A Box, Darkly:
Obfuscation, Weird Languages, and Code Aesthetics

Michael Mateas
Georgia Institute of Technology
College of Computing
School of Literature, Communication and Culture

michaelm@cc.gatech.edu

ABSTRACT

The standard idea of code aesthetics, when suadeamanifests
itself at all, allows for programmers to have elegaand clarity
as their standards. This paper explores programimiagtices in
which other values are at work, showing that thsttesics of
code must be enlarged to accommodate them. Thetagiices
considered are obfuscated programming and the i@neadf

“weird languages” for coding. Connections betwebase two
practices, and between these and other mechamdaliterary
aesthetic traditions, are discussed.

1. INTRODUCTION

Programmers write code in order to cause the casnptd
function in desired ways. But modern computer paotg are
written in a form, usually textual, that is also ane to be
manipulable and understandable by human beings. &or
programmer to understand what she herself is wgritemd to
incorporate code that others have written, andnply learn how
to program with greater facility and on a largelQren complex
scale, code has been made legible to people. Vehdemputer
system may compile or interpret code, it is impatrta the nature
of code that it is interpreted by people as well.

A typical perspective on code would be that clarégd
elegance are the only possible values that progeaswan have
when writing it, although they may succeed to aatgeor lesser
extent at writing clear and elegant code. But i there the case,
how is it possible to explain the way that peoptenstimes
intentionally obfuscate their code, making its fiimging more or
less impenetrable, even when there is no commeuciptactical

reason to do sd7The existence of obfuscated programming as a

software development practice, and as an aesthptctice,
throws a wrench into the simplified theory of caglithat would
claim that coders must always strive for clarityn Additional
complication is seen in programming languages that
themselves designed as jokes or parodies, sometoaksd
“weird programming languages” or ‘“esoteric programgnm
languages.” Such languages are designed to makditggf any
program difficult. Obfuscated code and weird largesahighlight
the importance of the human reading of code inwso
development. If some code is only to be read byaalime, it can
be neither obfuscated nor clear: it can only fuorctproperly or
not.

This paper suggests some ways to enlarge an desthetode
to account for the existence of obfuscated progragnand
“weird languages.” Such consideration shows thareviously
neglected layer of computing and new media is als&l for rich
aesthetic understanding.

'Sometimes people might undertake to make their ctenp
programs difficult to understand for commercials@as — to
thwart competitors and clients, for instance, aadiricrease
others’ dependence on them. This practice is éyntitdferent
from the obfuscated programming discussed in thpep

Nick Montfort
University of Pennsylvania
Department of Computer and Information Science

nickm@nickm.com

2. READING CODE

Version 2.1 of the online lexical reference sysistordNet gives
11 senses for “read,” including “look at, interprahd say out
loud something that is written or printed” and &rgret the
significance of, as of palms, tea leaves, intestitiee sky, etc.;
also of human behavior.” [14] This discussion iuathba fairly
literal application of the most common sense, fiptet
something that is written or printed,” althoughcofurse code that
appears on a screen (rather than being writteniotep out) can
also be read.

The understanding of behavior is certainly involvedeading
code in the primary sense of “read,” however. kssential to any
ordinary human reading of a computer program toelbgv an
understanding of how the computer will behave, ahdt it will
compute, when it runs the code that is being exathirin a
popular book on the history of software, one of degelopers of
FORTRAN is characterized as “an extraordinary paogner who
could ‘execute’ a program in his head, as a machioeld, and
then write error-free code with remarkable freqyehd?7]
Actually, all programmers must do this to some extaising
some internal model of what code will do. Just adanstanding
what a program does, and why, is critical on atwaklevel for
the programmer, it is important to the aestheticeoae as well.
Because code functions, “the aesthetic value ot dab in its
execution, not simply its written form. To appreeidt fully we
need to 'see' the code to fully grasp what it isaveeexperiencing
and to build an understanding of the code’s acti¢2p

The analysis of a computer program or system dftgnlves
examining how the program behaves and “readingthis other
sense, “interpreting the significance of”) the mten behind the
program, the structure of the program, or the niforelamental
causes for the outputs observed. This is very &atiy done in
reverse-engineering in “black-box” situations, wherode and
other internals are not available for inspection. natwork
administrator might also be able to “read” the Wédraof a
malfunctioning router and figure out the problenthout looking
at any code. But these types of analysis also appdystems that
are not governed by legible code at all, and ar¢, hy
themselves, examples of the phenomenon under eatimh, the
human reading and interpretation of particular gextomputer
programs.

Reading in the main sense is about looking at dSuimgt
abstract. “Reading a photograph” sounds odd, psriegrause
the photograph is not printed matter but also beediLrepresents
a framed perspective rather directly, with littlesaaction. It is
much more usual to read a diagram or map, becdese tare
abstract representations. The development of smtimought
code into a legible condition. Cables patched itite ENIAC
were not themselves legible, but assembly langimgée stored-
program EDSAC was. Human readability of programs fuather
enhanced as high-level programming languages, biegjrwith
FORTRAN, were developed.

Mateas, M. and Montfort, N. A Box, Darkly: Obfusicat, Weird Languages, and Code AestheticDigital Arts and Culture: Digital
Experience: Design, Aesthetics, Practice (DAC 200®penhagen, Denmark, 2005.

int i;main(){for(i["]<i;++i){--i;}"];read(’-'-'-",i+++"hell\
o, world\n",'/'/'I"));}read(j,i,p){write(j/p+p,i---},i/i);}

Figure 1. An anonymous entry to the 1984 Internatinal Obfuscated C Code Contest that prints “hello, wrld!”

In the question and answer period after a lectirenald An anonymous entry in the first IOCCC (Figure 1)
Knuth, the famous computer scientist who is autifofhe Art of accomplishes these goals in only two lines, and plays on the
Computer Programminggecalls reading the program SOAP from conventional “hello, world!” program, a program whi is
Stan Poley: “absolutely beautiful. Reading it wast jlike hearing typically used as a simple first example when Ileayna

a symphony, because every instruction was sortoafigd two programming language. Brian Kernighan and Dennishid (the
things and everything came together gracefully.” ldkso creator of C) begin their classic bodkhe C Programming
remembers reading the code to a compiler writte\llay Perlis Languag€g5] with such a program:

and others: “plodding and excruciating to read,abse it just
didn’t possess any wit whatsoever. It got the johe] but its use
of the computer was very disappointing.” Knuth safsthe
aesthetics of reading programs and the readerasuynie: “I do
think issues of style do come through and makeitegrograms {
a genuine pleasure to read. Probably not, howéwdhe extent)
that they would give me any transcendental emofid6b printf("hello, world\n");

This discussion is not about any sentimental effélcat code }
may have on the human reader, but does considdetail the
issues of programming style and the ways in whismén readers The obfuscated program prints “hello, world!” assisupposed
read code. An aesthetic of code is suggested bythk&u o, butin a very tortuous way. To see how thiggpaen comments
comments, one that is typified by beauty and geamtis clearly on C programming style and the subtleties of @ itecessary to

#include <stdio.h>

main()

identified by Maurice Black in his dissertation, H& Art of discuss the program in detail, and to discuss thd@ramming
Code™ language in detail. The explication that followsl e most easily
Computing culture ... haadopteda traditional model of followed by those who know how to program and il best
literary aesthetics as a means of effecting change, understood by those who have had some experiengeamming
finding political utility and social value in the el- in C. However, the connection between the obfusnatiseen in
crafted product that is at once entirely usablehally this code and the particular nature of C shouleéwdent to some
beautiful to contemplate. The distinctions are itjea extent even to those who are not able, or do nst vto follow all
evident in the respective disciplines' discoursédsereas the detalils.
terms such as “elegant” and “beautiful” circulateety To begin, here is a clearer C program that pririsll6,
in computer culture to describe well-crafted code, world!:
elegance, beauty, and all their synonyms have been
effectively exiled from the vocabulary of literagnd main()

cultural theory ... [1]
Black devotes a section to Knuth's aesthetic viewd his
concept of “literate programming,” and another isecto John

write(0,"hello, world!\n",14);

Lions’s book-length commentary on the beautifugeht Unix Even this simple program comes with a bit more hggghan the
operating system. “The Art of Code” clearly estshdis the BASIC equivalent10 PRINT "hello, world!" , and it is
cl_assmal aesthetic of programming as the domlrmm in the more complex than the program Kernighan and Riteisie to
discourse of software development. More recentlesj such as introduce C. The system callrite is used in this code with
one entitled "Beautiful Code” that appearedn Dobbs, show three argumentsd means the writing will be done to standard
that this aesthetic is still going strong: Insteta‘dsea_rc_hmg for output; the second argument is the string to wwifeich includes
some automated measure ... perhaps we should ibiagstfor a newline character encoded ‘s at the end; and the third

beauty in our work because we believe that bedutifags are
better.” [3] It is fairly easy to find programmeextolling the
beauty of programs and code snippets online, aulessy to find
suggestions for writing elegant, clearly-written deo in
introductory programming textbooks.

There is a dark side to coding, however, one inclyheven inti;
though a person can see into what would otherwéséhe black)
box of the program, the source code itself is olesarontrived to main()
foil human legibility rather than enhance it. for(i=0 : i<14 ; i++)

3. HELLO, OBFUSCATION wite_one.leter('hello, workdha +
In 1984 Landon Curt Noll and Larry Bassel held tfirest }

International Obfuscated C Code Contest. The conies a }

success that has been repeated many times; judgitiee 18th
IOCCC was underway when this article was writtenlyGmall, {
complete C programs can be entered in the contbgth rewards write(0,letter, 1);

originality and the aesthetic abuse of the C laggud@he contest's

stated goals include demonstrating the importanceé o

programming style (“in an ironic way”) and illustirsg “some of This makes it harder to see how the program wdrlsjt makes
the subtleties of the C language.” [4] visible some of the trickery that is possible, sommeild even say

argumentl14, is the length of the string, the number of chinac
in it. The following program adds one layer of odfation, by
using a function to print out thtnello, world!\n" string
one character at a time:

write_one_letter(letter)

encouraged, in C. Notice that part of this progiavolves adding
a string constant and a number, an operation wbéinot be
done in many strongly typed programming languageslava,
where addition of String objects is defined as eteeation,
evaluating the expressior{"string" + 17) involves
constructing a String out of the number, then agldive two: the
result is "stringl7" . A string constant in C is “really” a
number, however, which means that adding a stnirtgaanumber
has an entirely different meaning. The string, se®a number, is
the address in memory where the first charactédessAdd one
to this number, and the result is the location loé second
character. So thifor loop, starting at position 0 and finishing at
13, has the effect of sending each character irsttieg to the
write_one_letter function for printing.

To obfuscate the for loop a bit more, tkd4 condition is
written in a more elaborate way. Oddly enough, tosdition
could be writte I’ XXXXXXXXXXXXXX"[i] , Which has the effect
of returning character numbdr from a string that has 14
characters in it. This yields a positive number gmeg TRUE)
until i reaches 14, which corresponds to the end of tfiegst
when the end of the string is reached it returnd $A This
happens to be the case because strings in C anmaded with
NULL, which, in C, means the same thing as FALSEwNto
make things more puzzling, any array reference oag either be
writtena[b] orb[a] . The values o& andb are added together
and their sum is used to look up the array entoyjtsdoesn't
matter which one is inside the brackets and whiok oomes
before them. Thus, the condition can be writtenneveore
confusingly ag["XXXXXXXXXXXXXX"] . Also, any string that
is 14 characters long can be used in this conditian create
additional confusion about the program’s syntaxe thully-
obfuscated program uses a different string to ertfe condition
i[")<i;++i){--i;}"] . This makes it difficult to see where
the data of the string ends and the code of thgrano begins.

The function write_one_letter is also given two
additional, superfluous parameters and its nameh&nged to
read. Redefiningead to be a function that writes one letter is a
particularly gruesome move, but this is allowedCinread is a
system call, not a keyword.

inti;
main()
for(i=0 ; i["]<i;++i){--i;}"] ; i++)
read(0,"hello, world\n" + i,1);

}
read(j,letter,p)

write(0,letter,1);

The meaningful naméetter can be changed to to make it
seem as if this is the samehat was used previously — it is not.
And, within the read function, is written ad-- , which suggests
that thei
happens — it is not; this decrementing has no efiecausehis
variablei “expires” immediately, at the end of the functidrne

call toread can be crammed into the increment part of the for
statement, with the+ operator is placed after, to increment its
value after the statement has been executed; tiethex+ can be
added to perform addition and make the puzzlindstog +++.
The initialization ofi to O can be left out. Integer variables in C
are set to zero when they are defined, sa#fe in the program

up above might be getting decremented when this

actually has no effect, except to make the progemsier to
understand. With these changes, the code looks$Hike

inti;
main()

for(; i[]<i++i){-i;}] ;
read(0,i+++"hello, world\n",1));

read(j,i,p)
{write(O,i——,l);
}

There are only two differences between this code e final
obfuscated program: the formatting of the text #reduse of some
confusing ways to write zero and one. To turn te skecond of
these, one fancy way to write zero 'is'-' , that is, the
numerical value of thé-' character subtracted from itself.
Similarly, '/'I'' divides the numerical value of thHé
character by itself, giving one. (Doing arithmetith characters,
like adding numbers and strings, is also not thetnstandard
programming practice, although programmers areoofse aware
that characters have numerical representationse) fahcy zero
and fancy one values that are obtained by doirgyate passed to
the read function as the variabjegndp; that function then uses
other elaborate ways to write zero and gfperp is always0/2

in this code and thus always zevo. is always onei--- isa
way of writing (i--)-j , and, sincg has the value zero, this
does a meaningless subtraction and is the samstasrjitingi-

- . Adding in these elaborate ways of expressing aabone, the
code looks like this:

inti;

main()

{for(ST+ -3 5
read(’-'-'-',i+++"hello, world\n","/'/'"));

}

read(j,i,p)

write(j/p+p,i---j,ifi);

The final program is the above code with all unseaey
whitespace removed and with the resulting line brokn two,
using a backslash in the middle of theello, world\n"

string.

This example suffices to explain what obfuscatiaresand how
they relate to the programming language in whichytlare
written, although most IOCCC entries do far moraberate
things. Gavin Barraclough's 2004 entry, which westtof show,
is exemplary. His program, less than 3600 charadtelength, is
actually formatted in a “friendly” way, but is crypally scattered
with one-letter variable names. The approximately and a half
pages of code provide, as the hint file explains,

a 32-bit multitasking operating system for x86
computers, with GUI and filesystem, support fordiog
and executing user applications in elf binary farma
with ps2 mouse and keyboard drivers, and vesa grsph
And a command shell. And an application - a simple
text-file viewer. [4]

4. THE COMEDIAN AS THE
LANGUAGE C

Some of the obfuscations that are seen in IOCCE,same that
can be seen in the “hello, world!” program, cannhbere or less
universally applied by programmers, regardlessanfliage. The
use of meaningless variable names such andp is always
possible. The deceptively-named variabléwhich looks like an
earlier variabla) and the misleadingly-namedad function are
other examples of a universal programming pitfallhenever
variable and function names can be freely chos@retis always
the potential for the coder's choice to be uninfttive or
misleading. This can be intensified in C, wherdalde names are
case sensitive; some programs take advantage ®ftathname
variableso andQ, for instance, inviting additional confusion with
the number zero. This play, which can be calle@ming
obfuscation, shows one very wide range of choices that
programmers have. Such play refutes the idea thnat t
programmer's task is automatic, value-neutral, disdonnected
from the meanings of words in the world.

While these programs often critique or play witlognamming
in general, the winning IOCCC programs also strgrglsert their
Cness.alb] andb[a] do not mean the same thing in other
languages, so a programmer could not choose the caomfusing
of the two. Other languages do not define the aidibf strings
and numbers, or they define it in a way that sesime intuitive,
at least to beginning programmers. But C, by givitige
programmer the power to use pointers into memorgpuasbers
and to perform arithmetic with them, particulartyadles this sort
of pointer confusion.By showing how much room there is to
program in perplexing ways — and yet accomplishistp@nding
results at the same time — obfuscated programs derate that
C is powerful, and also that clarity in C code &hiaved only
with effort.

The “fake ending” to the for loop in the hello wabgbrogram,
which is achieved by embedding a deceptive string
"<i;++){--i}, is an example oflata/code confusion.
This is actually a mild example meant to fool adevafor a
moment into thinking that this (meaningless) strimgode; other
obfuscated programs may transgress the code/datadary in
other ways, by consuming their source code as ,njyt
generating their own code as output, or by modgytimemselves
as they run.

There is also an Obfuscated Perl contest, run digring The
Perl Journal since 1996. While Perl is quite unlike C, even
beginning Perl programmers will be quick to realibe great
potential for obfuscation that lies within the lalage. For one
thing, Perl offers a dazzling variety of extremelyeful special
variables, represented with pairs of punctuationrkma this
feature of the language nearly merits an obfuscatetegory of
its own. Perl's powerful pattern-matching abilitietso enable
cryptic and deft string manipulations. Perl is stmes de-
acronymized as “Practical Extraction and ReportdLege,” but
has also been said to stand for “Pathologicallye&at Rubbish
Lister.” The language is ideal for text processimgpich means
that printing “hello, world!” and other short megsa can be done
in even more interesting ways. Thus, the traditbérwriting an
obfuscated Perl program that prints “Just anotrent Racker,”
arose on USENET and became common enough thagjeapndo
do this is known simply as a JAPH. The popularifytloese
programs is attested to by the first section ofRed FAQ, which
answers the question “What is a JAPH?" [10]

More generally, Perl has as its mantra “there amaynways to
do it.” A half-dozen Perl programmers may easilpkneight or
ten different ways to code exactly the same thBerause of this,

obscure ways of doing fairly common tasks are hgki
everywhere. A common, high-level obfuscation téghae that is

seen in obfuscated Perl and also in obfuscated dweber

differently it may be expressed there) involvesasgiog the least
likely way to do it. This could mean using a strargperator, a
strange special variable, or an unusual functianafo ordinary
function in an unusual way). It could also involireating data
that is typically seen as being one type as soimer aype, a view
that is permissible according to the language btiintuitive.

Perl and C are distinguished by having obfuscated
programming contests, but they are not widely desplanguages
— unlike, for instance, COBOL or Visual Basic. Whie ghese
hateful programming languages not the targets dfisziatory
ridicule? The most obvious explanation is that pinegrammers
who write obfuscated code are Perl and C hackef®n o
professional ones. They enjoy hacking in theseuaggs, as do
many free software developers and creative codearswould not
choose to program in COBOL or Visual Basic for fiiheir play
with Perl and C is not pure pillory. In addition teaking fun of
some “misfeatures” or abusable features of the uages,
obfuscated code shows how powerful, flexible progréng
languages allow for creative coding, not only imme of the
output but in terms of the legibility and appearné the source
code.

What all obfuscations have in common — naming olztisns
and language-specific ones, such as choosing th&t Meell-
known language construct to accomplish something thdt they
explore theplay in a language, the free space that is available to
programmers. If something can only be done one Waygnnot
be obfuscated. The play in a programming languageatso be
used to make the program signify something elssidbs being
valid code that compiles or is interpreted to soomning form.

5. MULTIPLE CODING

Recent IOCCC programs include a racing game insthie of
Pole Position,a CGl-enabled Web server, and a maze displayer
with code in the shape of a maze. It is commonolafuscated
programs to be of unusual visual appearance. THe nwy spell
out the name of the program, or the name of théestnin large
letters, or be in the form of some other ASClicture. This is a
type ofdouble codingpr, more generallynultiple codingwhich
can also be seen in Perl poetry and in “bilingypafigrams.

The classic example of double coding in naturaleages is
the sentence “Jean put dire comment on tape,” whgh
grammatical English and grammatical French, althoesch word
has a different meaning in each language. (In Frethe sentence
means "Jean [male name] is able to say how ones.typdarry
Mathews contributed to further French/English deutbding by
assembling the Mathews Corpus, a list of words kvhegist in
both languages but have different meanings. Innaraging, an
important first step was the 1988gol by Noél Arnaud, a book of
poems composed from keywords in the Algol programgmi
language. However, these poems are not executabtgams;
they are English poems that were assembled froemarestricted
vocabulary. [8]

A notable modern ancestor of Arnaudlgol is Perl poetry, in
which texts that can be read as poems are dewsad ®© also be
valid Perl programs. As critics of code aesthdti@ge noted, even
award-winning Perl poetry is often little more tham exercise of
“porting” existing song lyrics into Perl, and theaptice “does
little to articulate the language of perl itself2] While it is
possible to obfuscate a program, in the senseedfQICCC or the
Obfuscated Perl Contest, by fashioning it in themfoof an
English poem, the goals of competitive obfuscasms Perl poets
appear to be quite different. Although a Perl posuost be a valid

program, what the program actually does is oftemfeerthought
in Perl poetry. For instance, the winning progranthie first Perl
Poetry Contest does nothing. In contrast, a progréumction is
essential to obfuscated programming. So, while peetry is an
interesting phenomenon to many new media schothese are
reasons, quite apart from any possible distastpdetry, that this
practice seems less interesting to programmers. iffteeesting
phenomenon of multiple coding can be found in otxited
programs, too, while these programs also featurprassive,
intricate workings that are essential to their laetits.

Some other and quite extreme examples of multipténg are
also seen in programs that are “bilinguial” or “tiiigual” and
are analogous to “Jean put dire comment on tape’hey fire
valid computer programs in more than one comprguage.
These can be achieved by the re-use of keyword®peiators or
by using comments in one program to include codariather
language.

6. HELLO, WEIRD

In the field of weird languages, also known asesoianguages,
the programmer moves up a level to exploit not fhstplay of a
particular language, but the play that is possiblprogramming
language design itself. Weird programming languages not
designed for any real-world application or normdueational
use; rather, they are intended to test the boueslaof
programming language design. A quality they sharigh w
obfuscated code is that they often ironically comtran features
of existing, traditional languages.

There are literally dozens of weird languages, cemting on
many different aspects of language design, progiaministory
and programming culture. A representative seledsaonsidered
here, with an eye towards understanding what tieasguages
have to tell us about programming aesthetics.

Languages are considered in terms of four dimessioh
analysis: 1) parody, spoof, or explicit commentary language
features, 2) a tendency to reduce the number ofatipes and
strive toward computational minimalism, 3) the wsestructured
play to explicitly encourage and support doubleiegdand 4)
the goal of creating a puzzle, and of making progning
difficult. These dimensions are not mutually exolascategories,
nor are they meant to be exhaustive. Any one waitguage may
be interesting in several of these ways, though paeicular
dimension will often be of special interest.

7. ABANDON ALL SANITY, YE WHO

ENTER HERE: INTERCAL

INTERCAL is the canonical example of a language garodies
other programming languages. It is also the firsirevlanguage,
and is highly respected in the weird language conitywult was
designed in 1972 at Princeton University by twodsetus, Don

2Esoteric” is a more common term for these langsaget it is a
term that could apply to programming languages al/¢émost
people do not know how to program in any languagejo

languages such as ML and Prolog, which are comnmon i

academia but infrequently used in industry. A bretesignation
might be art languages However, while such languages are
undoubtedly a category of software art, developsrghese
languages do not use this term themselves, arebihs unfair
to apply the term “art,” with all of its connotatis, to their
work. While people might consider all sorts of laages to be
“weird,” that term’s sense better captures thentit& behind
these languages, and it is used at times by thguiae
designers themselves.

Woods and James Lyon. (Later, while at Stanfordpdgovas the
co-author of the first interactive fictio®dventure). The explicit
design goal of INTERCAL is
...to have a compiler language which has nothinglat al
in common with any other major language. By ‘major’
we meant anything with which the author’s were lat a
familiar, e.g., FORTRAN, BASIC, COBOL, ALGOL,
SNOBOL, SPITBOL, FOCAL, SOLVE, TEACH, APL,
LISP and PL/I.” [13]
INTERCAL borrows only variables, arrays, text infowitput, and
assignment from other languages. All other statéesneperators
and expressions are unique (and uniquely weird)EIRICAL has
no simpleif construction for doing conditional branching, no
loop constructions, and no basic math operators -+ ewen
addition. Effects such as these must be achievedugh
composition of non-standard and counterintuitivestaucts. In
this sense INTERCAL also has puzzle aspects.

However, despite the claim that this language meghing at
all in common with any other major language”, INTEAL
clearly spoofs the features of contemporaneous ukges,
combining multiple language styles together to ter@a ungainly,
unaesthetic style. From COBOL, INTERCAL borrowseabose,
English-like style, including optional syntax thimcreases the
verbosity; all statements can be prepended RitBASE Sample
INTERCAL statements in this COBOL style inclu®©RGET,
REMEMBER, ABSTAINand REINSTATE From FORTRAN,
INTERCAL borrows the use of optional line numbesich can
appear in any order, to mark lines, and B@construct, which in
FORTRAN is used to initiate loops. In INTERCAL, hever,
every statement must begin witbQ Like APL, INTERCAL
makes heavy use of single characters with specining,
requiring even simple programs to be liberally skied with non
alphanumeric characters. In a sense, INTERCAL exajgs the
worst features of many languages and combines tiogether
into a single language.

The compiler, appropriately called “ick,” continugsee parody.
Anything the compiler can’t understand, which innarmal
language would result in a compilation error, istjskipped. This
“forgiving” feature makes finding bugs very diffitu it also
introduces a unique system for adding program camsnélhe
programmer merely inserts non-compileable text dm®rer in the
program, being careful not to accidentally embebiteof valid
code in the middle of their comment.

The language manual hammers home the parody. After
explaining that INTERCAL stands for “Compiler Larage with
No Pronounceable Acronym,” the manual proceeds witieries
of in jokes on language design. At one point thadez is
presented with a logic diagram that claims to pteva simpler
way of understanding the SELECT operation (SELE@ifid one
of INTERCAL'’s two non-intuitive math operators): H€ gates
used are Warmenhovian logic gates, which meansothputs
have four possible values: low, high, undefined nd ascillating
... The reader is presented with a maze-like logiagchm in
which lines needlessly zig-zag, sometimes dead-emdi all
eventually connect at the system bus, the BUS LIidfEhe many
lines heading off diagram from the BUS LINE, all it NEW
YORK” except for the one “TO PHILIDELPHIA.” All non
alphanumeric characters are given special namiég;, da hybrid
(;), mesh#), worm ¢) and so forth.

Thirty-three years later, INTERCAL still has a dea
following. Eric Raymond, the current maintainerINTERCAL,
revived the language in 1990 with his implementatiG-
INTERCAL, which added theCOME FROMconstruct to the
language — the inverse of the much-revi@d TQ

8. MINIMALISM: BRAINFUCK

. Output the byte pointed to

Languages that parody comment on other programming: Accepta byte of inputand write it into the bpeinted to

languages; languages in the minimalist vein, onatier hand,
comment on the space of computation. Specificdligy call
attention to the very small amount of structuredeekto create a
universal computational system. (A “system” in thése can be
as varied as a programming language, a formal mmttieal
system, or a physical processes, such as a machAinmiversal
system can perform any computation that it is tegcally
possible to perform; such a system can do anytthiagany other
formal system is capable of doing, including emotatany other
system. This property is what allows one to impletmene
language, such as Perl, in another language , asc8, or to
implement an interpreter or compiler for a languagectly in
hardware (using logic gates), or to write a progthat runs on
some specific hardware to provide a platform fot pther
programs (as the Java Virtual Machine does). Uraldy in a
programming language is obviously a desired teiige it means
that the language places no limits on the procedssscan be
specified in the language. There are less powenfays to
compute, some of which are used often — for instaregular
expressions, of the sort found in the Find and &=pldialog of
word processors, are powerful enough to tell wirethstring has
an even number of characters in it, but cannotraiéte whether
the length of a string is a prime number, as aemsa computer
can.

Universal computation was discovered by Alan Turid
described in his 1937 investigation of the limifscomputability,
“On Computable Numbers.” While his paper proved ¢banter-
intuitive result that there exist formally speaifigroblems for
which there exists no computational process (thatd program)
for finding a solution, the important result foiigtpaper was his
definition of a notional machine, the Turing Maadhirio specify
what he meant by computation.

A Turing Machine consists of 1) an infinite tapévided into
cells (memory locations), along which a read/whigad moves
reading and writing symbols to and from the tape 2) a single
state register that can store a symbol indicathey machine’s
current state. A Turing Machine is governed byla table which
specifies, for each possible combination of statmb®l and
symbol read from the tape, what symbol the heabwrite to the
tape, whether the head will move left or right, anbdat new
symbol is stored in the state register. While ieé&sy to imagine
that one could define a TM to compute a specifiecfion, Turing
proved that there exist TMs that can simulate tttevity of any
arbitrary TM; these araniversal Turing MachinesThe structure
necessary to achieve universality is surprisingial§ for
example, a universal TM can be defined using onlst&e
symbols and 18 tape symbols (2x18).

Minimalist languages strive to achieve universalighile
providing the smallest number of language constrydssible.
Such languages also often strive for syntactic métism, making
the textual representation of programs minimal afi.\Minimal
languages are sometimes called Turing Tarpitsr afeggram 54
in Alan Perlis’ Epigrams of Programming: “54. Bewathe
Turing tar-pit in which everything is possible bobthing of
interest is easy.” [11].

Brainfuck is an archetypically minimalist languageoviding
merely seven commands, each represented by a sihgiacter.
These commands operate on an array of 30,000 kslle c
initialized to 0. The commands are:
> Increment the pointer (point to the memory celiite right)
< Decrement the pointer (point to the memory cethileft)

+ Increment the byte pointed to
- Decrement the byte pointed to

[Jump forward to the correspondihdf pointing to O

] Jump back to the command after the corresponding
pointing to a non-zero value.

A Brainfuck “hello, world” program follows:

o L I e e
e T i s o o o S S B g S

Minimalist languages also comment on computer &chires as
well the nature of computation, and can have tlawofl of a
minimal assembly language. The language OISC atiplic
parodies assembly language, for example. OISC stéodthe
“One Instruction Set Computer”, referencing the ndtad
acronyms RISC (Reduced Instruction Set Computed) GISC
(Complex Instruction Set Computer). OISC considta gingle
instruction, subtract-and-branch-unless-positiveubleq(a,

b, ¢) subtracts the contents of memory location a frowe t
contents of memory location b, stores the resulb,imnd, if the
result of the subtraction was 0 or negative, jurtgpthe address
stored in memory location c. Assembly languages nconty
contain separate arithmetic operations (add antatip as well
as various branch operations that test a memorgtitot and
branch if the memory location is, for example, fesi or
negative, or zero. OISC parodies assembly by camipiman
arithmetic and branch operation into a single ingion and
providing that to the programmer as timdy instruction.

9. STRUCTURED PLAY:
SHAKESPEARE

Some weird languages encourage double coding lbigtsting
the play within the language such that valid proggaan also be
read as a literary artifact. As was previously déscl, double-
coding is certainly possible in languages such as¢@ Perl, and
in fact is an important skill in the practice of foscated
programming. But where C and Perl leave the spdcplay
relatively unstructured, forcing the programmerstwoulder the
burden of establishing a double coding, structynlegt languages,
through their choice of keywords and their treatmenf
programmer defined names (e.g. variable namespostigdouble
coding within a specific genre of human-readabletuis
production. The language Shakespeare exemplifiestiuctured
play aspect.

Here is a fragment of a Shakespeare program thds rput
and prints it out in reverse order:

[Enter Othello and Lady Macbeth]

Othello:
You are nothing!

Scene II: Pushing to the very end.

Lady Macbeth:
Open your mind! Remember yourself.

Othello:
You are as hard as the sum of yourself and a stone
wall. Am | as horrid as a flirt-gill?

Lady Macbeth:
If not, let us return to scene Il. Recall your
imminent death!

Othello:
You are as small as the difference between
yourself and a hair!

Shakespeare structures the play of the language gndouble-
code all programs as stage plays, specifically,spsofs on
Shakespearean plays. This is done primarily bycsiring the
play (that is, the free space) that standard lagegiarovide in the
naming of variables and constants. In standarduages, variable
names are a free choice left to the programmerlewiimeric
constants (e.g. 1) are either specified by theixepresentation
of the number, or through a name the programmerghas to
select constants. In contrast, Shakespeare DmarRa&tisonae
(variables) must be the name of a character frormeso
Shakespeare play, while constants are represegtaduns. The
two fundamental constants in Shakespeare are -1lanthe
dictionary of nouns recognized by the Shakespeamgpiter have
been divided into positive, negative, and neutraums. All
positive (e.g. “lord”, “angel”, “joy”) and neutrgle.g. “brother”,
“cow”, “hair”) nouns have the value 1. All negativeuns (e.g.
“pbastard”, “beggar’, “codpiece”) have the value®-Constants
other than -1 and 1 are created by prefixing theth adjectives;
each adjective multiplies the value by 2. Sarry little
codpiece denotes the number -4.

The overall structure of Shakespeare follows that stageplay.
Variables are declared in the Dramatis PersonatioeedNamed
acts and scenes become labeled locations for jutapsis
return to scene Il is an example of a jump to a labeled
location. Enter and exit (and exeunt) are usedetlade which
characters (variables) are active in a given scemdy two
characters may be on stage at a time. Statemengceomplished
through dialog. By talking to each other, charactat the values
of their dialog partner and themselves, compareemlexecute
jumps, and so forth. Conditional jumps are accoshgld by one
character posing a true or false question, and¢hend character
describing what action to take based on the tratlner Such a
jump appears in the previous code sample, wherelldtlasks
Lady MacbethAm | as horrid as a flirt-gill? (is
the value of the variable Othello equal to -1), &ady Macbeth
respondsf not, let us return to scene Il .

In a programming language, keywords are words Heate
special meaning for the language, indicating conmdsamr
constructs, and thus can't be used as names bgrtiggammer.
An example from C is the keywofdr used to perform iteration;
for can not be used by the programmer as the nameafable
or function. In standard languages, keywords tyfyicémit or
bound play, as the keywords are generally not tmledy
language designers to facilitate double-coding.sTikj in fact,
what makes code poetry challenging; the code pasit ijack
the language keywords in the service of a doubténgp In
contrast, weird languages that structure play pi@keywords to
facilitate the double-coding that is generally emeged by the
language. Shakespeare keywords maintain a stytistisistency
with a melodramatic spoof of Shakespearean playgp® is
accomplished vi®pen your heart (output value as number)
and Speak your mind
Listen to your heart
your mind
synonyms are provided for accomplishing inequalégts. For
example friendlier andjollier perform the greater-than
test, as inare you friendlier than a fatherless
bastard? , while punier andworse perform the less-than
test, as irare you punier than a gentle king?

Another language, Chef, illustrates different desdgcisions
for structuring play. Chef facilities double-codigograms as

(input value as number) ar@pen

®Interestingly, “Microsoft” is in the negative nolist.

(output value as character), input by

(input value as character). A number of compaeativ

recipes. Variables are declared in an ingrediésitswith amounts
indicating the initial value (e.g114 g of red salmon).
The type of measurement determines whether andiegreis wet
or dry; wet ingredients are output as characteng,irtgredients
are output as numbers. Two types of memory are igedy
mixing bowls and baking dishes. Mixing bowls holdjiedients
which are still being manipulated, while baking hdis hold
collections of ingredients to output. What makegQiarticularly
interesting is that all operations have a sensitibrpretation as a
step in a food recipe. Where Shakespeare prograensdy
Shakespearean plays, and often contain dialogditedgn’t work
as dialog in a play (“you are as hard as the sugoofself and a
stone wall”), it is possible to write programs imed that might
reasonably be carried out as a recipe. Chef reapebkave the
unfortunate tendency to produce huge quantities faxd,
however, particularly because the sous-chef mayadled to
produce sub-recipes, such as sauces, in a loop.

A number of languages structuring play have beesedban
other weird languages. Brainfuck is particularlypptar in this
regard, spawning languages such as FuckFuck (opgrate
replaced with curse words) and Cow (instructioresak the word
“moo” with various capitalizations).

10. THE SUN THE SUN, HIS MIND
PUZZLE: MALBOLGE

Languages that have a puzzle aspect explicitly deeknake
programming difficult by providing unusual, countetuitive
control constructs and operators. While INTERCALta&ly has
puzzle aspects, its dominant feature is its paroflyl960s
language design. Malbolge, named after the eightfecf hell in
Dante’sInferno, is a much more striking example of the puzzle
language. Where INTERCAL sought to merely have emtures
in common with any other language, Malbolge hadifferént
motivation, as author Ben Olmstead writes:
It was noticed that, in the field of esoteric pra@ming
languages, there was a particular and surprisiidy vo
programming language known to the author was
specifically designed to be difficult to program in
Certainly, there were languages which were diffi¢al
write in, and far more were difficult to read (see:
Befunge, False, TWDL, RUBE..). But even
INTERCAL and BrainF**, the two kings of mental
torment, were designed with other goals ...
Hence the author created Malbolge. ... It was desig
to be difficult to use, and so it is. It is design® be
incomprehensible, and so it is.
So far, no Malbolge programs have been written.sThu
we cannot give an example. [9]
Malbolge was designed in 1998. It was not until @0Dat
Andrew Cooke, using Al search techniques, succeented
generating the first Malbolge program, the “hellaorld!”
program — actually, it printslEIIO WORId — that follows:

(=<"$9]7<5YXZ7WT.3,+0/0'K%$H"~D[#z@b="{"Lx8%$Xmr
kpohm-kNi;gsedcba’_~\ZYXWVUTSRQPONMLKJIHGFEDCBA
@7>=<;:9876543s+0<oLm

The writing of more complex Malbolge programs wasalded by
Lou Scheffer's cryptanalysis of Malbolge in which Hiscovered
“weaknesses” that the programmer can systematieapioit:
The correct way to think about Malboge, I'm conedc
is as a cryptographer and not a programmer. Thirk o
as a complex code and/or algorithm that transforms
input to output. Then study it to see if you caketa
advantage of its weaknesses to forge a message that
produced the output you want. [12]

His analysis proved that the language allowed faiversal
computation. The “practical” result was the product of a
Brainfuck to Malbolge compiler.

What makes Malbolge so difficult? Like many minimsal
languages, Malbolge is a machine language writtera fiictitious
and feature-poor machine, and thus gains someculiffi of
writing and significant difficulty of reading froithe small amount
of play provided to the programmer for expressiogan, textual
meanings. However, as Olmstead points out, the diffireulty of
machine language is not enough to produce a trelilish
language. The machine model upon which Malbolge has the
following features which contribute to the diffityl of the
language:

Trinary machine model. Programmers are used to all number

representations bottoming out in binary represemtatt the
machine-level. By making trits rather than bits fheadamental
representation, this de-familiarizes the machinéis Ttrinary
orientation is borrowed from tri-INTERCAL, a trinawariant of
INTERCAL.

Minimalism. Malbolge provides a minimal computational
model. There are three registers, two of whichaadata pointer
and a code pointer, and seven instructions, repredgeby the
ASCII charactersji*p </v). j andi manipulate the
data and code pointet, andp perform two trinary operations,

and / read and write characters from the A (accumulator)

register, an& stops the machine.

Counterintuitive operations. Like INTERCAL, Malbolge does
not provide standard constructs, such as conditiorzching or
arithmetic. Instead those operations must be Huodtn two
operations* rotates the trinary cell pointed to by the D pairite
trit to the right. (Actually, bit-wise rotation i standard
operation on most computers — by providing this tws,
Malbolge is being uncharacteristically forgivingp performs a
tritwise operation on the contents of the A registed the number
pointed to by D register. The p operation, ofteflenred to as the
crazy op, purposefully corresponds to no natural opematin
presenting the table that describes how trits arebined by the
crazy op, Olmstead writes “don’t look for a patteitis not
there.”

Indirect instruction decoding. In standard machine models of
computation, the code that will be executed nexeiermined by
a program counter. Usually, after executing onérucsion, the
program counter is simply incremented so that ib{sato the next
one. The only other thing that can happen is artintd which
corresponds, for instance, tb and GOTOstatements. In this
case, the execution of the current instruction esuike program
counter’s value to change, so that it points toeother location
in memory. In either situation, the code that ruest is sitting
somewhere in memory; it is directly fetched and. fmnstandard
machine models, the instructions as laid out in ommare
exactly the instructions the machine will execute.

Malbolge, in contrast, performs a complicated tfamsation
on the instruction pointed at by the code pointfoke executing
it. As the manual states:

When the interpreter tries to execute a prograrfirsit
checks to see if the current instruction is a giegh
ASCII character (33 through 126). If it is, it stditts 33
from it, adds C [the code pointer] to it, mods yt #4,
then uses the result as an index into the folloviaide

of 94 characters:
+b(29e*1VMEKLYC})8&m#~W>qxdRpOwkrUo[D7, X TcA"ll
V%{gJh4G\-=0@5"_3i<?Z";FNQuY]szf$!BS/|t:Pn6"Ha

If the character indexed in the table is one ofs&een characters
corresponding to Malbolge operations, the operasoexecuted.
Otherwise the machine does nothing, except to imerg both the
code pointer and the data pointer (the constameinenting of

the data pointer provides another annoyance foptogrammer).
Note that the transformation depends where the instruction
resides in memory because C (the code pointeddsdas part of
this step; the same value would execute as twoerdiff
instructions at two different locations in memo#. Malbolge
programmer cannot lay out the instructions she svaxecuted,
but must lay out instructions so that after theyehheen taken
through this complicated transformation, the evahtesult will
be the instructions that were supposed to be exdduntthe first
place. To make matters more difficult, Malbolge graomms can
only consist of the seven characters that corraspmmperations;
the programmer can’t simply write a program coirsisbf non-
operation characters that will transform to operai
Mandatory self-modifying code. In standard programming

practice, code is treated as immutable. Though bode and data
reside as patterns in memory, the block of memaaitemns
corresponding to code remains fixed, while the klot memory
patterns corresponding to data is manipulated lyetkecuting
code. Self-modifying code treats its code block rastable,
literally changing its own operations as it runglf$nodifying
code is notoriously difficult to read and write; evb the textual
representation of the program is by necessitycsttie structure
of the process dynamically changes over time. Iibblge, the
programmer is forced to write self-modifying codes code
modification is built into the definition of codexecution:

After the instruction is executed, 33 is subtradien

the instruction at C, and the result is used asidex in

the table below. The new character is then plated,

and then C is incremented.
5z)&gqtyfré(we4{WP)H-Zn,[%\3dL+Q;>U!pJS72FhOALC
B6v"=1_0/8|jsh9m<.TVac uY*MK'X~XDI}REokN:#?G"i@

So, in addition to the complexities added by thelirgct
instruction decoding, the instructions are con$gachhanged by
an arbitrary transformation. It is therefore impbks to write
code in Malboge that does the same thing twice liova These
factors account for the two years that passed befoe first
Malbolge “hello, world” program appeared.

Scheffer, in his cryptanalytic treatment of Malbmlgliscovered
a number of “weaknesses” that made it possiblerite warbitrary
programs in Malbolge — proving, therefore, thatssapable of
universal computation. The most notable weaknesses as
follows: The permutation table used to modify ceaéibits short
cycles — that is, if one chooses carefully, insinig can be
selected that turn back into themselves before Jeng.
Specifically, a permutation cycle is a sequence aufde
transformations that comes back to itself. For elamthe p
instruction (the crazy op), when located at memopation 20,
will turn into thej instruction (to store a value in memory) the
first time it is executed, then into a “no op” (dothing) once the
j instruction is executed, then into another no dyervthe no op
is executed, and finally, after this no op is exeduback to the
instruction. Another forgiving aspect of Malboge tisat the
branch instruction, i, is not modified, nor is itgget. Exploiting
these regularities allowed Scheffer to develop gen@albolge
code constructs that, for example, allow one tatere block of
code that performs a given function every otheretiih is
executed, one that safely does nothing the altertiaes. These
discoveries paved the way for the creation of airBnack to
Malbolge compiler.

11. TOWARD A BROADER CODE
AESTEHTICS

Programs in weird languages generally have thegptppf being
difficult to read. This suggests that weird langemgay be “auto-
obfuscating,” requiring obfuscation from programmerBut

obfuscated code contests are not about merely pimglicode
that is hard to read; they are about exploiting slyatax and
semantics of the language to comment on the lamgutaglf.
Weird languages emphasizing minimalism and puzzes
“merely” hard to read in the same way that asserf@riguage is
hard to read; they provide so little play that & virtually
impossible to double-code interestingly. Languaggsicturing
play, in contrast, are hard to read because oingistence of the
enforced double-coding. The textual meaning of ghegram is

inevitably not about the procedural meaning of the program, but

about some unrelated domain. Of the weird langudgssribed
here, it may be only INTERCAL that is truly autofoscating.
Since INTERCAL parodies several languages, regyliim a
language in which nothing can be expressed cleanglegantly,
the difficulty of reading INTERCAL programs is astét of such
programs being about the parody languages, and iths®me
sense about INTERCAL itself.

By commenting on the nature of programming itsel&ird
languages point the way towards a refined undedsignof the
nature of everyday coding practice. In their paradpect, weird
languages comment on how different language coctgins
influence programming style, as well as on the onjstof
programming language design. In their minimaligtems, weird
languages comment on the nature of computationtheadvast
variety of structures capable of universal compaoitatin their
puzzle aspect, weird languages comment on theenheognitive
difficulty of constructing effective programs. Anih their
structured play aspect, weird languages commemth@mature of
double-coding, how it is the programs can simultarsty mean
something for the machine and for human readers.

All of these aspects are seen in everyday progragmuiactice.
Programmers are extremely conscious of languadg stiycoding
idioms that not only “get the job done”, but danta way that is
particularly appropriate for that language. Progrers actively
structure the space of computation for solving Bjgeproblems,
ranging from implementing sub-universal abstradicguch as
finite-state machines for solving problems such stsing
searching, up to writing interpreters and compilfs custom
languages tailored to specific problem domainshsag Perl for
string manipulation. All coding inevitably involvesiouble-
coding. “Good” code simultaneously specifies a na@otal

process andalks aboutthis mechanical process to a human

reader. Finally, the puzzle-like nature of codingnifests not
only because of the problem solving necessary tecig§p
processes, but because code must additionally,
simultaneously, double-code, make appropriate dsanguage
styles and idioms, and structure the space of ctatipn. Weird
languages thus tease apart phenomena present ioodilhg
activity, phenomena that must be accounted forryytheory of
code.

Programming has already been connected to literaturan
interesting way, albeit without deep consideratidrobfuscation
and weird languages as programming practices.[ifs@hation
and weird languages invite us to join programmiogtexts to the
literary contexts that must obviously be consideretien
evaluating literary code. They also suggest thdingp can resist
clarity and elegance to strive instead for compiexian make the
familiar unfamiliar, and can wrestle with the laage in which it
is written, just as much contemporary literatureesioWwhen a
program is double-coded to have some literary nmegnobr
indeed, any human meaning, this meaning can plaly what
programming language researchers call the semanftite code:

what the code actually does as it execlit@ssery simple case of
such play can even be seen in the obfuscated @o;hebrld!”
program, in whichread is used to name a function that writes
one letter. In such play, the levels of human megaind machine
meaning must both be considered.

As the name “Turing Machine” suggests, the compigea
machine. Whether it is realized as a physical dewicimagined
and abstract, it is made up of parts and perfoasisst A tradition
of overcomplicated machinery has manifested itelfart in
several ways, but perhaps most strikingly in Alfrédrry’s
Pataphysics, “the science of imaginary solutiomgyich involves
the design of complicated physical machinery anso athe
obfuscation of information and standards. As a joked as a
parody of the complex French calendar, Jarry intced a new
calendar. It begins on his birthday and is dividetb thirteen
months, each of 29 days. Each day has an obscure imathe
pataphysical calendar, and the last day of the Im@ntin all but
two cases, an imaginary day. The second monthinftance, is
“Haha,” and its second day is “Dissolution of Edgdlan Poe,
dinomythurge.” The Collége de 'pataphysique revisescalendar
once in a while, changing the names of days.

An aesthetic of mechanical obfuscation is also siethe
kinetic installations of Peter Fischli and David igeand in their
film “The Way Things Go” (1987-1988), as well asthe earlier
visual art of Robert Storm Petersen, Heath Robinsaod Rube
Goldberg. (The weird language RUBE was so namedl teibute
to Goldberg.) These depictions and realizationsmethanical
ecstasy comment on engineering practice and physissibility,
much as obfuscated coding and weird languages comore
programming and computation. These “art machindig
obfuscated programs, are interesting because thegmething in
a very complex way, but to be worth anyone’s attenthey must

actually dosomethingand have a machine meaning as well as a

human one.

Perhaps most oddly, obfuscated programs and wairgubges
are inviting the full engagement of those who rehdm or
program in them, offering to show how strangelyngs can be
done. They invite theorists and critics of new raetti look into
the dark box of the machine and see how creatisigt work in
there, too. To understand how programmer-artigsgrammer-
authors, game developers, and hackers of othgrestachieve
what they do, it will be necessary to understaredfthil range of
programming practices, to not just play with theished,
executable file, but to also consider the play thappens in

andprogramming it.

12. REFERENCES

[1] Black, M. J. The Art of Code. Ph.D. Dissertatiomilersity
of Pennsylvania. 2002.

[2] Cox, G., A. McLean, and A. Ward. The Aesthetics of
Generative Code.
http://www.generative.net/papers/aesthetics/ 2000.

[3] Heusser, M. Beautiful Cod®r. Dobb’s.
www.ddj.com/documents/ddj1122411683430/ 2005.

[4] International Obfuscated C Code Contest.
http://www.ioccc.org/

[5] Kernighan, B. W. and D. M. Ritchi&he C Programming
Language2™ Ed. Prentice Hall, Englewood Cliffs, New
Jersey. 1988.

“This is the view in operational semantics, at aaig;rthere are
also other ways to consider program semantics.

[6] Knuth, D. E.Things a Computer Scientist Rarely Talks
About.Center for the Study of Language and Information,
Stanford, California. 2001.

[7]1 Lohr, SteveGo To.Basic Books, New York. 2001.

[8] Mathews, H. and A. Brotchie, ed3ulipo Compendium.
Atlas Press, London. 1998.

[9] Olmstead, B. Malboge.
http://www.antwon.com/other/malbolge/malbolge.t208.

[10] Perl 5.6 FAQ. 23 May 1999.
http://www.perldoc.com/perl5.6/pod/perlfagl.html

[11] Perlis, A. Epigrams on Programming. SIGPLAN Notjces
17(9), September 1982.
http://www.bio.cam.ac.uk/~mw263/Perlis_Epigrams.htm

[12] Scheffer, L. http://www.lscheffer.com/malbolge.html

[13] Woods, D. and J. LyorThe INTERCAL Programming
Language Revised Reference Mana3IEd. 1973, C-
INTERCAL revisions, L. Howell and E. Raymond, 1996

[14] WordNet 2.1. http://wordnet.princeton.edu/

