Weird Languages (1)
For Software Studies
Michael Mateas, michaelm@cc.gatech.edu

Programming languages are often seen as givemrantable logic within which
everyday coding practice takes place. Viewed is light, a programming language
becomes a tool to be mastered, a means to an badgractice of writing obfuscated

code (see Montfort, this volume) exploits the sgtitaand semantic play of a language to
create code that, often humorously, comments ordhstructs provided by a specific
language. But the constructs and logics of langsiage themselves contingent,
abstractions pulled into being out of the spaceoofiputational possibility, and enforced
and maintained by nothing more than programs, 8pailty the interpreters and

compilers that implement the language.

In the field of weird languages, also known as @sotanguages (2), programmers
explore and exploit the play that is possible iogpamming language design. Weird
programming languages are not designed for anywedt application or normal
educational use; rather, they are intended tatedboundaries of programming language
design itself. A quality they share with obfuscatede is that they often ironically
comment on features of existing, traditional largpsa

There are literally dozens, if not hundreds of wéemguages, commenting on many
different aspects of language design, programmistpty and programming culture. A
representative selection is considered here, withya towards understanding what these
languages have to tell us about programming aésthet

Languages are considered in terms of four dimessib@analysis: 1) parody, spoof, or
explicit commentary on language features, 2) adrog to reduce the number of
operations and strive toward computational minismli3) the use of structured play to
explicitly encourage and support double-coding, énthe goal of creating a puzzle, and
of making programming difficult. These dimensioms aot mutually exclusive
categories, nor are they meant to be exhaustive ofAie weird language may be
interesting in several of these ways, though omgqgodar dimension will often be of
special interest.

INTERCAL is the canonical example of a language gaaodies other programming
languages. It is also the first weird language, iaridghly respected in the weird
language community. It was designed in 1972 atdeéton University by two students,
Don Woods and James Lyon. (Later, while at Stanfdfdods was the co-author of the
first interactive fiction Adventure.) The explicit design goal of INTERCAL is

“...to have a compiler language which has nothingllah common with any other major
language. By ‘major’ we meant anything with whitle tauthor’s were at all familiar, e.g.,
FORTRAN, BASIC, COBOL, ALGOL, SNOBOL, SPITBOL, FOQASOLVE,

TEACH, APL, LISP and PL/I.” [Woods & Lyon 1973]



INTERCAL borrows only variables, arrays, text infowttput, and assignment from other
languages. All other statements, operators ancesgms are unique (and uniquely
weird). INTERCAL has no simplef construction for doing conditional branching, no
loop constructions, and no basic math operatorsot-even addition. Effects such as
these must be achieved through composition of tamdard and counterintuitive
constructs. In this sense INTERCAL also has puagfeects.

However, despite the claim that this language haghing at all in common with any
other major language”, INTERCAL clearly spoofs faatures of contemporaneous
languages, combining multiple language styles tugei create an ungainly, unaesthetic
style. From COBOL, INTERCAL borrows verbose, Eniglige constructs, including
optional syntax that increases the verbosity;tatlesnents can be prepended with
PLEASE. Sample INTERCAL statements in this COBOL stylelunle FORGET,
REMEMBER, ABSTAI N andREI NSTATE. From FORTRAN, INTERCAL borrows the
use of optional line numbers, which can appeaninader, to mark lines, and th®©
construct, which in FORTRAN is used to initiatepgoIn INTERCAL, however, every
statement must begin wibO. Like APL, INTERCAL makes heavy use of single
characters with special meaning, requiring everpmrograms to be liberally sprinkled
with non alphanumeric characters. INTERCAL exagger#he worst features of many
languages and combines them together into a siagiriage.

Thirty-three years later, INTERCAL still has a déesafollowing. Eric Raymond, the
current maintainer of INTERCAL, revived the langaag 1990 with his implementation
C-INTERCAL, which added th€OVE FROMconstruct to the language — the inverse of
the much-reviled3O TO.

While parody languages comment on other programiaimguages, languages in the
minimalist vein comment on the space of computat8pecifically, they call attention to
the very small amount of structure needed to createiversal computational system. A
“system” in this sense can be as varied as a pmograg language, a formal
mathematical system, or a physical processes,asiaelmachine. Universal computation
was discovered by Alan Turing and described inlBi37 investigation of the limits of
computability, “On Computable Numbers.” [Turing B)3 universal system can
perform any computation that it is theoreticallyspibble to perform; such a system can do
anything that any other formal system is capablgoafg, including emulating any other
system. This property is what allows one to implet@e language, such as Perl, in
another language, such as C, or to implement anpirgter or compiler for a language
directly in hardware (using logic gates), or tote/ia program that provides a virtual
hardware platform for other programs (as the Javima& Machine does). Universality in
a programming language is obviously a desired, saite it means that the language
places no limits on the processes that can befsgai the language.

Minimalist languages strive to achieve universalityile providing the smallest number
of language constructs possible. Such languageéikn strive for syntactic
minimalism, making the textual representation aiggpams minimal as well. Minimal
languages are sometimes called Turing Tarpits; eftggram 54 in Alan Perlis’ Epigrams



of Programming: “54. Beware the Turing tar-pit ihieh everything is possible but
nothing of interest is easy.” [Perlis 1982].

Brainfuck is an archetypically minimalist languagegviding merely eight commands,
each represented by a single character. These cotsn@erate on an array of 30,000
byte cells initialized to 0. The commands are:

> Increment the pointer (point to the memory celiite right)

< Decrement the pointer (point to the memory cethmleft)

+ Increment the byte pointed to

- Decrement the byte pointed to

. Output the byte pointed to

, Accept a byte of input and write it into the bpiginted to

[ Jump forward to the correspondihgf pointing to 0

] Jump back to the command after the corresporidifigointing to a non-zero value.

A Brainfuck program which prints out the string ‘llbeWorld”, follows.

FHHH DS > > <KLS<-

Some weird languages encourage double-coding bgtstmg the play within the
language such that valid programs can also beagaditerary artifact. Double-coding is
certainly possible in languages such as C and &adlljn fact is an important skill in the
practice of obfuscated programming. But where CR@d leave the space of play
relatively unstructured, forcing the programmeshoulder the burden of establishing a
double coding, structured play languages, throbgir thoice of keywords and their
treatment of programmer defined names (e.g. varialines), support double coding
within a specific genre of human-readable textwadpction. The language Shakespeare
exemplifies this structured play aspect.

Here is a fragment of a Shakespeare program tads i@eput and prints it out in reverse
order:

[Enter Othello and Lady Macbeth]

Othello:
You are nothing!

Scene II: Pushing to the very end.

Lady Macbeth:
Open your mind! Remember yourself.

Othello:
You are as hard as the sum of yourself and a staieAm | as horrid as a flirt-gill?

Lady Macbeth:
If not, let us return to scene Il. Recall your inmemt death!



Othello:
You are as small as the difference between youaselfa hair!

Shakespeare structures the play of the language spdouble-code all programs as
stage plays, specifically, as spoofs on Shakespeaays. This is done primarily by
structuring the play (that is, the free space) shabdard languages provide in the naming
of variables and constants. In standard languagesble names are a free choice left to
the programmer, while numeric constants (e.g. & egther specified by the textual
representation of the number, or through a nameriigrammer has given to specific
constants. In contrast, Shakespeare Dramatis irgwariables) must be the name of a
character from a Shakespeare play, while constaateepresented by nouns. The two
fundamental constants in Shakespeare are -1 arttklnouns recognized by the
Shakespeare compiler have been divided into pesitiggative, and neutral nouns. All
positive (e.g. “lord”, “angel”, “joy”) and neutrde.g. “brother”, “cow”, “hair’) nouns

have the value 1. All negative nouns (e.g. “bastdlggar”, “codpiece”) have the

value -1. Constants other than -1 and 1 are crdpt@defixing them with adjectives;

each adjective multiplies the value by 2.0 ry |ittl e codpi ece denotes the
number -4.

The overall structure of Shakespeare follows tlhat stageplay. Variables are declared in
the Dramatis Personae section. Named acts andssbeoeme labeled locations for
jumps;l et us return to scene |1 isanexample of ajump to a labeled
location. Enter and exit (and exeunt) are usecttdade which characters (variables) are
active in a given scene; only two characters magrbstage at a time. Statements are
accomplished through dialog. By talking to eacleoticharacters set the values of their
dialog partner and themselves, compare valuesuéex@amps, and so forth.

In a programming language, keywords are wordshhe¢ special meaning for the
language, indicating commands or constructs, ansl ¢tan’t be used as names by the
programmer. An example from C is the keywbar used to perform iteratiom;or can
not be used by the programmer as the name of ablaror function. In standard
languages, keywords typically limit or bound plag,the keywords are generally not
selected by language designers to facilitate deotdeng. This is, in fact, what makes
code poetry challenging; the code poet must hifaedanguage keywords in the service
of a double-coding. In contrast, weird languages structure play provide keywords to
facilitate the double-coding that is generally aneged by the language.

Another language, Chef, illustrates different desigcisions for structuring play. Chef
facilities double-coding programs as recipes. \ldea are declared in an ingredients list,
with amounts indicating the initial value (e.§§14 g of red sal non). The type of
measurement determines whether an ingredient iomdrty; wet ingredients are output
as characters, dry ingredients are output as nianbaio types of memory are provided,
mixing bowls and baking dishes. Mixing bowls halgiedients which are still being
manipulated, while baking dishes hold collectiohsigredients to output. What makes
Chef particularly interesting is that all operagdmve a sensible interpretation as a step



in a food recipe. Where Shakespeare programs p&bdkespearean plays, and often
contain dialog that doesn’t work as dialog in ayglgou are as hard as the sum of
yourself and a stone wall”), it is possible to wngrograms in Chef that might reasonably
be carried out as a recipe. Thus, in some sensd,sBhictures play to establistrgple-
coding: the executable machine meaning of the code,dh®h meaning of the code as a
literary artifact, and the executable human meaoirtge code as steps that can be
carried out to produce food.

A number of languages structuring play have besedan other weird languages.
Brainfuck is particularly popular in this regargasvning languages such as FuckFuck
(operators are replaced with curse words) and Gdivingtructions are the word “moo”
with various capitalizations).

Languages that have a puzzle aspect explicitly seakake programming difficult by
providing unusual, counter-intuitive control constis and operators. While INTERCAL
certainly has puzzle aspects, its dominant feasuits parody of 1960s language design.
Malbolge, named after the eighth circle of helDante’sInferno, is a much more
striking example of a puzzle language. Where INTBRGought to merely have no
features in common with any other language, Makdlgd a different motivation, as
author Ben Olmstead writes:

“It was noticed that, in the field of esoteric pragiming languages, there was

a particular and surprising void: no programmingglaage known to the

author was specifically designed to be difficulptogram in...

Hence the author created Malbolge. ... It was aesigo be difficult to use,

and so it is. It is designed to be incomprehensdnté so it is.

So far, no Malbolge programs have been writtensTle cannot give an

example.” [Olmstead 1998]
Malbolge was designed in 1998. It was not until@@tat Andrew Cooke, using Al
search techniques, succeeded in generating théMaibolge program, the “hello,
world!” program — actually, it printslEl | O WORI d — that follows:

(=<"$9]7<5YXz7WT.3,+0O/0'K%SH"~D|#z@b="{"Lx8%$Xmr kghm-
kNi;gsedcba’ A\ZYXWVUTSRQPONMLKJIHGFEDCBA
@7?>=<;:9876543s+0O<0Lm

The writing of more complex Malbolge programs waalded by Lou Scheffer’s
cryptanalysis of Malbolge in which he discoveredeknesses” that the programmer can
systematically exploit:

“The correct way to think about Malboge, I'm coreed, is as a cryptographer and not a
programmer. Think of it as a complex code and/goihm that transforms input to
output. Then study it to see if you can take adagmbof its weaknesses to forge a
message that produced the output you want.” [SeHdffis analysis proved that the
language allowed for universal computation. Thatpical’ result was the production of
a Brainfuck to Malbolge compiler.



What makes Malbolge so difficult? Like many minimsalanguages, Malbolge is a
machine language written for a fictitious and featpoor machine, and thus gains some
difficulty of writing and significant difficulty ofreading from the small amount of play
provided to the programmer for expressing humaduéd meanings. However, as
Olmstead points out, the mere difficulty of machiaeguage is not enough to produce a
truly devilish language. The machine model uponclwialbolge runs has the following
features which contribute to the difficulty of treguage: a trinary, rather than binary,
machine model, minimalism, counterintuitive operas, indirect instruction coding (the
meaning of a program symbol depends on wheresiirsinemory), and mandatory self-
modifying code (code mutates as it executes, sevér does the same thing twice).
These factors account for the two years that passtmxte the first Malbolge “hello,
world” program appeared.

By commenting on the nature of programming itse#ird languages point the way
towards a refined understanding of the nature efyglay coding practice. In their parody
aspect, weird languages comment on how differerguage constructions influence
programming style, as well as on the history ofgpaonming language design. In their
minimalist aspect, weird languages comment on #tera of computation and the vast
variety of structures capable of universal compaoitatin their puzzle aspect, weird
languages comment on the inherent cognitive diltfyoof constructing effective
programs. And in their structured play aspect, dvEnguages comment on the nature of
double-coding, how it is the programs can simultarséy mean something for the
machine and for human readers.

All of these aspects are seen in everyday progragppriactice. Programmers are
extremely conscious of language style, of codingnis that not only “get the job done”,
but do it in a way that is particularly appropri&de that language. Programmers actively
structure the space of computation for solving Bpgeroblems, ranging from
implementing sub-universal abstractions such atefstate machines for solving
problems such as string searching, up to writinigrpreters and compilers for custom
languages tailored to specific problem domainsh &scPerl for string manipulation. All
coding inevitably involves double-coding. “Good dmsimultaneously specifies a
mechanical process atalks about this mechanical process to a human reader. Finally
the puzzle-like nature of coding manifests not drdgause of the problem solving
necessary to specify processes, but because cateadditionally, and simultaneously,
double-code, make appropriate use of languagesstyld idioms, and structure the space
of computation. Weird languages thus tease aparghena present in all coding
activity, phenomena that must be accounted fomwtleory of code.

(1) Parts of this article are based on a paperébaand Montfort 2005) that Nick
Montfort and | presented at Digital Arts and Cut@005.

(2) “Esoteric” is a more common term for these laages, but it is a term that could
apply to programming languages overall (most pedplaot know how to program in
any language) or to languages such as ML and Bredloigh are common in academia
but infrequently used in industry. A better desigramight beart languages. However,



while such languages are undoubtedly a categosgfoivare art, developers of these
languages do not use this term themselves, aeéihs unfair to apply the term “art,”
with all of its connotations, to their work. Therte“weird” better captures the intention
behind these languages, and is used at times bBgrigaage designers themselves.

Olmstead, B. Malboge. http://www.antwon.com/othetimolge/malbolge.txt 1998.

Perlis, A. Epigrams on Programming. SIGPLAN NotjcE&?9), September 1982.
http://www.bio.cam.ac.uk/~mw263/Perlis_Epigrams.html

Scheffer, L. http://www.lscheffer.com/malbolge.html

Turing, A. M. On Computable Numbers, With an Apgtion to the
Entscheidungsproblem. Proc. London Math. Soc., 2(42) (1936), 230-265; A
correction’ibid, 43, 544-546.

Woods, D. and J. Lyomhe INTERCAL Programming Language Revised Reference
Manual. 1 Ed. 1973, C-INTERCAL revisions, L. Howell and®aymond, 1996.



