
CODEGEN: The Generation and Testing of DNA
Code Words

David E. Kephart
Department of Mathematics
University of South Florida

Tampa, FL 33620
Email: dkephart@mail.usf.edu

Jeff LeFevre
Department of Computer Science

and Engineering
University of South Florida

Tampa, FL 33620
Email: jlefevre@ieee.org

Abstract— With this paper we present algorithms to gen-
erate and test DNA code words that avoid unwanted cross
hybridizations. Methods from the theory of codes based on formal
languages are employed. These algorithms are implemented in
user-friendly software, CODEGEN, which contains a collection
of language-theoretic objects adaptable to various related tasks.
Lists of code words may be stored, viewed, altered and retested.
Implemented in Visual Basic 6.0, its interface allows for lists of
code words to be assembled at varying levels of acceptability
from a single main window.

I. I NTRODUCTION

A. Motivation

DNA offers us the prospect of massive parallelism in
computing. A few basic obstacles to this, however, must
be overcome. The simple property of Watson-Crick comple-
mentarity, which allows the precise chemical matching of a
denatured, single-stranded DNA molecule, oroligonucleotide
with an oppositely-oriented complementary strand allows the
transfer of information it contains. By assembling particular
strands and encoding a problem in these strands, it has been
shown that certainNP -complete problems may be solved.

This same property can compromise the results of a DNA
program if the encoding is selected carelessly. The information
conveyed in ill-chosen strands will be lost if they bond
(hybridize) with code words. Information will be lost if code
words of varied length are used and multi-word strands have
more than one possible interpretation.

Further, not all DNA nucleotides are born chemically equal.
The higher the percentage of cytosine and guanine in a strand,
the higher its melting temperature. Leaving them out means
reducing the overall number of useable distinct code words of
a given length.

The search for potential unwanted coding ambiguities be-
tween DNA words demands exponentially increasing amounts
of computation time.

This paper presents algorithms which use a theorem from
coding theory and language-theoretic properties to address
this dilemma for the DNA programmer. These have been
implemented in software in a program – CODEGEN – which
performs the various necessary tests in polynomial time. It
generates or verifies these properties in a language from a

user-friendly interface and enables the storage of languages.
It is the extension of software presented in [13].

While the program selects DNA settings by default, the
interface and object-oriented implementation lend themselves
to more general applications.

In section II-A we define necessary terms from coding
theory and present the theorem that drives the main algorithm
of CODEGEN. In section III we present the algorithms which
vary the level of “goodness” demanded in tested code words,
followed by pseudo-code for the main algorithm. In section IV-
C, we discuss the object-oriented library created to implement
the algorithm, and pseudo-code for a typical algorithm made
possible by this approach. In section V we show the details
of the user interface. We conclude with several remarks about
present limitations and future development of this project.

B. Past and present work on this problem

Our starting point in this is an elaboration of the frame-
work set up by Kari, Hussini, and Konstantinides [17]. The
use of computers to assist in the synthetic self-assembly of
DNA strands dates from the first laboratory construction of
such molecules. The program presented in [22], starts from
the topological characteristics of the molecules required in
computation and proceeds to the comparison of subsequences.
Others include those proposed by Baum [2], Li [16], the
DNASequenceGenerator of Felkamp, et. al.[8] and [9], the
template-based methods of Arita and Kobayashi[1], and Gar-
zon’s amplification of seed sequences via the tensor products
of collections of words[12].

As mentioned in [13] these approaches employ Hamming
distance and therefore standard binary coding theory methods.
Most produce code word sequences of fixed length. They avoid
inter-molecular hybridizations between the DNA strands and
between each DNA sequence and the complements of other
strands.

Variable length code words are necessary in certain DNA
computations ([4], [5], [23], for example). CODEGEN uses
methods from algebraic (and hencen-ary) coding theory to
produce words that not only avoid intermolecular crosshy-
bridizations, but may be of variable length. With the proper
set-up Seeman’s program also cangive variable length code

0-7803-8515-2/04/$20.00 ©2004 IEEE 1865

words. CODEGENś interface allows the user direct, intuitive
access to this and all of its capabilities.

In addition, CODEGEN avoids bothintra-molecular crosshy-
bridizations and can produce sets of code words with proper-
ties closed under the Kleene∗ operation. These could generate
infinite sets of “good” code words. We therefore begin with a
formal definition of what we mean by a “good” set of DNA
code words.

II. T HE PROBLEM: WHAT IS A “GOOD” DNA C ODE

WORD?

A. Definitions

A finite alphabet,Σ, is a finite collection of symbols. A
language is a subset of the set of all possible concatenations
of symbols from, orover an alphabet. We denote byΣ∗ the
set of all possible words overΣ. This set includes the empty
word. The set of words overΣ of positive length we denote
by Σ+, and the set of all possible words overΣ of lengthn
we denote byΣn. A language overΣ is thenX ⊂ Σ∗. We
denote byXn (n ≥ 1) the set of all possible concatenations of
n members ofX . We denote byX∗ all possible concatenations
of words inX .

If a function θ : Σ → Σ has the property thatθ(θ(a)) =
θ2(a) = a for each symbola in Σ, thenθ is an involution on
Σ with two possible obvious extensions toΣ∗. If, for every
x, y ∈ Σ∗, θ(xy) = θ(x)θ(y), thenθ is a morphism, while if
θ(xy) = θ(y)θ(x), thenθ is anantimorphism.

Definition 1: Let ∆ represent theDNA alphabet, i.e., the
set{adenine, cytosine, guanine, thymine}, or more succinctly,
{A, C, G, T}.

The nucleotides of a DNA strand bind at one end at the
5′ location on a carboxyl ring and at the other end at the
3′ location into an oligonucleotide. This orients the strand.
Taking the5′ end by convention as the beginning position, the
sequence of nucleotides in a DNA strand form a word over∆.
Watson-Crick complementarity refers to the hydrogen bonds
which form between oppositely-orientedA andT nucleotides
and between oppositely-orientedC and G nucleotides. This
extends to entire strands, so we have the following.

Definition 2: Let ρ : ∆∗ → ∆∗ be the antimorphic exten-
sion to∆∗ of the mapping such thatρ : A �→ T , ρ : T �→ A,
ρ : C �→ G, andρ : G �→ C. Let σ map a DNA word to its
reverse (e.g.,σ(AC) = CA). Thenθ = σ◦ρ is an antimorphic
involution on∆∗ representing Watson-Crick complementarity.

We may now define formally the coding property and
unwanted cross-hybridizations between or within members of
a language over∆∗ (X ⊂ ∆∗) – the “good” set of code words
we are after. These definitions are therefore placed in a more
general setting.

Let Σ be an alphabet, letX be a subset ofΣ∗, and letθ be
a morphic or antimorphic involution onΣ∗.

1) We require that X be a code, in the sense
that if x = x1x2x3 · · ·xr = y1y2y3 · · · ys,
x1, x2, . . . , xr, y1, y2, . . . , ys ∈ X , then r = s and
xi = yi, 1 ≤ i ≤ r.

2) The involution of an element ofX should not be a
proper subword of an element ofX . Stated formally,
Σ+θ(X)Σ∗ ∩ X = ∅ and Σ∗θ(X)Σ+ = ∅. Following
[17], we call such a codeθ-compliant.

3) The involution of an element ofX should not be the
proper subword of the concatenation of two elements of
X . Σ+θ(X)Σ∗∩Σ2 = ∅ andΣ∗θ(X)Σ+∩Σ2 = ∅. We
then callX θ-free, also per [17].

4) Consider each elementw of X , and thek-length prefix
p andk-length suffixs of w. Thenθ(p) andθ(s) should
either not be a subwords ofw or, if pxθ(p) is a prefix
of w, or θ(s)xs is a subword ofw, then |x| should
be less thanm1 or more thanm2. Then we sayX
is θ(k, m1, m2)-subword compliant, as first defined in
[13]: for m1 ≤ i ≤ m2 andw ∈ Σk, wΣiθ(w)Σ+∩X =
∅, andΣ+θ(w)Σiw ∩ X = ∅.

5) Suppose that, for somek ≥ 1 and for all w ∈ Σk, if
for somea ∈ Σ+, b ∈ Σ∗ awb ∈ X or bwa ∈ X , then
Σ∗θ(w)Σ+∩X = Σ+θ(w)Σ∗∩X = ∅. Then we sayX
is θ-k, as first defined first in [14]. Nok-length subword
of any element ofX is the involution of any subword
of any element ofX .

6) If Σ+ is replaced byΣ∗ in 2, 3, 4, or 5, thenX is said
to bestrictly θ-compliant,θ-free,θ(k, m1, m2)-subword
compliant, orθ-k.

In a setX of DNA code words without property 1 there are
sequences of words which cannot be uniquely decoded into
sequences fromX . Some identifiable code word sequences
will “factor” in more than one way.

In a code X of DNA words without property 2 some
code word will hybridize with the interior portion of another
sequence in the code and neither one will be identifiable in
further computation. This is shown in Figure 1(a).

u u

v v w

(a) (b)

Fig. 1. Intermolecular Cross-Hybridizations.A violation of θ-compliance is
shown in (a), while (b) illustrates a violation of θ-freedom. After hybridization
(a) both u and v are useless in further DNA computation. After hybridization
(b) u, v, and w are all rendered useless.

In a set of DNA code words without property 3, some code
word will “glue” two other code words together and destroy
all three for purposes of computation. This is shown in Figure
1(b).

(a) (b)

u u

Fig. 2. Intra-Molecular Cross-Hybridizations.A word is equal to uvθ(u)x,
as show in (a). If |u| = k and m1 < |v| < m2, then the word is not
θ(k, m1, m2)-subword compliant. The similar situation where u is the suffix
of the word is shown in (b).

In a DNA code without property 4, with valuesk, m1, and
m2 dependent on the specific conditions of the computation,

1866

some sequences can form “hairpin” structures as shown in
Figures 2(a) and (b). These strands are then rendered useless.

u = k

u

u

u

u

u

u

Fig. 3. Cross-Hybridizations Avoided byθ-k Codes

Finally, with property 5, a DNA code avoids the above and
various other cross-hybridizations, as shown in Figure 3. In
particular, consider the languageY = X2, whereX is θ-k.
As proven in [14], ifY is θ-k as well, and there are no words
in X with fewer thank symbols, thenno cross-hybridizations
in X or X∗ are possible.

We now require some definitions from coding theory.
Definition 3 (Flower): Theflower automaton of a language

X over a finite alphabetΣ is the finite state automaton
F(Q, I, T, E) whereI = T = {0} ⊂ Q andE ⊂ Q × Σ× Q
which recognizes X in the following sense. Ifw is a word in
X of lengths, there is apath π = e1e2 · · · es, e1, . . . , es ⊂ E
in F such thatei = (qi, wi, qi+1), wi is the ith symbol ofw,
andq1 = qs+1 = 0, but qi
= 0 if 1 < i < s + 1.

We say thatwi is the label of ei, andw is the label ofπ.
As a labeled graph,F resembles a flower with a petal for each
word starting and ending at the same central state.

Definition 4 (Square): The direct product of a flower au-
tomaton with itself gives a new automatonP(Q′, I ′, T ′, E′)
with Q′ = Q × Q, and E′ ⊂ Q′ × Σ × Q′ such that
((q1, q2), a, (q3, q4)) ∈ E′ if and only if (q1, a, q3) ∈ E and
(q2, a, q4) ∈ E. ThenP is the square automaton of X .

The square automaton isambiguous if there exists is a path
in P, (p0, q0) = (0, 0) → (p1, q1) → · · · → (pn−1, qn−1) →
(pn, qn) = (0, 0), such thatpi
= qi for some1 ≤ i < n.
CODEGEN uses the following theorem from coding theory
[3] as the basis for its main algorithm.

Theorem 1: A language over a finite alphabet is a code if
and only if its square automaton is unambiguous.

Ambiguity in the square automaton of a languageX means
thatX is not a code, for two distinct paths with the same label
may then be traced in the flower automaton ofX from 0 to 0,
so there is a word inX∗ equal to two distinct concatenations
of words inX , contrary to the definition in item 1.

The following example illustrates this. Suppose
Σ = {a, b} and X = {a, ba, aba} ⊂ Σ∗.
Then in 4(a) we picture the flower ofX , P =
({0, 1, 2, 3}, {0}, {0}, {(0, a, 0), (0, b, 1), (1, a, 0), (0, a, 2),
(2, b, 3), (3, a, 0)}). Figure 4(b) shows the subgraph of the

square automatonP containing the ambiguous path.X is not
a code becausea ba = aba.

Fig. 4. Theorem 1 Applied.The language X = {a, ba, aba} is not a code.
(a) shows the flower automaton of X , with one possible numbering of the
states. (b) shows the ambiguous path in the square automaton of X.

B. Combinatorial Facts

CODEGEN implements an algorithm based on Theorem
1. The program attempts to take advantage of combinatorial
coding facts to speed up the code word verification and
generation processes. For instance, if the request is for a
language of words all of the same length or if the language
to be tested consists of same-length code words, then it is a
code and no check for this property is made.

If Σ hasn symbols, and if the involutionθ on Σ is such
that θ(a)
= a for any a ∈ X (which implies thatn is even),
then there are limits on how many words are inX if X is θ-k.
There are a maximum ofnk/2 distinct subwords of lengthk
which can be used inX . Suppose we desire that allk-length
subwords be unique in aθ-k code consisting of words of from
k1 to k2 symbols, where0 < k1 < k ≤ k2. We can form at
most

k−1∑
i=k1

ni +
nk

2

such words and at most

nk3

2(k3 − k + 1)

words of individual lengthk3, wherek3 ≥ k.
These bounds are sharp ifk is composite andθ is antimor-

phic, as some words are their own complements.
The user has minimum and maximum length, symbol-

repetition limits, and symbol content (the percentage ofCs
and Gs, that is) in mind depending on the experiment when
generating DNA code words. If these add up to a request that is
combinatorially impossible to satisfy, CODEGEN will inform
the user and will not attempt to answer it.

III. A LGORITHM FOR FINDING AND DETECTING “GOOD”
DNA CODE WORDS

The basic algorithms of CODEGEN answer requests for
randomly-generated code words with any number of theθ

1867

properties and tests any list of code words for specifiedθ
properties. The structures it uses are easily accessible, so that
the most costly computation involved is a string operation. The
testing process is recursive, a methodical check for ambiguous
paths in a square automaton, as suggested by Theorem 1.

We first present the data structures used and the algorithms
which use them. Then as examples we describe here how
CHECK and TRACE determine whether the languageX is
a code and whetherX with involution θ is strictly θ-free or
strictly θ-compliant. Finally, we give pseudo-code for these
routines.

1) FLOWER: is the data structure representing a flower
automaton. It is an array of lists. Nodek of list p contains
(ip,k, jp,k) and ap,k, where (ip,k, ap,k, jp,k) is edge k of
“petal” p of the flower automaton.

2) SQUARE: is the structure representing a square automa-
ton such asP. It is an array of two lists. The first has a node for
each edge in the square automaton the source of which is (0,0).
The second holds a node for each of the other edges, those
with sources other than (0,0). The SQUARE and FLOWER
expand and contract when a word is added to or deleted from
the language.

3) SOURCES: is a list of states in the SQUARE which are
sources of edges in SQUARE. This list is depleted by the main
algorithm as it finds states which do not lie along the type of
path for which it is looking. It is renewed between calls to
TRACE.

4) TRACE(initial-states, final-states, check-flag): This is a
call to the main algorithm, TRACE. The call returnsTRUE if
a path is found in a square automaton from an initial state to
a final state, if that path violates the conditions indicated by
the flag. It returns returnsFALSE if the if the initial states are
exhausted without finding such a path.

TRACE callse the routine CHECK with each state in the
list of initial states. If the call to CHECK returnsTRUE all
recursion unwinds, and at the top level TRACE returnsTRUE.
Otherwise, recursion unwinds just one level; TRACE sends the
next state in its list to CHECK. When a state is exhausted for
possible TRACEs, it is removed from SOURCES.

5) CHECK(current-state, final-states, recursion-level,
check-flag): This determines whether a given state violates
the flagged conditions or not. If it does, CHECK returns
TRUE and so does TRACE. Otherwise if the current state
is in SOURCES, it assembles a list of all targets of edges
in SQUARE with source equal to the current state. It calls
TRACE with this as the list of initial states. CHECK returns
the result of this call. Otherwise, if the current state is not in
SOURCES, CHECK returnsFALSE.

A. Identifying a Code

To verify that X is a code, CODEGEN TRACEs through
SQUARE until an ambiguous path is identified – whereupon it
returnsTRUE– or until it exhausts all possible paths or reaches
an excessive recursion level. In either of the latter cases it
returnsFALSE.

Thus, the verification begins with the call TRACE({(0,0)},
{(0,0)}, Must Be Distinct) on the structure representingP.
This call will be passed along to CHECK with the integer 1
(the current recursion level).

When CHECK recieves a state(i, j) and the flag
“Must Be Distinct,” it checks the recursion level. If this is
1, it recurses as described above. If the level is greater than
1 and i = j, CHECK returnsFALSE. Otherwisei
= j and
CHECK sets the flag to “Is Distinct”, before recursing.

When CHECK recieves state(i, j) and the flag
“ Is Distinct,” it returns TRUE if (i, j) is in final-states.
Otherwise, if (i, j) is in SOURCES, CHECK calls TRACE
recursively. If not, CHECK returnsFALSE.

This works because, according to Theorem 1, a path from
(0, 0) to (0, 0) exists inP such thati
= j for some state(i, j)
on the path if and only ifX is not a code. For states(i, j)
and(k, l) in SQUARE,(i, j) → (k, l) in the square automaton
if and only if (i) i = j = 0, (ii) k = i + 1 and l = j + 1,
or (iii) k = l = 0. A check thati
= j on the first recursion
level is sufficient to reject redundant searches, i.e., where the
ambiguous path is shorter than the one we have set out upon,
for otherwise TRACE is checking a path which reflects a single
petal in the flower automaton. TRACE returnsTRUE therefore
if and only if the square automaton is ambiguous.

B. θ Freedom

To check whether a codeX is strictly θ-free, CODEGEN

forms the flower automatonFθ of the involution of X , i.e.,
the flower automaton recognizing{θ(x) : x ∈ X}. From this
it forms a square automatonPθ using the direct product ofFθ

with F. This is called INVOLUTIONSQUARE
It then determines whether there is a path inPθ between a

state(0, i) and a state(0, j) which passes through at most one
state of the form(k, 0), wherek
= 0. CODEGEN assembles
a list containing all states in INVOLUTIONSQUARE of the
form (0, i). TRACE is called with this list as bothinitial-
states andfinal-states, and withcheck-flag set to the constant
“Two Words”.

When CHECK is called with the flag “Two Words” or
“One Word”, if the recursion level is greater than 1 and
the current state is infinal-states CHECK returnsTRUE.
Otherwise, ifcurrent-state is of the form(0, k) CHECK will
returnFALSE if the flag is “One Word” and will set the flag
equal to “One Word” if it is currently “Two Words”. In the
latter case or ifcurrent-state is not of the form(0, k) or if
the recursion level is 1, and ifcurrent-state is in SOURCES,
CHECK builds thenext-states list as described in III-A and
returns the result of a recursive call, TRACE(next-states, final-
states, (updated) check-flag).

This works because if a codeX is not θ-free, then by
definition (section II-A, item 3), there is an elementx ∈ θ(X)
and y, z ∈ Σ∗ such thatyθ(x)z ∈ X2. Let x = x1 · · ·xs

and yxz = y1y2 · · · yrθ(x)1θ(x)2 · · · θ(x)sz1z2 · · · zt, where
0 ≤ r = |y|, 0 < s = |x|, 0 ≤ t = |z| andxi, yj , zk ∈ Σ for
1 ≤ i ≤ s, 1 ≤ j ≤ r and1 ≤ k ≤ t. Thenθ(x) is the label
of some pathπθ = e′1 · · · e′s in Fθ. Further,yxz is the label

1868

of some pathπ1π2, for π1 = f1 · · · fu, π2 = g1 · · · gr+s+t−u

petals inF (or u = 0 or u = r+s+ t – one of the two can be
the empty word). Then the label offr+1 · · · fu concatenated
with the label ofg1 · · · gr+s+t−u−r+1 = gs+t+1 is equal to
θ(x).

Let qv1 be the source offr+1 in F, and letqvi be the target
of fi in F for 1 < i < u. Let qvu+i be the target ofgi

(1 < i ≤ s − u). Let q′v′
i
, similarly, be the source ofe′i in

π′ (1 ≤ i ≤ s), where the target offs is 0 = q′v′
s+1

= q′v′
1
.

Then (q′v′
i
, qvi) = q′′v′′

i
is in Fθ(Q) × F(Q). Finally, q′′v′′

i
is

the source, andq′′v′′
i+1

the target of an edge inPθ for each
1 ≤ i ≤ s by definition, so that these edges form a path we
may call π′′ = e1e2 · · · es in Pθ. Sinceπ1 and π2 are petals
in F, there is at most the one state,q′′v′′

u
in the interior ofπ′′

such thatqvu = 0 andq′′v′′
i

= 0.

Fig. 5. Justification of theθ-free algorithm.If X is not θ-free, there exist
x, f, g ∈ X as shown. The square automaton of the flower automaton with
the flower of X contains a path between states (0, i) and (0, j) with at most
one state of the form (k, 0) (k �= 0).

Conversely, if such a path may be traced inPθ, this shows
the existence of a sequence of edges inF beginning at symbol
r + 1 (r ≥ 0) of some petalπ1 and ending either within
that petal or, after reaching its end, continuings edges into
another petalπ2 of F, the label of which is equal toθ(x)
for somex ∈ X . But then there existy, z ∈ Σ∗ such that
yθ(x)z = w1w2, wherewi is the label ofπi, so X is not
θ-free.

C. θ-Compliance

To check whether a codeX is strictly θ-compliant,
CODEGEN formsFθ andPθ and assembles a list ofPθ states
with one zero coordinate as described above in III-B.

Then TRACE attempts to find a path inPθ which demon-
strates thatX is notθ-compliant. This means a call to TRACE,
just as in III-B, except with the flag “One Word”. It will
return thenTRUE if a path inPθ indicates that a word in the
code is the complement of some subword ofX .

The justification of this algorithm is similar to that for
strict θ-freedom. The non-strict versions of both require minor
variations on the strict versions.

IV. I MPLEMENTATION OF THE ALGORITHMS

We first present pseudo-code for the main algorithm, fol-
lowed by computation time calculations and the collection
of objects through which CODEGEN is implemented. In the

peudo-code, theI parameter is a list of initial states,F is a
list of final states,L is the check level flag passed by reference
between the routines,R is the recursion level, andN is the
list of states created for purposes of recursion.

M (found in SINGLETRACE IV-A.2) is a restraint on the
depth of recursion. Currently this constant is set tof4, where
f is the number of states inF.

A. Main Algorithm

TRACE is the entry-point to the main algorithm. It receives
a list of initial states, a list of final states, and a flag indicating
what it should look for in the TRACEing of SQUARE or
SQUARE INVOLUTION. It sends these, and the integer 1,
as the initial recursion level to the interior function MULTI-
TRACE. It returns the value it receives from MULTITRACE
after renewing the SOURCES structure.

Algorithm 1 TRACE(I, F, L)
1: Trace← MULTITRACE(I, F, L, 1)
2: Renew SOURCES
3: Return Trace

1) MULTITRACE: receives a list of initial states, a list of
terminal states, the flag, and an integer equal to the recursion
level. If it has not exhausted the initial state list, it sends
the next state on this list, together with the final states,
the flag at its current values, and the recursion level to the
function SINGLETRACE. If SINGLETRACE returnsTRUE,
so does MULTITRACE. Otherwise, when the initial state list
is exhausted, MULTITRACE returnsFALSE.

Algorithm 2 MULTITRACE(I, F, L, R)
1: if R = MaximumRecursionsthen
2: ReturnFALSE
3: end if
4: Index← 0
5: while Index < #F do
6: Multitrace← SINGLETRACE(I[Index],F ,L,R)
7: if Multitrace =TRUE then
8: ReturnTRUE
9: end if

10: Index← Index+1
11: end while
12: ReturnFALSE

2) SINGLETRACE: is the connection to the actual path
exploration accomplished in the function CHECK.

3) CHECK: performs the various checks described in III-
A and III-B. After that it returnsTRUE or FALSE from a
recursive call to TRACE. To make this call, it uses the targets
of edges in PATH which have the state it is checking as a
source.

B. Computation Time

This algorithm uses calls to standard string routines, and the
number of these calls is proportional to the total depth of all

1869

Algorithm 3 SINGLETRACE(S, F, L, R)
1: OldFlag← L
2: SingleTrace← FALSE
3: D ← D + 1
4: if R = M then
5: SingleTrace← FALSE
6: else
7: SingleTrace← CHECK(S, F, L, R)
8: if SingleTrace=FALSE and OldFlag is unalteredthen
9: RemoveS from SOURCES

10: end if
11: end if
12: L ← OldFlag
13: Return SingleTrace

Algorithm 4 CHECK(S, F, L, R)
1: if L and R meet the required conditions andS is in F

then
2: ReturnTRUE
3: else if S is in SOURCESthen
4: L ← new value, if necessary
5: N ← the targets of edges in SQUARE with sourceS
6: Return MULTITRACE(N, F, L, R + 1)
7: else
8: ReturnFALSE
9: end if

recursions it makes. Since each such call either returns aTRUE
and halts, or eliminates a target of(0, 0) from SOURCES, i.e.,
one state inP or Pθ, the computation time – at the most – is
proportional to

(
s
2

)
, wheres is the number of states inP or

Pθ. It is thereforeO(s2).
Suppose thatΣ containsn symbolsa1, . . . , an. Every edge

in the flower has one of thesen labels. The number of edges
in the flower, l, is the total length of all words inX by
construction. Ifxi is the number of occurrences ofai in X ,
whereΣ = {a1, . . . , an}, then there must be

n∑
i=1

x2
i

edges inP. Thus,s, the number of states inP is O(l2), where
l =

∑n
1 xi. But by the observation above, the computation

time of whetherX is a code isO(l4).
For this reason, the setting ofM to f4 (f is the number of

states inF) is more than generous.
Suppose the length of the longest word inX is m. Then

the recursion level in the computation of whetherX is θ-
compliant orθ-free is bound by one or two times the length
of the longest word inX , respectively. Thus computation time
totals at most

((
m
2

)
2

)
or

((
2m
2

)
2

)
, respectively.

Note that the number of states inPθ is
n∑

i=1

xiyi,

where yi is the number of occurences inX of the symbol
θ−1(ai).

In designing CODEGEN, we observed that checking the
remaining θ properties using the same algorithm demands
a disproportionate amount of memory. The program makes
these checks using standard string methods on appropriately
constructed objects. The computation time turns out to be
linear. We discuss the implementation next.

C. Object-Oriented Implementation

CODEGEN was designed in Visual Basic 6.0, which offers
a limited form of OOP. Its objects therefore have no inher-
itance. There are eight language-theoretic objects used: the
classes Point, Pointlist, Alphabet, Word, WordList, Involution,
Automaton, and Language.

1) The Point class is a wrapper for tuples, with .X and .Y
as its primary members.

2) The PointList class wraps an array of Points, useful
for storing paths in an Automaton and offers expected
functions as .Add, .Remove, etc.

3) The Alphabet class treats a set of symbols like a bag, and
is also able to display its members properly. It ignores
attempts to .Add symbols it already contains.

4) The Word class wraps a string and makes it behave like
a word.

5) The WordList class wraps an array of Words, and its
.Add function returnsFALSE when an attempt is made
to add a word it already contains.

6) The Involution class contains the assignment pattern of
an involution.

7) The Automaton class is where the TRACE algorithm
takes place. This class knows if it represents a flower
or square automaton and behaves like a finite graph.
Its most significant data member is Paths, an array of
PointLists which hold the edges traced in the automaton,
as in the graph representing it. Its .MakeFlower and
.MakeSquare functions behave as described in III-.1.

8) The Language class has a WordList and an Involution. It
holds three Automatons as well, representing its flower
automaton (F), square automaton (P), and the product
of the involution of its flower with its flower (Pθ). It
offers the methods .AddRandomWord, .AddWord, and
.Test, which call the TRACE routine of the appropriate
automata. The results are then available in public class
members.

Through these objects CODEGEN limits the number of
string operations used in testing forθ(k, m1, m2)-subword
compliance and in testing for whether a code isθ-k. These
are standard routines which construct Language objects and
attempt to add the involution of words to them. Since the
number ofk-length subwords is a linear function of the size
of a code, these tests are performed in linear time.

1870

Fig. 6. Main Screen

V. THE CODEGEN INTERFACE

The interface allows the user to obtain new sets of code
words or expand an existing set of code words. All capabilities
are presented on a main screen, consisting of three panels
labeledAlphabet, Involution , andWord (Figure 6).

These may be accessed in any order, but an alphabet must
be selected or created before an involution can be set, and an
involution must be selected before testing or generating code
words. After the language has been tested and verified, it can
be saved.

A. Alphabet

The DNA alphabet{A, T, C, G} is present and selected by
default. Other alphabets can be created, saved or deleted and
may contain up to 256 numeric or character symbols. The
number of alphabets is currently limited to twelve.

B. Involution

The DNA (Theta) involution is present and selected by
default, and cannot be altered. Up to three different involu-
tions may be defined over each alphabet.Morphism may be
selected for regular concatenation of words, orAntimorphism
for Watson-Crick complementarity, as discussed in II-A.

C. Word

Language operations take place on three tabs inWord
(although see V-D):Test Level, Source, andParameters.

1) Test Level: (see bottom right of Figure 6) sets the
desired properties of the language.Code is basic (item 1 in
II-A). Checking Subword Compliant enables detection of
the “hairpin” DNA hybridization (item 4 in II-A), avoiding

complementary subwords of prefixes or suffixes of individ-
ual words. The disallowed subword (hybridization) length
is chosen ink. The distances between the subword and its
complement (the length of the “hairpin” loop) cannot be
shorter than the value set inm1 or longer than the value set
in m2 .

If the Θ Compliant box is checked, this enables verification
of theθ-compliant property. If theΘ Free box is checked, this
enables verification of theθ-free property (see items 2 and 3
in II-A.). Verification of the θ-k property (item 5 in II-A)
– the strongest of theθ properties – is enabled if theΘ-k
box is checked. This rules out the presence of complementary
subwords (cross-hybridizing sequences) of the length set ink,
if this is possible (see II-B).

Fig. 7. Language Source Selection Tab

2) Source: (Figure V-C.1) is where the code words are
actually created. It has four radio buttons.

• Language file This displays all of the previously saved
language files in the current directory, and allows the user

1871

to select one. These languagefiles contain the relative
alphabet and involution, plus the words and previously
defined properties of the language. Once a language file
is selected, all of the words are displayed and the user
may add or delete words, or test the language.

• Import file The directory information is displayed to
allow the user to locate and select a text file of words
to be imported into the current language. Words in the
text file should be one per line and are imported with
only two restrictions: they must contain symbols from
the current alphabet, and no words may be duplicated.
After importing words, the new language is displayed in
the Language View pop-up window and can be tested
for the desired properties.

• Keyboard Words may be added directly from the key-
board. Limitations are that words must consist of symbols
from the current alphabet and that words cannot be
duplicated. The list of words currently in the language
is displayed and can be modified or tested at any point.

• Random The program will generate random code words
according to the chosenTest Levels and Parameters
(see V-C.3). Words are reported as they are generated
until the request is met or until the process exceeds
program limitations (see IV-A). The code words and the
properties of the generated language are then displayed
in the Language Viewwindow.

Fig. 8. Random Language Generation Parameters Selection Tab

3) Parameters: (see Figure 8) sets values for the gen-
eration of code words.MIN imum and MAX imum word
lengths display and can be adjusted.Max Reps sets the
maximum number of consecutive symbol repetitions, while
GC Content sets the maximum percentage of totalCs and
Gs in each word for DNA based languages.Total Words
displays and sets the number of words in the language. All
values change to reflect the properties of words currently
in the language. A language meeting these parameters (and
the Test Levels, see V-C.1) may then be generated using
Word→Source→Random→Generate.

D. Language View window

From the menu barView→Show Languagedisplays all
the words and properties of the current language in a separate
window (see Figure 9). The language may then be tested

Fig. 9. Language Display Screen

at these levels using theTest button. The window updates
to display the properties and values the language supports.
The Status label then changes to read “VERIFIED at current
levels”. Save will then store the language – namely, code
words, parameters, and verified levels.

Finally, the user may change desired test levels and retest
the current language, delete any or all of the words, create a
new language as spelled out in V-C.2, or set up new alphabets
(see V-A) and involutions (see V-B).

VI. L IMITS AND WHAT IS YET TO BE DONE

CODEGEN version 1 is an object-oriented program that has
been developed in Microsoft Visual Basic 6.0. It currently runs
only on Microsoft Windows platforms. The recursion in the
main algorithm demands at least 128 MB of memory. It is
an ongoing project. Version 2 should be a translation to Java
for multi-platform use, and to take advantage of the more
complete object-oriented features of that language.

At present, CODEGEN cannot generate or operate with
words or alphabets consisting of more than 256 symbols, al-
though the language size is limited only by available memory.

Version 2 will deal with a more serious issue. CODEGEN

will at present generate a maximum of 4096 random code
words before giving noticethat the search is incomplete.
The word-generation technique uses a typical pseudo-random
number generator and may words that are already in the
language, thus failing to produce the requested code words
even if when request is combinatorially possible to satisfy.

This is addressed already in various theorems in [14], where
several methods are outlined for using a relatively small
number of shorter code words to generate infinite sets of
words of any length satisfying particular requirements. As
mentioned in II-A, for instance, ifX is a code and all possible
concatenations of two words fromX is θ-k, thenX∗ is θ-k
if the words inX are at leastk symbols long. The next step

1872

in the development of the algorithms we present here is to
supplement pseudo-random generation with code generation
techniques drawn from [14].

The languages and properties described here are theoretical
but have been shown in the laboratory to give hybridization-
free code words (see [19]). It is to be understood, though, that
CODEGEN is not an attempt simulate toin vitro DNA behavior
in silico as in theEdna project of Garzon [11], [10], but an
attempt to model DNA’s chemical properties algebraically.

This project is part of the wider effort to facilitate generation
of code words and DNA sequences for various application
purposes including biotechnology and computation encoding.

VII. A CKNOWLEDGMENTS

Development of these algorithms, their programmatic im-
plementation, and the character of its user interface are in
large part creditable to the continuous firm guidance and
valuable advice of Natasha Jonoska. In addition, the authors
are indebted to the anonymous reviewers of this paper for their
many helpful suggestions.

This work has been supported by grant EIA-008615 from
the National Science Foundation, USA.

REFERENCES

[1] M. Arita, S. Kobayashi, “DNA sequence design using templates”,New
Generation Computing, vol. 20, pp. 263-267, 2002.

[2] E. B. Baum, “DNA sequences useful for computation,” unpublished
article, available at: http://www.neci.nj.nec.com/homepages/eric/seq.ps,
1996.

[3] J. Berstel, D. Perrin,Theory of Codes, Orlando: Academic Press, 1985.
[4] J. H. Chen, N. R. Kallenbach, N. C. Seeman, “A specific quadrilateral

synthesized from DNA branched junctions,”Journal of the Am. Chem.
Soc., vol. 111, pp. 6402-6407, 1989.

[5] J. Chen, N. C. Seeman, “Synthesis from DNA of a molecule with the
connectivity of a cube,”Nature vol. 350, pp. 631-633, 1991.

[6] R. Deaton et al, “A DNA based implementation of an evolutionary search
for good encodings for DNA computation,”Proceedings of the IEEE
Conference on Evolutionary Computation, ICEC-97, pp. 267-271, 1997.

[7] D. Faulhammer, A. R. Cukras, R. J. Lipton, L. F. Landweber, “Molecular
Computation: RNA solutions to chess problems,”Proceedings of the
National Academy of Sciences of the United States, vol. 97 (4), pp.
1385-1389, 2000.

[8] U. Feldkamp, S. Saghafi, W. Banzhaf, H. Rauhe, “DNASequenceGener-
ator - A Program for the construction of DNA sequences,”Proceedings
of the 7th International Meeting on DNA Based Computers, N. Jonoska,
N. C. Seeman, eds.,LNCS, vol. 2340, pp. 179-188, 2001.

[9] U. Feldkamp, H. Rauhe, W. Banzhaf, “Software Tools for DNA sequence
design,”Genetic Programming and Evolvable Machines, vol. 4 pp. 153-
171, 2003.

[10] M. Garzon, D. Blain, K. Bobba, A. Neel, M. West, “Self-assembly of
DNA-like structures In Silico,”Genetic Programming and Evolvable
Machines, vol. 4, pp. 185-200, 2003.

[11] M. Garzon, R. Deaton, D. Reanult, “Virtual test tubes: a new method-
ology for computing,”Proceedings of the 7th International Symposium
on String Processing and Information Retrieval, IEEE Computer Society
Press, pp. 116-121, 2000.

[12] M. Garzon, K. Bobba, B. Hyde, “Digital information encoding on DNA,”
Aspects of Molecular Computing, N. Jonoska, G. Paun, G. Rozenberg,
eds.,LNCS vol. 2950, pp. 153-166, 2004.

[13] N. Jonoska, D. Kephart, K. Mahalingham, “Generating DNA code
words,” Congressus Numerantium, vol. 156, pp. 99-110, 2002.

[14] N. Jonoska, K. Mahalingham, “Languages of DNA based code words,”
Preliminary Proceedings of the 9th International Meeting on DNA Based
Computers, J. Chien, J. Reif, eds., pp. 58-68, 2003.

[15] L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, “Sticky free and
overhang free DNA languages,”Acta Informatica, vol. 40 (2), pp. 119-
157, 2003.

[16] Z. Li, “Construct DNA codewords using backtrack algorithm,” preprint.
[17] S. Hussini, L. Kari, S. Konstantinidis, “Coding properties of DNA

languages,”Proceedings of the 7th International Meeting on DNA Based
Computers, N. Jonoska, N. C. Seeman, eds.,LNCS, vol. 2340, pp. 107-
118, 2001.

[18] Q. Liu et al, “DNA computing on surfaces,”Nature, vol. 403, pp. 175-
179, 2000.

[19] K. Mahalingam, “Involution Codes: with application to DNA coded
languages,” preprint.

[20] A. Marathe, A. E. Condon, R. M. Corn, “On combinatorial DNA word
design,” Proceedings of the 5th International Meeting on DNA based
computers, 1999. Also appears in:Journal of Computational Biology,
vol.8 (3), pp. 201-219, 2001.

[21] A. J. Ruben, S. J. Freeland, L. F. Landweber, “PUNCH: An evolutionary
algorithm for optimizing bit set selection,”Proceedings of the 7th
InternationalMeeting on DNA Based Computers, N. Jonoska, N. C.
Seeman, eds.,LNCS, vol. 2340, pp. 260-270, 2001.

[22] N. C. Seeman, “De Novo design of sequences for nucleic acid structural
engineering,”Journal of Biomolecular Structure & Dynamics, vol. 8 (3),
pp. 573-581, 1990.

[23] E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, “Design and self-
assembly of two dimensional DNA crystals,”Nature, vol. 394, pp. 539-
544, 1998.

1873

