicable to our domain of interest, real-time interactive
games. These approaches, furthermore, treat reactive plans
as black boxes; planning sequences of black-boxed reactive
plans, but not modifying the internals of the reactive plans
themselves. Our approach directly modifies the internal
structure of existing reactive behaviors.

Behavior-set rewriting can be cast as a transformational
planning problem. In transformational planning, the goal is
to improve an existing reactive plan by applying a set of
plan transformations. [McDermott, 1992] describes such an
approach where the agent tries to improve the expected utili-
ty of its plan in a world where its job is to transport balls
from one location to another through an obstacle-filled
space. More recently, other transformational planning ap-
proaches have used temporal projection of a robot's plan to
detect problems with the plans using a causal model of the
world to represent the effects of their actions [Beetz, 2000].
These approaches, although promising, are of limited use-
fulness for us. They require a detailed casual model of the
world. In our domain, we have neither the time for extended
projective reasoning nor can we perform accurate projection
due to the interactive and stochastic nature of game do-
mains.

6. Conclusion
Our goal is to relieve the human author of the burden of pro-
gramming behaviors for all possible situations, while still
providing the author with expressive control over a charac-
ter's behavior through both the hand-authoring of some be-
haviors plus the specification of a behavior contract. In this
paper, we presented an approach for runtime behavior trans-
formation for reactive, real-time agents (with a focus on be-
lievable, embodied characters) that achieves this. It is based
on the idea that it is much more efficient to reason about
plans and how to fix them than it is to reason directly about
an interactive, real-time and non-deterministic domain in an
effort to plan a course of action. This is exemplified by
transformational planning, which we extended in order to

apply to such a domain. In particular, we developed novel
behavior transformations, specification of a behavior con-
tract capturing personality invariants the author wishes the
character to maintain, and a mechanism for blame assign-
ment that uses the violated constraints plus behavior ontolo-
gy to determine which behavior(s) must be repaired. Experi-
ments showed that when Jack's emotion levels violated con-
straints due to unexpected world conditions, our system
found transformations which generated a modified behavior
set that was able to successfully satisfy the emotion con-
straints and maintain Jack's personality.

References
[McDermott, 1992] Drew McDermott. Transformational

Planing of Reactive Behavior. Research report.
YALEU/DCS/RR-941, Yale University, 1992.

[Beetz, 2000] M. Beetz. Structured reactive controllers— a
computational model of everyday activity. In Proceed-
ings of the Third International Conference on Au-
tonomous Agents.

[Bonasso et. al., 1997] P. Bonasso, J. Firby, E. Gat, D. Ko-
rtenkamp, D. Miller, and M. Slack. Experiences with an
architecture for intelligent, reactive agents. In Journal of
Experimental and Theoretical Artificial Intelligence.9:
237–256.

[Gat, 1992] E. Gat. Integrating planning and reacting in a
heterogeneous asynchronous architecture for controlling
real-world mobile robots. In Proceedings of the AAAI
Conference

[Mateas and Stern, 2004] M. Mateas, and A. Stern A Behav-
ior Language: Joint action and Behavioral Idioms. In
Life-like Characters. Tools, Affective Functions and Ap-
plications, Springer, 2004.

[Reilly, 1996] S. Reilly. Believable Social and Emotional
Agents. Ph.D. Thesis. Technical Report CMU-CS-96-
138, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA. May 1996.

 [Weld et. al, 1998] D. S. Weld, C. R. Anderson, D. Smith.
Extending Graphplan to Handle Uncertainty & Sensing
Actions. In Proceedings of AAAI 1998.

[Peot and Smith, 1992] M. Peot and D. Smith. Conditional
Nonlinear Planning, First International Conference on
AI Planning Systems, 1992.

[Mateas and Stern, 2003] M. Mateas, and A. Stern. Facade:
An Experiment in Building a Fully-Realized Interactive
Drama. In Game Developer's Conference: Game Design
Track, San Jose, California, March 2003.

[Loyall, 1997] Believable Agents: Building Interactive Per-
sonalities A. Bryan Loyall. Ph.D. Thesis. Technical Re-
port CMU-CS-97-123, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA. May 1997.

sequential behavior AvoidItPerson() {
precondition {(ItWME itPlayerName :: itAgent)
 !(AgentPositionWME objectID == itAgent)}
 with(post) subgoal Hide();
 with(post) subgoal TurnAroundEnsureEscape();}

Figure 6: The figure shows the modified behavior

