

Mateas, M. and Montfort, N. A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthetics. In Digital Arts and Culture: Digital
Experience: Design, Aesthetics, Practice (DAC 2005), Copenhagen, Denmark, 2005.

A Box, Darkly:
Obfuscation, Weird Languages, and Code Aesthetics

Michael Mateas
Georgia Institute of Technology

College of Computing
School of Literature, Communication and Culture

michaelm@cc.gatech.edu

Nick Montfort
University of Pennsylvania

Department of Computer and Information Science

nickm@nickm.com

ABSTRACT
The standard idea of code aesthetics, when such an idea manifests
itself at all, allows for programmers to have elegance and clarity
as their standards. This paper explores programming practices in
which other values are at work, showing that the aesthetics of
code must be enlarged to accommodate them. The two practices
considered are obfuscated programming and the creation of
“weird languages” for coding. Connections between these two
practices, and between these and other mechanical and literary
aesthetic traditions, are discussed.

1. INTRODUCTION
Programmers write code in order to cause the computer to
function in desired ways. But modern computer programs are
written in a form, usually textual, that is also meant to be
manipulable and understandable by human beings. For a
programmer to understand what she herself is writing, and to
incorporate code that others have written, and to simply learn how
to program with greater facility and on a larger, more complex
scale, code has been made legible to people. While a computer
system may compile or interpret code, it is important to the nature
of code that it is interpreted by people as well.

A typical perspective on code would be that clarity and
elegance are the only possible values that programmers can have
when writing it, although they may succeed to a greater or lesser
extent at writing clear and elegant code. But if this were the case,
how is it possible to explain the way that people sometimes
intentionally obfuscate their code, making its functioning more or
less impenetrable, even when there is no commercial or practical
reason to do so?1 The existence of obfuscated programming as a
software development practice, and as an aesthetic practice,
throws a wrench into the simplified theory of coding that would
claim that coders must always strive for clarity. An additional
complication is seen in programming languages that are
themselves designed as jokes or parodies, sometimes called
“weird programming languages” or “esoteric programming
languages.” Such languages are designed to make legibility of any
program difficult. Obfuscated code and weird languages highlight
the importance of the human reading of code in software
development. If some code is only to be read by a machine, it can
be neither obfuscated nor clear: it can only function properly or
not.

This paper suggests some ways to enlarge an aesthetics of code
to account for the existence of obfuscated programming and
“weird languages.” Such consideration shows that a previously
neglected layer of computing and new media is available for rich
aesthetic understanding.

1Sometimes people might undertake to make their computer

programs difficult to understand for commercial reasons — to
thwart competitors and clients, for instance, and to increase
others’ dependence on them. This practice is entirely different
from the obfuscated programming discussed in this paper.

2. READING CODE
Version 2.1 of the online lexical reference system WordNet gives
11 senses for “read,” including “look at, interpret, and say out
loud something that is written or printed” and “interpret the
significance of, as of palms, tea leaves, intestines, the sky, etc.;
also of human behavior.” [14] This discussion is about a fairly
literal application of the most common sense, “interpret
something that is written or printed,” although of course code that
appears on a screen (rather than being written or printed out) can
also be read.

The understanding of behavior is certainly involved in reading
code in the primary sense of “read,” however. It is essential to any
ordinary human reading of a computer program to develop an
understanding of how the computer will behave, and what it will
compute, when it runs the code that is being examined. In a
popular book on the history of software, one of the developers of
FORTRAN is characterized as “an extraordinary programmer who
could ‘execute’ a program in his head, as a machine would, and
then write error-free code with remarkable frequency.” [7]
Actually, all programmers must do this to some extent, using
some internal model of what code will do. Just as understanding
what a program does, and why, is critical on a practical level for
the programmer, it is important to the aesthetics of code as well.
Because code functions, “the aesthetic value of code lies in its
execution, not simply its written form. To appreciate it fully we
need to 'see' the code to fully grasp what it is we are experiencing
and to build an understanding of the code's actions.” [2]

The analysis of a computer program or system often involves
examining how the program behaves and “reading” (in this other
sense, “interpreting the significance of”) the intention behind the
program, the structure of the program, or the more fundamental
causes for the outputs observed. This is very frequently done in
reverse-engineering in “black-box” situations, where code and
other internals are not available for inspection. A network
administrator might also be able to “read” the behavior of a
malfunctioning router and figure out the problem without looking
at any code. But these types of analysis also apply to systems that
are not governed by legible code at all, and are not, by
themselves, examples of the phenomenon under consideration, the
human reading and interpretation of particular texts, computer
programs.

Reading in the main sense is about looking at something
abstract. “Reading a photograph” sounds odd, perhaps because
the photograph is not printed matter but also because it represents
a framed perspective rather directly, with little abstraction. It is
much more usual to read a diagram or map, because these are
abstract representations. The development of software brought
code into a legible condition. Cables patched into the ENIAC
were not themselves legible, but assembly language for the stored-
program EDSAC was. Human readability of programs was further
enhanced as high-level programming languages, beginning with
FORTRAN, were developed.

In the question and answer period after a lecture, Donald
Knuth, the famous computer scientist who is author of The Art of
Computer Programming, recalls reading the program SOAP from
Stan Poley: “absolutely beautiful. Reading it was just like hearing
a symphony, because every instruction was sort of doing two
things and everything came together gracefully.” He also
remembers reading the code to a compiler written by Alan Perlis
and others: “plodding and excruciating to read, because it just
didn’t possess any wit whatsoever. It got the job done, but its use
of the computer was very disappointing.” Knuth says of the
aesthetics of reading programs and the reader's pleasure: “I do
think issues of style do come through and make certain programs
a genuine pleasure to read. Probably not, however, to the extent
that they would give me any transcendental emotions.” [6]

This discussion is not about any sentimental effects that code
may have on the human reader, but does consider in detail the
issues of programming style and the ways in which human readers
read code. An aesthetic of code is suggested by Knuth's
comments, one that is typified by beauty and grace and is clearly
identified by Maurice Black in his dissertation, “The Art of
Code”:

Computing culture ... has adopted a traditional model of
literary aesthetics as a means of effecting change,
finding political utility and social value in the well-
crafted product that is at once entirely usable and wholly
beautiful to contemplate. The distinctions are clearly
evident in the respective disciplines' discourses: whereas
terms such as “elegant” and “beautiful” circulate freely
in computer culture to describe well-crafted code,
elegance, beauty, and all their synonyms have been
effectively exiled from the vocabulary of literary and
cultural theory ... [1]

Black devotes a section to Knuth's aesthetic views and his
concept of “literate programming,” and another section to John
Lions's book-length commentary on the beautiful, elegant Unix
operating system. “The Art of Code” clearly establishes the
classical aesthetic of programming as the dominant one in the
discourse of software development. More recent articles, such as
one entitled “Beautiful Code” that appeared in Dr. Dobbs, show
that this aesthetic is still going strong: “Instead of searching for
some automated measure ... perhaps we should be striving for
beauty in our work because we believe that beautiful things are
better.” [3] It is fairly easy to find programmers extolling the
beauty of programs and code snippets online, and also easy to find
suggestions for writing elegant, clearly-written code in
introductory programming textbooks.

There is a dark side to coding, however, one in which, even
though a person can see into what would otherwise be the black
box of the program, the source code itself is obscure, contrived to
foil human legibility rather than enhance it.

3. HELLO, OBFUSCATION
In 1984 Landon Curt Noll and Larry Bassel held the first
International Obfuscated C Code Contest. The contest was a
success that has been repeated many times; judging of the 18th
IOCCC was underway when this article was written. Only small,
complete C programs can be entered in the contest, which rewards
originality and the aesthetic abuse of the C language. The contest's
stated goals include demonstrating the importance of
programming style (“in an ironic way”) and illustrating “some of
the subtleties of the C language.” [4]

An anonymous entry in the first IOCCC (Figure 1)
accomplishes these goals in only two lines, and also plays on the
conventional “hello, world!” program, a program which is
typically used as a simple first example when learning a
programming language. Brian Kernighan and Dennis Ritchie (the
creator of C) begin their classic book The C Programming
Language [5] with such a program:

#include <stdio.h>

main()

{

 printf("hello, world\n");

}

The obfuscated program prints “hello, world!” as it is supposed
to, but in a very tortuous way. To see how this program comments
on C programming style and the subtleties of C, it is necessary to
discuss the program in detail, and to discuss the C programming
language in detail. The explication that follows will be most easily
followed by those who know how to program and will be best
understood by those who have had some experience programming
in C. However, the connection between the obfuscations seen in
this code and the particular nature of C should be evident to some
extent even to those who are not able, or do not wish, to follow all
the details.

To begin, here is a clearer C program that prints “hello,
world!”:

main()
{
 write(0,"hello, world!\n",14);
}

Even this simple program comes with a bit more baggage than the
BASIC equivalent, 10 PRINT "hello, world!" , and it is
more complex than the program Kernighan and Ritchie use to
introduce C. The system call write is used in this code with
three arguments: 0 means the writing will be done to standard
output; the second argument is the string to write, which includes
a newline character encoded as \n at the end; and the third
argument, 14 , is the length of the string, the number of characters
in it. The following program adds one layer of obfuscation, by
using a function to print out the "hello, world!\n" string
one character at a time:

int i;

main()
{
 for(i=0 ; i<14 ; i++)
 {
 write_one_letter("hello, world!\n" + i);
 }
}

write_one_letter(letter)
{
 write(0,letter,1);
}

This makes it harder to see how the program works, but it makes
visible some of the trickery that is possible, some would even say

int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

Figure 1. An anonymous entry to the 1984 International Obfuscated C Code Contest that prints “hello, world!”

encouraged, in C. Notice that part of this program involves adding
a string constant and a number, an operation which cannot be
done in many strongly typed programming languages. In Java,
where addition of String objects is defined as concatenation,
evaluating the expression ("string" + 17) involves
constructing a String out of the number, then adding the two: the
result is "string17" . A string constant in C is “really” a
number, however, which means that adding a string and a number
has an entirely different meaning. The string, seen as a number, is
the address in memory where the first character resides. Add one
to this number, and the result is the location of the second
character. So this for loop, starting at position 0 and finishing at
13, has the effect of sending each character in the string to the
write_one_letter function for printing.

To obfuscate the for loop a bit more, the i<14 condition is
written in a more elaborate way. Oddly enough, this condition
could be written "xxxxxxxxxxxxxx"[i] , which has the effect
of returning character number i from a string that has 14
characters in it. This yields a positive number (meaning TRUE)
until i reaches 14, which corresponds to the end of the string;
when the end of the string is reached it returns FALSE. This
happens to be the case because strings in C are terminated with
NULL, which, in C, means the same thing as FALSE. Now, to
make things more puzzling, any array reference in C can either be
written a[b] or b[a] . The values of a and b are added together
and their sum is used to look up the array entry, so it doesn't
matter which one is inside the brackets and which one comes
before them. Thus, the condition can be written even more
confusingly as i["xxxxxxxxxxxxxx"] . Also, any string that
is 14 characters long can be used in this condition. To create
additional confusion about the program’s syntax, the fully-
obfuscated program uses a different string to create the condition
i["]<i;++i){--i;}"] . This makes it difficult to see where
the data of the string ends and the code of the program begins.

The function write_one_letter is also given two
additional, superfluous parameters and its name is changed to
read. Redefining read to be a function that writes one letter is a
particularly gruesome move, but this is allowed in C; read is a
system call, not a keyword.

int i;

main()
{
 for(i=0 ; i["]<i;++i){--i;}"] ; i++)
 {
 read(0,"hello, world!\n" + i,1);
 }
}

read(j,letter,p)
{
 write(0,letter,1);
}

The meaningful name letter can be changed to i to make it
seem as if this is the same i that was used previously — it is not.
And, within the read function, i is written as i-- , which suggests
that the i up above might be getting decremented when this
happens — it is not; this decrementing has no effect because this
variable i “expires” immediately, at the end of the function. The
call to read can be crammed into the increment part of the for
statement, with the ++ operator is placed after i , to increment its
value after the statement has been executed; then another + can be
added to perform addition and make the puzzling-looking +++.
The initialization of i to 0 can be left out. Integer variables in C
are set to zero when they are defined, so the i=0 in the program

actually has no effect, except to make the program easier to
understand. With these changes, the code looks like this:

int i;

main()
{
 for(; i["]<i;++i){--i;}"] ;
 read(0,i+++"hello, world!\n",1));
}

read(j,i,p)
{
 write(0,i--,1);
}

There are only two differences between this code and the final
obfuscated program: the formatting of the text and the use of some
confusing ways to write zero and one. To turn to the second of
these, one fancy way to write zero is '-'-'-' , that is, the
numerical value of the '-' character subtracted from itself.
Similarly, '/'/'/' divides the numerical value of the '/'
character by itself, giving one. (Doing arithmetic with characters,
like adding numbers and strings, is also not the most standard
programming practice, although programmers are of course aware
that characters have numerical representations.) The fancy zero
and fancy one values that are obtained by doing this are passed to
the read function as the variables j and p; that function then uses
other elaborate ways to write zero and one. j/p+p is always 0/2
in this code and thus always zero. i/i is always one. i---j is a
way of writing (i--)-j , and, since j has the value zero, this
does a meaningless subtraction and is the same as just writing i-
- . Adding in these elaborate ways of expressing zero and one, the
code looks like this:

int i;

main()
{
 for(; i["]<i;++i){--i;}"] ;
 read('-'-'-',i+++"hello, world!\n",'/'/'/'));
}

read(j,i,p)
{
 write(j/p+p,i---j,i/i);
}

The final program is the above code with all unnecessary
whitespace removed and with the resulting line broken in two,
using a backslash in the middle of the "hello, world!\n"
string.

This example suffices to explain what obfuscations are and how
they relate to the programming language in which they are
written, although most IOCCC entries do far more elaborate
things. Gavin Barraclough's 2004 entry, which won best of show,
is exemplary. His program, less than 3600 characters in length, is
actually formatted in a “friendly” way, but is cryptically scattered
with one-letter variable names. The approximately two and a half
pages of code provide, as the hint file explains,

a 32-bit multitasking operating system for x86
computers, with GUI and filesystem, support for loading
and executing user applications in elf binary format,
with ps2 mouse and keyboard drivers, and vesa graphics.
And a command shell. And an application - a simple
text-file viewer. [4]

4. THE COMEDIAN AS THE
LANGUAGE C
Some of the obfuscations that are seen in IOCCC, and some that
can be seen in the “hello, world!” program, can be more or less
universally applied by programmers, regardless of language. The
use of meaningless variable names such as j and p is always
possible. The deceptively-named variable i (which looks like an
earlier variable i) and the misleadingly-named read function are
other examples of a universal programming pitfall. Whenever
variable and function names can be freely chosen, there is always
the potential for the coder's choice to be uninformative or
misleading. This can be intensified in C, where variable names are
case sensitive; some programs take advantage of this to name
variables o and O, for instance, inviting additional confusion with
the number zero. This play, which can be called naming
obfuscation, shows one very wide range of choices that
programmers have. Such play refutes the idea that the
programmer's task is automatic, value-neutral, and disconnected
from the meanings of words in the world.

While these programs often critique or play with programming
in general, the winning IOCCC programs also strongly assert their
Cness. a[b] and b[a] do not mean the same thing in other
languages, so a programmer could not choose the more confusing
of the two. Other languages do not define the addition of strings
and numbers, or they define it in a way that seems more intuitive,
at least to beginning programmers. But C, by giving the
programmer the power to use pointers into memory as numbers
and to perform arithmetic with them, particularly enables this sort
of pointer confusion. By showing how much room there is to
program in perplexing ways — and yet accomplishing astounding
results at the same time — obfuscated programs demonstrate that
C is powerful, and also that clarity in C code is achieved only
with effort.

The “fake ending” to the for loop in the hello world program,
which is achieved by embedding a deceptive string
"]<i;++i){--i;}", is an example of data/code confusion.
This is actually a mild example meant to fool a reader for a
moment into thinking that this (meaningless) string is code; other
obfuscated programs may transgress the code/data boundary in
other ways, by consuming their source code as input, by
generating their own code as output, or by modifying themselves
as they run.

There is also an Obfuscated Perl contest, run annually by The
Perl Journal since 1996. While Perl is quite unlike C, even
beginning Perl programmers will be quick to realize the great
potential for obfuscation that lies within the language. For one
thing, Perl offers a dazzling variety of extremely useful special
variables, represented with pairs of punctuation marks; this
feature of the language nearly merits an obfuscation category of
its own. Perl’s powerful pattern-matching abilities also enable
cryptic and deft string manipulations. Perl is sometimes de-
acronymized as “Practical Extraction and Report Language,” but
has also been said to stand for “Pathologically Eclectic Rubbish
Lister.” The language is ideal for text processing, which means
that printing “hello, world!” and other short messages can be done
in even more interesting ways. Thus, the tradition of writing an
obfuscated Perl program that prints “Just another Perl hacker,”
arose on USENET and became common enough that a program to
do this is known simply as a JAPH. The popularity of these
programs is attested to by the first section of the Perl FAQ, which
answers the question “What is a JAPH?” [10]

More generally, Perl has as its mantra “there are many ways to
do it.” A half-dozen Perl programmers may easily know eight or
ten different ways to code exactly the same thing. Because of this,

obscure ways of doing fairly common tasks are lurking
everywhere. A common, high-level obfuscation technique that is
seen in obfuscated Perl and also in obfuscated C (however
differently it may be expressed there) involves choosing the least
likely way to do it. This could mean using a strange operator, a
strange special variable, or an unusual function (or an ordinary
function in an unusual way). It could also involve treating data
that is typically seen as being one type as some other type, a view
that is permissible according to the language but not intuitive.

Perl and C are distinguished by having obfuscated
programming contests, but they are not widely despised languages
— unlike, for instance, COBOL or Visual Basic. Why are these
hateful programming languages not the targets of obfuscatory
ridicule? The most obvious explanation is that the programmers
who write obfuscated code are Perl and C hackers, often
professional ones. They enjoy hacking in these languages, as do
many free software developers and creative coders, and would not
choose to program in COBOL or Visual Basic for fun. Their play
with Perl and C is not pure pillory. In addition to making fun of
some “misfeatures” or abusable features of the languages,
obfuscated code shows how powerful, flexible programming
languages allow for creative coding, not only in terms of the
output but in terms of the legibility and appearance of the source
code.

What all obfuscations have in common — naming obfuscations
and language-specific ones, such as choosing the least well-
known language construct to accomplish something — is that they
explore the play in a language, the free space that is available to
programmers. If something can only be done one way, it cannot
be obfuscated. The play in a programming language can also be
used to make the program signify something else, besides being
valid code that compiles or is interpreted to some running form.

5. MULTIPLE CODING
Recent IOCCC programs include a racing game in the style of
Pole Position, a CGI-enabled Web server, and a maze displayer
with code in the shape of a maze. It is common for obfuscated
programs to be of unusual visual appearance. The code may spell
out the name of the program, or the name of the contest, in large
letters, or be in the form of some other ASCII art picture. This is a
type of double coding, or, more generally, multiple coding, which
can also be seen in Perl poetry and in “bilingual” programs.

The classic example of double coding in natural languages is
the sentence “Jean put dire comment on tape,” which is
grammatical English and grammatical French, although each word
has a different meaning in each language. (In French, the sentence
means "Jean [male name] is able to say how one types.") Harry
Mathews contributed to further French/English double coding by
assembling the Mathews Corpus, a list of words which exist in
both languages but have different meanings. In programming, an
important first step was the 1968 Algol by Noël Arnaud, a book of
poems composed from keywords in the Algol programming
language. However, these poems are not executable programs;
they are English poems that were assembled from a very restricted
vocabulary. [8]

A notable modern ancestor of Arnaud's Algol is Perl poetry, in
which texts that can be read as poems are devised so as to also be
valid Perl programs. As critics of code aesthetics have noted, even
award-winning Perl poetry is often little more than an exercise of
“porting” existing song lyrics into Perl, and the practice “does
little to articulate the language of perl itself.” [2] While it is
possible to obfuscate a program, in the sense of the IOCCC or the
Obfuscated Perl Contest, by fashioning it in the form of an
English poem, the goals of competitive obfuscators and Perl poets
appear to be quite different. Although a Perl poem must be a valid

program, what the program actually does is often an afterthought
in Perl poetry. For instance, the winning program in the first Perl
Poetry Contest does nothing. In contrast, a program’s function is
essential to obfuscated programming. So, while Perl poetry is an
interesting phenomenon to many new media scholars, there are
reasons, quite apart from any possible distaste for poetry, that this
practice seems less interesting to programmers. The interesting
phenomenon of multiple coding can be found in obfuscated
programs, too, while these programs also feature impressive,
intricate workings that are essential to their aesthetics.

Some other and quite extreme examples of multiple coding are
also seen in programs that are “bilinguial” or “multilingual” and
are analogous to “Jean put dire comment on tape” — they are
valid computer programs in more than one computer language.
These can be achieved by the re-use of keywords and operators or
by using comments in one program to include code in another
language.

6. HELLO, WEIRD
In the field of weird languages, also known as esoteric languages,2
the programmer moves up a level to exploit not just the play of a
particular language, but the play that is possible in programming
language design itself. Weird programming languages are not
designed for any real-world application or normal educational
use; rather, they are intended to test the boundaries of
programming language design. A quality they share with
obfuscated code is that they often ironically comment on features
of existing, traditional languages.

There are literally dozens of weird languages, commenting on
many different aspects of language design, programming history
and programming culture. A representative selection is considered
here, with an eye towards understanding what these languages
have to tell us about programming aesthetics.

Languages are considered in terms of four dimensions of
analysis: 1) parody, spoof, or explicit commentary on language
features, 2) a tendency to reduce the number of operations and
strive toward computational minimalism, 3) the use of structured
play to explicitly encourage and support double-coding, and 4)
the goal of creating a puzzle, and of making programming
difficult. These dimensions are not mutually exclusive categories,
nor are they meant to be exhaustive. Any one weird language may
be interesting in several of these ways, though one particular
dimension will often be of special interest.

7. ABANDON ALL SANITY, YE WHO
ENTER HERE: INTERCAL
INTERCAL is the canonical example of a language that parodies
other programming languages. It is also the first weird language,
and is highly respected in the weird language community. It was
designed in 1972 at Princeton University by two students, Don

2“Esoteric” is a more common term for these languages, but it is a

term that could apply to programming languages overall (most
people do not know how to program in any language) or to
languages such as ML and Prolog, which are common in
academia but infrequently used in industry. A better designation
might be art languages. However, while such languages are
undoubtedly a category of software art, developers of these
languages do not use this term themselves, and it seems unfair
to apply the term “art,” with all of its connotations, to their
work. While people might consider all sorts of languages to be
“weird,” that term’s sense better captures the intention behind
these languages, and it is used at times by the language
designers themselves.

Woods and James Lyon. (Later, while at Stanford, Woods was the
co-author of the first interactive fiction, Adventure.) The explicit
design goal of INTERCAL is

…to have a compiler language which has nothing at all
in common with any other major language. By ‘major’
we meant anything with which the author’s were at all
familiar, e.g., FORTRAN, BASIC, COBOL, ALGOL,
SNOBOL, SPITBOL, FOCAL, SOLVE, TEACH, APL,
LISP and PL/I.” [13]

INTERCAL borrows only variables, arrays, text input/output, and
assignment from other languages. All other statements, operators
and expressions are unique (and uniquely weird). INTERCAL has
no simple if construction for doing conditional branching, no
loop constructions, and no basic math operators — not even
addition. Effects such as these must be achieved through
composition of non-standard and counterintuitive constructs. In
this sense INTERCAL also has puzzle aspects.

However, despite the claim that this language has “nothing at
all in common with any other major language”, INTERCAL
clearly spoofs the features of contemporaneous languages,
combining multiple language styles together to create an ungainly,
unaesthetic style. From COBOL, INTERCAL borrows a verbose,
English-like style, including optional syntax that increases the
verbosity; all statements can be prepended with PLEASE. Sample
INTERCAL statements in this COBOL style include FORGET,
REMEMBER, ABSTAIN and REINSTATE. From FORTRAN,
INTERCAL borrows the use of optional line numbers, which can
appear in any order, to mark lines, and the DO construct, which in
FORTRAN is used to initiate loops. In INTERCAL, however,
every statement must begin with DO. Like APL, INTERCAL
makes heavy use of single characters with special meaning,
requiring even simple programs to be liberally sprinkled with non
alphanumeric characters. In a sense, INTERCAL exaggerates the
worst features of many languages and combines them together
into a single language.

The compiler, appropriately called “ick,” continues the parody.
Anything the compiler can’t understand, which in a normal
language would result in a compilation error, is just skipped. This
“forgiving” feature makes finding bugs very difficult; it also
introduces a unique system for adding program comments. The
programmer merely inserts non-compileable text anywhere in the
program, being careful not to accidentally embed a bit of valid
code in the middle of their comment.

The language manual hammers home the parody. After
explaining that INTERCAL stands for “Compiler Language with
No Pronounceable Acronym,” the manual proceeds with a series
of in jokes on language design. At one point the reader is
presented with a logic diagram that claims to provide a simpler
way of understanding the SELECT operation (SELECT being one
of INTERCAL’s two non-intuitive math operators): “The gates
used are Warmenhovian logic gates, which means the outputs
have four possible values: low, high, undefined …, and oscillating
…” The reader is presented with a maze-like logic diagram in
which lines needlessly zig-zag, sometimes dead-end, and all
eventually connect at the system bus, the BUS LINE; of the many
lines heading off diagram from the BUS LINE, all go “TO NEW
YORK” except for the one “TO PHILIDELPHIA.” All non-
alphanumeric characters are given special names: tail (,), hybrid
(;), mesh (#), worm (-) and so forth.

Thirty-three years later, INTERCAL still has a devoted
following. Eric Raymond, the current maintainer of INTERCAL,
revived the language in 1990 with his implementation C-
INTERCAL, which added the COME FROM construct to the
language — the inverse of the much-reviled GO TO.

8. MINIMALISM: BRAINFUCK
Languages that parody comment on other programming
languages; languages in the minimalist vein, on the other hand,
comment on the space of computation. Specifically, they call
attention to the very small amount of structure needed to create a
universal computational system. (A “system” in this sense can be
as varied as a programming language, a formal mathematical
system, or a physical processes, such as a machine.) A universal
system can perform any computation that it is theoretically
possible to perform; such a system can do anything that any other
formal system is capable of doing, including emulating any other
system. This property is what allows one to implement one
language, such as Perl, in another language , such as C, or to
implement an interpreter or compiler for a language directly in
hardware (using logic gates), or to write a program that runs on
some specific hardware to provide a platform for yet other
programs (as the Java Virtual Machine does). Universality in a
programming language is obviously a desired trait, since it means
that the language places no limits on the processes that can be
specified in the language. There are less powerful ways to
compute, some of which are used often — for instance, regular
expressions, of the sort found in the Find and Replace dialog of
word processors, are powerful enough to tell whether a string has
an even number of characters in it, but cannot determine whether
the length of a string is a prime number, as a universal computer
can.

Universal computation was discovered by Alan Turing and
described in his 1937 investigation of the limits of computability,
“On Computable Numbers.” While his paper proved the counter-
intuitive result that there exist formally specified problems for
which there exists no computational process (that is, no program)
for finding a solution, the important result for this paper was his
definition of a notional machine, the Turing Machine, to specify
what he meant by computation.

A Turing Machine consists of 1) an infinite tape, divided into
cells (memory locations), along which a read/write head moves
reading and writing symbols to and from the tape, and 2) a single
state register that can store a symbol indicating the machine’s
current state. A Turing Machine is governed by a rule table which
specifies, for each possible combination of state symbol and
symbol read from the tape, what symbol the head will write to the
tape, whether the head will move left or right, and what new
symbol is stored in the state register. While it is easy to imagine
that one could define a TM to compute a specific function, Turing
proved that there exist TMs that can simulate the activity of any
arbitrary TM; these are universal Turing Machines. The structure
necessary to achieve universality is surprisingly small; for
example, a universal TM can be defined using only 2 state
symbols and 18 tape symbols (2x18).

Minimalist languages strive to achieve universality while
providing the smallest number of language constructs possible.
Such languages also often strive for syntactic minimalism, making
the textual representation of programs minimal as well. Minimal
languages are sometimes called Turing Tarpits, after epigram 54
in Alan Perlis’ Epigrams of Programming: “54. Beware the
Turing tar-pit in which everything is possible but nothing of
interest is easy.” [11].

Brainfuck is an archetypically minimalist language, providing
merely seven commands, each represented by a single character.
These commands operate on an array of 30,000 byte cells
initialized to 0. The commands are:
> Increment the pointer (point to the memory cell to the right)
< Decrement the pointer (point to the memory cell to the left)
+ Increment the byte pointed to
- Decrement the byte pointed to

. Output the byte pointed to
, Accept a byte of input and write it into the byte pointed to
[Jump forward to the corresponding] if pointing to 0
] Jump back to the command after the corresponding [if
pointing to a non-zero value.
A Brainfuck “hello, world” program follows:

++++++++++[>+++++++>++++++++++>+++>+<<<<>++.>+.++
+++++..+++.>++.<<+++++++++++++++.>.+++.------.---
-----.>+.>.

Minimalist languages also comment on computer architectures as
well the nature of computation, and can have the flavor of a
minimal assembly language. The language OISC explicitly
parodies assembly language, for example. OISC stands for the
“One Instruction Set Computer”, referencing the standard
acronyms RISC (Reduced Instruction Set Computer) and CISC
(Complex Instruction Set Computer). OISC consists of a single
instruction, subtract-and-branch-unless-positive. subleq(a,
b, c) subtracts the contents of memory location a from the
contents of memory location b, stores the result in b, and, if the
result of the subtraction was 0 or negative, jumps to the address
stored in memory location c. Assembly languages commonly
contain separate arithmetic operations (add and subtract), as well
as various branch operations that test a memory location and
branch if the memory location is, for example, positive, or
negative, or zero. OISC parodies assembly by combining an
arithmetic and branch operation into a single instruction and
providing that to the programmer as the only instruction.

9. STRUCTURED PLAY:
SHAKESPEARE
Some weird languages encourage double coding by structuring
the play within the language such that valid programs can also be
read as a literary artifact. As was previously described, double-
coding is certainly possible in languages such as C and Perl, and
in fact is an important skill in the practice of obfuscated
programming. But where C and Perl leave the space of play
relatively unstructured, forcing the programmer to shoulder the
burden of establishing a double coding, structured play languages,
through their choice of keywords and their treatment of
programmer defined names (e.g. variable names), support double
coding within a specific genre of human-readable textual
production. The language Shakespeare exemplifies this structured
play aspect.

Here is a fragment of a Shakespeare program that reads input
and prints it out in reverse order:

[Enter Othello and Lady Macbeth]

Othello:
You are nothing!

 Scene II: Pushing to the very end.

Lady Macbeth:
Open your mind! Remember yourself.

Othello:
You are as hard as the sum of yourself and a stone
wall. Am I as horrid as a flirt-gill?

Lady Macbeth:
If not, let us return to scene II. Recall your
imminent death!

Othello:
You are as small as the difference between
yourself and a hair!

Shakespeare structures the play of the language so as to double-

code all programs as stage plays, specifically, as spoofs on
Shakespearean plays. This is done primarily by structuring the
play (that is, the free space) that standard languages provide in the
naming of variables and constants. In standard languages, variable
names are a free choice left to the programmer, while numeric
constants (e.g. 1) are either specified by the textual representation
of the number, or through a name the programmer has given to
select constants. In contrast, Shakespeare Dramatis Personae
(variables) must be the name of a character from some
Shakespeare play, while constants are represented by nouns. The
two fundamental constants in Shakespeare are -1 and 1. The
dictionary of nouns recognized by the Shakespeare compiler have
been divided into positive, negative, and neutral nouns. All
positive (e.g. “lord”, “angel”, “joy”) and neutral (e.g. “brother”,
“cow”, “hair”) nouns have the value 1. All negative nouns (e.g.
“bastard”, “beggar”, “codpiece”) have the value -1.3 Constants
other than -1 and 1 are created by prefixing them with adjectives;
each adjective multiplies the value by 2. So sorry little
codpiece denotes the number -4.

The overall structure of Shakespeare follows that of a stageplay.
Variables are declared in the Dramatis Personae section. Named
acts and scenes become labeled locations for jumps; let us
return to scene II is an example of a jump to a labeled
location. Enter and exit (and exeunt) are used to declare which
characters (variables) are active in a given scene; only two
characters may be on stage at a time. Statements are accomplished
through dialog. By talking to each other, characters set the values
of their dialog partner and themselves, compare values, execute
jumps, and so forth. Conditional jumps are accomplished by one
character posing a true or false question, and the second character
describing what action to take based on the truth value. Such a
jump appears in the previous code sample, where Othello asks
Lady Macbeth Am I as horrid as a flirt-gill? (is
the value of the variable Othello equal to -1), and Lady Macbeth
responds If not, let us return to scene II .

In a programming language, keywords are words that have
special meaning for the language, indicating commands or
constructs, and thus can’t be used as names by the programmer.
An example from C is the keyword for used to perform iteration;
for can not be used by the programmer as the name of a variable
or function. In standard languages, keywords typically limit or
bound play, as the keywords are generally not selected by
language designers to facilitate double-coding. This is, in fact,
what makes code poetry challenging; the code poet must hijack
the language keywords in the service of a double-coding. In
contrast, weird languages that structure play provide keywords to
facilitate the double-coding that is generally encouraged by the
language. Shakespeare keywords maintain a stylistic consistency
with a melodramatic spoof of Shakespearean plays. Output is
accomplished via Open your heart (output value as number)
and Speak your mind (output value as character), input by
Listen to your heart (input value as number) and Open
your mind (input value as character). A number of comparative
synonyms are provided for accomplishing inequality tests. For
example, friendlier and jollier perform the greater-than
test, as in are you friendlier than a fatherless
bastard? , while punier and worse perform the less-than
test, as in are you punier than a gentle king?

Another language, Chef, illustrates different design decisions
for structuring play. Chef facilities double-coding programs as

3Interestingly, “Microsoft” is in the negative noun list.

recipes. Variables are declared in an ingredients list, with amounts
indicating the initial value (e.g., 114 g of red salmon).
The type of measurement determines whether an ingredient is wet
or dry; wet ingredients are output as characters, dry ingredients
are output as numbers. Two types of memory are provided,
mixing bowls and baking dishes. Mixing bowls hold ingredients
which are still being manipulated, while baking dishes hold
collections of ingredients to output. What makes Chef particularly
interesting is that all operations have a sensible interpretation as a
step in a food recipe. Where Shakespeare programs parody
Shakespearean plays, and often contain dialog that doesn’t work
as dialog in a play (“you are as hard as the sum of yourself and a
stone wall”), it is possible to write programs in Chef that might
reasonably be carried out as a recipe. Chef recipes do have the
unfortunate tendency to produce huge quantities of food,
however, particularly because the sous-chef may be asked to
produce sub-recipes, such as sauces, in a loop.

A number of languages structuring play have been based on
other weird languages. Brainfuck is particularly popular in this
regard, spawning languages such as FuckFuck (operators are
replaced with curse words) and Cow (instructions are all the word
“moo” with various capitalizations).

10. THE SUN THE SUN, HIS MIND
PUZZLE: MALBOLGE
Languages that have a puzzle aspect explicitly seek to make
programming difficult by providing unusual, counter-intuitive
control constructs and operators. While INTERCAL certainly has
puzzle aspects, its dominant feature is its parody of 1960s
language design. Malbolge, named after the eighth circle of hell in
Dante’s Inferno, is a much more striking example of the puzzle
language. Where INTERCAL sought to merely have no features
in common with any other language, Malbolge had a different
motivation, as author Ben Olmstead writes:

It was noticed that, in the field of esoteric programming
languages, there was a particular and surprising void: no
programming language known to the author was
specifically designed to be difficult to program in.
Certainly, there were languages which were difficult to
write in, and far more were difficult to read (see:
Befunge, False, TWDL, RUBE...). But even
INTERCAL and BrainF***, the two kings of mental
torment, were designed with other goals …
Hence the author created Malbolge. ... It was designed
to be difficult to use, and so it is. It is designed to be
incomprehensible, and so it is.
So far, no Malbolge programs have been written. Thus,
we cannot give an example. [9]

Malbolge was designed in 1998. It was not until 2000 that
Andrew Cooke, using AI search techniques, succeeded in
generating the first Malbolge program, the “hello, world!”
program — actually, it prints HEllO WORld — that follows:

(=<`$9]7<5YXz7wT.3,+O/o'K%$H"'~D|#z@b=`{^Lx8%$Xmr
kpohm-kNi;gsedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA
@?>=<;:9876543s+O<oLm

The writing of more complex Malbolge programs was enabled by
Lou Scheffer’s cryptanalysis of Malbolge in which he discovered
“weaknesses” that the programmer can systematically exploit:

The correct way to think about Malboge, I'm convinced,
is as a cryptographer and not a programmer. Think of it
as a complex code and/or algorithm that transforms
input to output. Then study it to see if you can take
advantage of its weaknesses to forge a message that
produced the output you want. [12]

His analysis proved that the language allowed for universal
computation. The “practical” result was the production of a
Brainfuck to Malbolge compiler.

What makes Malbolge so difficult? Like many minimalist
languages, Malbolge is a machine language written for a fictitious
and feature-poor machine, and thus gains some difficulty of
writing and significant difficulty of reading from the small amount
of play provided to the programmer for expressing human, textual
meanings. However, as Olmstead points out, the mere difficulty of
machine language is not enough to produce a truly devilish
language. The machine model upon which Malbolge runs has the
following features which contribute to the difficulty of the
language:

Trinary machine model. Programmers are used to all number
representations bottoming out in binary representation at the
machine-level. By making trits rather than bits the fundamental
representation, this de-familiarizes the machine. This trinary
orientation is borrowed from tri-INTERCAL, a trinary variant of
INTERCAL.

Minimalism. Malbolge provides a minimal computational
model. There are three registers, two of which are a data pointer
and a code pointer, and seven instructions, represented by the
ASCII characters (j i * p < / v). j and i manipulate the
data and code pointer, * and p perform two trinary operations, <
and / read and write characters from the A (accumulator)
register, and v stops the machine.

Counterintuitive operations. Like INTERCAL, Malbolge does
not provide standard constructs, such as conditional branching or
arithmetic. Instead those operations must be built from two
operations. * rotates the trinary cell pointed to by the D pointer 1
trit to the right. (Actually, bit-wise rotation is a standard
operation on most computers — by providing this construct,
Malbolge is being uncharacteristically forgiving.) p performs a
tritwise operation on the contents of the A register and the number
pointed to by D register. The p operation, often referred to as the
crazy op, purposefully corresponds to no natural operation. In
presenting the table that describes how trits are combined by the
crazy op, Olmstead writes “don’t look for a pattern, it’s not
there.”

Indirect instruction decoding. In standard machine models of
computation, the code that will be executed next is determined by
a program counter. Usually, after executing one instruction, the
program counter is simply incremented so that it points to the next
one. The only other thing that can happen is a “branch,” which
corresponds, for instance, to if and GOTO statements. In this
case, the execution of the current instruction causes the program
counter’s value to change, so that it points to some other location
in memory. In either situation, the code that runs next is sitting
somewhere in memory; it is directly fetched and run. In standard
machine models, the instructions as laid out in memory are
exactly the instructions the machine will execute.

Malbolge, in contrast, performs a complicated transformation
on the instruction pointed at by the code pointer before executing
it. As the manual states:

When the interpreter tries to execute a program, it first
checks to see if the current instruction is a graphical
ASCII character (33 through 126). If it is, it subtracts 33
from it, adds C [the code pointer] to it, mods it by 94,
then uses the result as an index into the following table
of 94 characters:
+b(29e*j1VMEKLyC})8&m#~W>qxdRp0wkrUo[D7,XTcA"lI
.v%{gJh4G\-=O@5`_3i<?Z';FNQuY]szf$!BS/|t:Pn6^Ha

If the character indexed in the table is one of the seven characters
corresponding to Malbolge operations, the operation is executed.
Otherwise the machine does nothing, except to increment both the
code pointer and the data pointer (the constant incrementing of

the data pointer provides another annoyance for the programmer).
Note that the transformation depends on where the instruction
resides in memory because C (the code pointer) is added as part of
this step; the same value would execute as two different
instructions at two different locations in memory. A Malbolge
programmer cannot lay out the instructions she wants executed,
but must lay out instructions so that after they have been taken
through this complicated transformation, the eventual result will
be the instructions that were supposed to be executed in the first
place. To make matters more difficult, Malbolge programs can
only consist of the seven characters that correspond to operations;
the programmer can’t simply write a program consisting of non-
operation characters that will transform to operations.

Mandatory self-modifying code. In standard programming
practice, code is treated as immutable. Though both code and data
reside as patterns in memory, the block of memory patterns
corresponding to code remains fixed, while the block of memory
patterns corresponding to data is manipulated by the executing
code. Self-modifying code treats its code block as mutable,
literally changing its own operations as it runs. Self-modifying
code is notoriously difficult to read and write; where the textual
representation of the program is by necessity static, the structure
of the process dynamically changes over time. In Malbolge, the
programmer is forced to write self-modifying code, as code
modification is built into the definition of code execution:

After the instruction is executed, 33 is subtracted from
the instruction at C, and the result is used as an index in
the table below. The new character is then placed at C,
and then C is incremented.
5z]&gqtyfr$(we4{WP)H-Zn,[%\3dL+Q;>U!pJS72FhOA1C
B6v^=I_0/8|jsb9m<.TVac`uY*MK'X~xDl}REokN:#?G"i@

So, in addition to the complexities added by the indirect
instruction decoding, the instructions are constantly changed by
an arbitrary transformation. It is therefore impossible to write
code in Malboge that does the same thing twice in a row. These
factors account for the two years that passed before the first
Malbolge “hello, world” program appeared.

Scheffer, in his cryptanalytic treatment of Malbolge, discovered
a number of “weaknesses” that made it possible to write arbitrary
programs in Malbolge — proving, therefore, that is is capable of
universal computation. The most notable weaknesses are as
follows: The permutation table used to modify code exhibits short
cycles — that is, if one chooses carefully, instructions can be
selected that turn back into themselves before very long.
Specifically, a permutation cycle is a sequence of code
transformations that comes back to itself. For example, the p
instruction (the crazy op), when located at memory location 20,
will turn into the j instruction (to store a value in memory) the
first time it is executed, then into a “no op” (do nothing) once the
j instruction is executed, then into another no op when the no op
is executed, and finally, after this no op is executed, back to the p
instruction. Another forgiving aspect of Malboge is that the
branch instruction, i, is not modified, nor is its target. Exploiting
these regularities allowed Scheffer to develop general Malbolge
code constructs that, for example, allow one to create a block of
code that performs a given function every other time it is
executed, one that safely does nothing the alternate times. These
discoveries paved the way for the creation of a BrainFuck to
Malbolge compiler.

11. TOWARD A BROADER CODE
AESTEHTICS
Programs in weird languages generally have the property of being
difficult to read. This suggests that weird languages may be “auto-
obfuscating,” requiring obfuscation from programmers. But

obfuscated code contests are not about merely producing code
that is hard to read; they are about exploiting the syntax and
semantics of the language to comment on the language itself.
Weird languages emphasizing minimalism and puzzles are
“merely” hard to read in the same way that assembly language is
hard to read; they provide so little play that it is virtually
impossible to double-code interestingly. Languages structuring
play, in contrast, are hard to read because of the insistence of the
enforced double-coding. The textual meaning of the program is
inevitably not about the procedural meaning of the program, but
about some unrelated domain. Of the weird languages described
here, it may be only INTERCAL that is truly auto-obfuscating.
Since INTERCAL parodies several languages, resulting in a
language in which nothing can be expressed cleanly or elegantly,
the difficulty of reading INTERCAL programs is a result of such
programs being about the parody languages, and thus in some
sense about INTERCAL itself.

By commenting on the nature of programming itself, weird
languages point the way towards a refined understanding of the
nature of everyday coding practice. In their parody aspect, weird
languages comment on how different language constructions
influence programming style, as well as on the history of
programming language design. In their minimalist aspect, weird
languages comment on the nature of computation and the vast
variety of structures capable of universal computation. In their
puzzle aspect, weird languages comment on the inherent cognitive
difficulty of constructing effective programs. And in their
structured play aspect, weird languages comment on the nature of
double-coding, how it is the programs can simultaneously mean
something for the machine and for human readers.

All of these aspects are seen in everyday programming practice.
Programmers are extremely conscious of language style, of coding
idioms that not only “get the job done”, but do it in a way that is
particularly appropriate for that language. Programmers actively
structure the space of computation for solving specific problems,
ranging from implementing sub-universal abstractions such as
finite-state machines for solving problems such as string
searching, up to writing interpreters and compilers for custom
languages tailored to specific problem domains, such as Perl for
string manipulation. All coding inevitably involves double-
coding. “Good” code simultaneously specifies a mechanical
process and talks about this mechanical process to a human
reader. Finally, the puzzle-like nature of coding manifests not
only because of the problem solving necessary to specify
processes, but because code must additionally, and
simultaneously, double-code, make appropriate use of language
styles and idioms, and structure the space of computation. Weird
languages thus tease apart phenomena present in all coding
activity, phenomena that must be accounted for by any theory of
code.

Programming has already been connected to literature in an
interesting way, albeit without deep consideration of obfuscation
and weird languages as programming practices.[1] Obfuscation
and weird languages invite us to join programming contexts to the
literary contexts that must obviously be considered when
evaluating literary code. They also suggest that coding can resist
clarity and elegance to strive instead for complexity, can make the
familiar unfamiliar, and can wrestle with the language in which it
is written, just as much contemporary literature does. When a
program is double-coded to have some literary meaning, or
indeed, any human meaning, this meaning can play with what
programming language researchers call the semantics of the code:

what the code actually does as it executes.4 A very simple case of
such play can even be seen in the obfuscated C “hello, world!”
program, in which read is used to name a function that writes
one letter. In such play, the levels of human meaning and machine
meaning must both be considered.

As the name “Turing Machine” suggests, the computer is a
machine. Whether it is realized as a physical device or imagined
and abstract, it is made up of parts and performs tasks. A tradition
of overcomplicated machinery has manifested itself in art in
several ways, but perhaps most strikingly in Alfred Jarry’s
Pataphysics, “the science of imaginary solutions,” which involves
the design of complicated physical machinery and also the
obfuscation of information and standards. As a joke, and as a
parody of the complex French calendar, Jarry introduced a new
calendar. It begins on his birthday and is divided into thirteen
months, each of 29 days. Each day has an obscure name in the
pataphysical calendar, and the last day of the month is, in all but
two cases, an imaginary day. The second month, for instance, is
“Haha,” and its second day is “Dissolution of Edgar Allan Poe,
dinomythurge.” The Collège de 'pataphysique revises the calendar
once in a while, changing the names of days.

An aesthetic of mechanical obfuscation is also seen in the
kinetic installations of Peter Fischli and David Weiss and in their
film “The Way Things Go” (1987-1988), as well as in the earlier
visual art of Robert Storm Petersen, Heath Robinson, and Rube
Goldberg. (The weird language RUBE was so named as a tribute
to Goldberg.) These depictions and realizations of mechanical
ecstasy comment on engineering practice and physical possibility,
much as obfuscated coding and weird languages comment on
programming and computation. These “art machines,” like
obfuscated programs, are interesting because they do something in
a very complex way, but to be worth anyone’s attention they must
actually do something and have a machine meaning as well as a
human one.

Perhaps most oddly, obfuscated programs and weird languages
are inviting the full engagement of those who read them or
program in them, offering to show how strangely things can be
done. They invite theorists and critics of new media to look into
the dark box of the machine and see how creativity is at work in
there, too. To understand how programmer-artists, programmer-
authors, game developers, and hackers of other stripes achieve
what they do, it will be necessary to understand the full range of
programming practices, to not just play with the finished,
executable file, but to also consider the play that happens in
programming it.

12. REFERENCES
[1] Black, M. J. The Art of Code. Ph.D. Dissertation, University

of Pennsylvania. 2002.

[2] Cox, G., A. McLean, and A. Ward. The Aesthetics of
Generative Code.
http://www.generative.net/papers/aesthetics/ 2000.

[3] Heusser, M. Beautiful Code. Dr. Dobb’s.
www.ddj.com/documents/ddj1122411683430/ 2005.

[4] International Obfuscated C Code Contest.
http://www.ioccc.org/

[5] Kernighan, B. W. and D. M. Ritchie. The C Programming
Language. 2nd Ed. Prentice Hall, Englewood Cliffs, New
Jersey. 1988.

4This is the view in operational semantics, at any rate; there are

also other ways to consider program semantics.

[6] Knuth, D. E. Things a Computer Scientist Rarely Talks
About. Center for the Study of Language and Information,
Stanford, California. 2001.

[7] Lohr, Steve. Go To. Basic Books, New York. 2001.

[8] Mathews, H. and A. Brotchie, eds. Oulipo Compendium.
Atlas Press, London. 1998.

[9] Olmstead, B. Malboge.
http://www.antwon.com/other/malbolge/malbolge.txt 1998.

[10] Perl 5.6 FAQ. 23 May 1999.
http://www.perldoc.com/perl5.6/pod/perlfaq1.html

[11] Perlis, A. Epigrams on Programming. SIGPLAN Notices,
17(9), September 1982.
http://www.bio.cam.ac.uk/~mw263/Perlis_Epigrams.html

[12] Scheffer, L. http://www.lscheffer.com/malbolge.html

[13] Woods, D. and J. Lyon, The INTERCAL Programming
Language Revised Reference Manual. 1st Ed. 1973, C-
INTERCAL revisions, L. Howell and E. Raymond, 1996.

[14] WordNet 2.1. http://wordnet.princeton.edu/

