CODEGEN: The Generation and Testing of DNA
Code Words

David E. Kephart Jeff LeFevre
Department of Mathematics Department of Computer Science
University of South Florida and Engineering

Tampa, FL 33620 University of South Florida

Email: dkephart@mail.usf.edu Tampa, FL 33620

Email: jlefevre@ieee.org

Abstract— With this paper we present algorithms to gen- user-friendly interface and enables the storage of languages.
erate and test DNA code words that avoid unwanted cross |t js the extension of software presented in [13].

hybridizations. Methods from the theory of codes based on formal . :
languages are employed. These algorithms are implemented in, While the program .selects. DNA settlngs by default, the
user-friendly software, CODEGEN, which contains a collection interface and object—grlented implementation lend themselves
of language-theoretic objects adaptable to various related tasks. to more general applications.
Lists of code words may be stored, viewed, altered and retested. |n section 1I-A we define necessary terms from coding
Implemented in Visual Basic 6.0, its interface allows for lists of theory and present the theorem that drives the main algorithm
code words to be assembled at varying levels of acceptability fC G | tion 1| t the algorith hich
from a single main window. of CODEGEN. In section IIl we present the algorithms whic
vary the level of “goodness” demanded in tested code words,
followed by pseudo-code for the main algorithm. In section V-
C, we discuss the object-oriented library created to implement
A. Motivation the algorithm, and pseudo-code for a typical algorithm made
DNA off h f . leli _possible by this approach. In section V we show the details
offers us the prospect of massive paralielism Iy e yser interface. We conclude with several remarks about

computing. A few baS'C obstacles to_this, hovyever, mu Pesent limitations and future @elopment of this project.
be overcome. The simple property of Watson-Crick comple-

mentarity, which allows the precise chemical matching of
denatured, singletstnded DNA molecule, ooligonucleotide
with an oppositely-oriented complementary strand allows theQur starting point in this is an elaboration of the frame-
transfer of information it contas By assembling particular work set up by Kari, Hussini, and Konstantinides [17]. The
strands and encoding a problem in these strands, it has baes of computers to assist in the synthetic self-assembly of
shown that certainV P-complete problems may be solved. DNA strands dates from the first laboratory construction of
This same property can compromise the results of a DNguch molecules. The program presented in [22], starts from
program if the encoding is selected carelessly. The informatitite topological characteristicof the molecules required in
conveyed in ill-chosen strands will be lost if they bond¢omputation and proceeds to the comparison of subsequences.
(hybridize) with code words. Information will be lost if code Others include those proposed by Baum [2], Li [16], the
words of varied length are used and multi-word strands ha&NASequenceGenerator of Felkamp, et. al.[8] and [9], the
more than one possible interpretation. template-based methods of Arita and Kobayashi[1], and Gar-
Further, not all DNA nucleotides are born chemically equaton’s amplification of seed sequences via the tensor products
The higher the percentage of cytosine and guanine in a straoficollections of words[12].
the higher its melting temperature. Leaving them out meansAs mentioned in [13] these approaches employ Hamming
reducing the overall number of useable distinct code words distance and therefore standarddry coding theory methods.

a given length. Most produce code word sequences of fixed length. They avoid
The search for potential unwanted coding ambiguities bigter-molecular hybridizatins between the DNA strands and
tween DNA words demands exponentially increasing amouritstween each DNA sequence and the complements of other

of computation time. strands.

This paper presents algorithms which use a theorem fromVariable length code words are necessary in certain DNA
coding theory and language-theoretic properties to addressnputations ([4], [5], [23], for example). @EGEN uses
this dilemma for the DNA programmer. These have beanethods from algebraic (and hengeary) coding theory to
implemented in software in a program -©6GEGEN — which produce words that not only avoid intermolecular crosshy-
performs the various necessary tests in polynomial time.dtidizations, but may be of variable length. With the proper
generates or verifies these properties in a language fronsed-up Seeman’s program also ogime variable length code

I. INTRODUCTION

§_ Past and present work on this problem

0-7803-8515-2/04/$20.00 ©2004 IEEE 1865

words. @DEGENS interface allows the user direct, intuitive 2) The involution of an element oK should not be a
access to this and all of its capabilities. proper subword of an element df. Stated formally,

In addition, @DEGEN avoids bottintra-molecular crosshy- YHO(X)X*NX =0 andX*0(X)XT = . Following
bridizations and can produce sets of code words with proper- [17], we call such a codé-compliant.
ties closed under the Kleeheperation. These could generate 3) The involution of an element ok should not be the
infinite sets of “good” code words. We therefore begin with a proper subword of the concatenation of two elements of
formal definition of what we mean by a “good” set of DNA X.2H(X)X*N¥? =0 andT*9(X)Bt N2 = (). We

code words. then call X 6-free, also per [17].
4) Consider each element of X, and thek-length prefix
Il. THE PROBLEM: WHAT IS A “GOOD” DNA CODE p andk-length suffixs of w. Thend(p) andé(s) should
WORD? either not be a subwords af or, if pzd(p) is a prefix
A. Definitions of w, or f(s)zs is a subword ofw, then |z| should

be less thanm; or more thanmsy. Then we sayX

is 6(k,mqy, ms)-subword compliant, as first defined in

[13]: for m; < i < mo andw € XF, wXH(w)LtNX =

0, andSH(w)Xiw N X = 0.

5) Suppose that, for somie > 1 and for allw € £, if
for somea € ¥, b € ¥* awb € X or bwa € X, then
Y*(w)XTNX = XT0(w)S*NX = (). Then we sayX
is 6-k, as first defined first in [14]. N&-length subword
of any element ofX is the involution of any subword
of any element ofX.

6) If X7 is replaced by=* in 2, 3, 4, or 5, thenX is said
to bestrictly §-compliant,6-free,d(k, m1, m2)-subword
compliant, or6-k.

A finite alphabet,Y, is a finite collection of symbols. A
language is a subset of the set of all possible concatenations
of symbols from, orover an alphabet. We denote By* the
set of all possible words ovet. This set includes the empty
word. The set of words oveX of positive length we denote
by T, and the set of all possible words overof lengthn
we denote byx". A language ovel is then X C X*. We
denote byX™ (n > 1) the set of all possible concatenations of
n members of. We denote byX * all possible concatenations
of words in X.

If a functiond : ¥ — X has the property that(6(a)) =
62(a) = a for each symbok in 3, then is aninvolution on

Y. with two possible obvious extensions K. If, for every .
2,y € 2%, 0(zy) = 0(z)0(y), thend is amorphism, while if In a setX of DNA code words without property 1 there are
eﬁxy) _ é(y)a(x) thend is an antimorphism. ’ sequences of words which cannot be uniquely decoded into

Definition 1: Let A represent theONA alphabet, i.e., the S€duences fromX. Some identifiable code word sequences

set{adenine, cytosie, guanine, thymirle or more succinctly, Will “factor” in more than one way.
{A,C,G,T}. In a code X of DNA words without property 2 some

The nucleotides of a DNA strand bind at one end at tff@de word will hybridize with the interior portion of another
5 location on a carboxyl ring and at the other end at tHEduence in the code and neither one will be identifiable in
3’ location into an oligonucleotide. This orients the strandUrther computation. This is shown in Figure 1(a).

Taking theb’ end by convention as the beginning position, the u U
sequence of nucleotides in a DNA strand form a word aver T <
Watson-Crick complementarity refers to the hydrogen bonds v v w
which form between oppositely-orientedandT' nucleotides (a (b
and between oppositely-orient&d and G nucleotides. This

. . Fig. 1. Intermolecular Cross-HybridizationA.violation of §-compliance is
extends to entire strands, so we have the following. shown in (a), while (b) illustrates a violation of 9-freedom. After hybridization

Definition 2: Let p: A* — A* be the antimorphic exten- (a) both u and v are useless in further DNA computation. After hybridization
sion to A* of the mapping such that: A+ T, p: T — A, ® vV, adwareall rendered usdess.

p:Cw— G,andp: G — C. Let c map a DNA word to its .
reverse (e.gg(AC) = CA). Thend = oop is an antimorphic Ina §et“of D!’\IA code words without property 3, some code
involution onA* representing Watson-Crick complementarit)}’.vord will “glue” two other code Words tqggther and.des'troy
We may now define formally the coding property ané‘" three for purposes of computation. This is shown in Figure
unwanted cross-hybridizatis between or within members ofl(b)'
a language oveA* (X C A*) —the “good” set of code words u u
we are after. These definitions are therefore placed in a more CW” SLARAL
general setting. @ ®)
Let ¥ be an alphabet, leX be a subset oE*, and letd be Fig. 2. Intra-Molecular Cross-Hybridizations word is equal to wvé (w)z,

a morphic or antimorphic involution oR*. as show in (@). If |u| = k and my < |v| < ma, then the word is not
. . 0(k, m1, mz2)-subword compliant. The similar situation where w is the suffix
1) We require that X be a code, in the senseo theword is shown in (b).

that if = = zizox3 - 2, = Y1Y2y3- Vs
T1,T2, 5 Ty Y1, Y2, -, Ys € X, thenr = s and In a DNA code without property 4, with valuds m,, and
zi =y, L <i < ms dependent on the specific conditions of the computation,

1866

some sequences can form “hairpin” structures as shownsiquare automatofi containing the ambiguous patlX. is not
Figures 2(a) and (b). These strands are then rendered uselesnde because ba = aba.

[ul =k

1.3 0.2)

@ (b)

Fig. 3. Cross-Hybridizations Avoided bk Codes

.)) Fig. 4. Theorem 1 AppliedThe language X = {a, ba, aba} is not a code.
Finally, with property 5, a DNA code avoids the above an@@) shows the flower automaton of X, with one possible numbering of the

various other cross-hybridizations, as shown in Figure 3. ff§tes (b) shows the ambiguous path in the square automaton of X'
particular, consider the languagé = X2, where X is 6-k.

As proven in [14], ifY is 0-k as well, and there are no wordsg compinatorial Facts

in X with fewer thank symbols, themo cross-hybridizations

in X or X* are possible. CODEGEN implements an algorithm based on Theorem

. . . 1. The program attempts to take advantage of combinatorial
We.nlo.w require some deftfons from coding theory. coding facts to speed up the code word verification and
Definition 3 (Flower): Theflower automaton of a language generation processes. For instance, if the request is for a

X over a finite alphabe® is the finite state automaton|angua(‘:]e of words all of the same length or if the language

F(Q,1,T,E) wherel =T = {0} CQandE C @ XXX Q 5 pe tested consists of same-length code words, then it is a

which recognizes X in the following sense. Ifv is a word in - .q4e and no check for this property is made.

X of lengths, there is goath m = eiea -+ -es, e1,...,6s CE |t 53 hasy symbols, and if the involutio on X is such

in I such thate; = (gi, w;, gi+1), w; is theith symbol ofw, thatg(a) + a for anya € X (which implies that: is even),

andqy = gs+1 =0, butg; Z01if 1 <@ <s+1. then there are limits on how many words areXrif X is 6-k.

We say thatw; is thelabel of e;, andw is the label ofr. There are a maximum of* /2 distinct subwords of length

As a labeled graphf resembles a flower with a petal for eaclyhich can be used ifk. Suppose we desire that &#length

word starting and ending at the same central state. subwords be unique in @k code consisting of words of from

Definition 4 (Square): The direct product of a flower au-k, to k, symbols, wherd) < k; < k < k. We can form at
tomaton with itself gives a new automatdiQ’,I’, 7', E’) most

with Q" = Q@ x Q, and E/ ¢ Q' x ¥ x @' such that =,k
(41,42, (s, 1)) € E if and only if (1,a,q5) € E and dn'+
(q2,a,q4) € E. Then? is the square automaton of X. =k

The square automaton @nbiguous if there exists is a path such words and at most
in ®, (po,q0) = (0,0) — (p1,q1) = -+ — (Pn-1,qn-1) — nks
(Pn,qn) = (0,0), such thatp; # ¢; for somel < i < n. 2ks — k + 1)

CODEGEN uses the following theorem from coding theor
[3] as the basis for its main algorithm.
Theorem 1. A language over a finite alphabet is a code i{)

and only if its square automaton is unambiguous. The user has minimum and maximum length, symbol-
Ambiguity in the square automaton of a languageneans enatition limits, and symbol content (the percentage’sf

that X is not a code, for two distinct paths with the same Iabglnd Gs, that is) in mind depending on the experiment when

may then be traced in the flower automaton®ofrom 010 0, generating DNA code words. If these add up to a request that is

so there is a word i * equal to two distinct concatenations.ompinatorially impossible to satisfy, dEGEN will inform
of words in X, contrary to the definition in item 1. the user and will not attempt to answer it.

The following example illustrates this. Suppose

X/vords of individual lengthks, whereks > k.
These bounds are sharpiifis composite and is antimor-
hic, as some words are their own complements.

Y = f{ab) and X = {aba,aba} c x*. Ill. ALGORITHM FORFINDING AND DETECTING“GOOD"
Then in 4(a) we picture the flower ofX, P = DNA Cobe WORDS
({o,1,2,3}, {0}, {0},{(0,qa,0),(0,b,1), (1, a,0), (0, a,2), The basic algorithms of @DEGEN answer requests for

(2,,3),(3,a,0)}). Figure 4(b) shows the subgraph of theandomly-generated code words with any number of ¢he

1867

properties and tests any list of code words for specified Thus, the verification begins with the call TRAGHKQ,0)},
properties. The structures it uses are easily accessible, so {{810)}, Must_Be_Distinct) on the structure representirigy
the most costly computation involved is a string operation. THehis call will be passed along to CHECK with the integer 1
testing process is recursive, a methodical check for ambigudtie current recursion level).
paths in a square automaton, as suggested by Theorem 1. When CHECK recieves a stat¢i,j) and the flag
We first present the data structures used and the algorithtiviust_Be_Distinct,” it checks the recursion level. If this is
which use them. Then as examples we describe here hbwit recurses as described above. If the level is greater than
CHECK and TRACE determine whether the languages 1 and: = j, CHECK returnsFALSE. Otherwisei # j and
a code and whetheX with involution @ is strictly 6-free or CHECK sets the flag tol$8_Distinct”, before recursing.
strictly #-compliant. Finally, we give pseudo-code for these When CHECK recieves state(i,j) and the flag
routines. “Is_Distinct,” it returns TRUE if (i,j) is in final-states.
1) FLOWER: is the data structure representing a flowePtherwise, if (i, j) is in SOURCES, CHECK calls TRACE
automaton. It is an array of lists. Nodeof list p contains recursively. If not, CHECK returnSALSE.
(ip.ks Jpk) and a, g, Where (iy x,ap g, jpx) IS edgek of This works because, according to Theorem 1, a path from
“petal” p of the flower automaton. (0,0) to (0,0) exists in? such that # j for some statés, ;)
2) SQUARE: is the structure represtng a square automa- ©n the path if and only ifX is not a code. For states, j)
ton such a$. It is an array of two lists. The first has a node foRnd(k, 1) in SQUARE, (¢, j) — (k, 1) in the square automaton
each edge in the square automaton the source of which is (0lognd only if (i) i = j =0, (i) k =i+ 1 andl = j + 1,
The second holds a node for each of the other edges, thdii) & = [= 0. A check thati # j on the first recursion
with sources other than (0,0). The SQUARE and FLOWERVel is sufficient to reject redundant searches, i.e., where the
expand and contract when a word is added to or deleted fr@biguous path is shorter than the one we have set out upon,
the language. for otherwise TRACE is checking a path which reflects a single
3) SOURCES is a list of states in the SQUARE which are.oetal in the 'ﬂower automaton. TRACE returngUE therefore
sources of edges in SQUARE. This list is depleted by the mdfrAnd only if the square automaton is ambiguous.
algorithm as it ﬂnc_is states whiqh do not lie along the type & 4 Freedom
path for which it is looking. It is renewed between calls to . .
TRACE. To check whether a codd is strictly §-free, GODEGEN

4) TRACE(ritial-states, final-states; check-flag): This is a 0™ he flower automaloffy of the imvolution of X, i-c.
call to the main algorithm, TRACE. The call returmgug if '€ flower automaton recognizin@(z) : = € X}. From this

a path is found in a square automaton from an initial state lf forms a square automatdy using the direct product df
P a with F. This is called INVOLUTIONSQUARE

a final state, if that path viates the conditions indicated by hen d ; hetn th X hi b

the flag. It returns returnBALSE if the if the initial states are Itt en etermines w) t, ere Is a path iPy between a

exhausted without finding such a path. state(0, 7) and a staté0, j) which passes through at most one
TRACE callse the routine CHECK with each state in thgtﬁt; ggr:?aeinfiargngngt)ét\:,avsh’ial:el]EI\ZAO(EU?FCI)SIZSGQESAaRSée;?meeS

list of initial states. If the call to CHECK returnsRUE all form (0, 7). TRACE is called with this list as botimitial-

recursion unwinds, and at the top level TRACE retureyE. i dfinal-stat d with checkl t 10 th tant
Otherwise, recursion unwinds just one level; TRACE sends t&fesan Inal-slates, and withcnec-flag set to the constan

AR . wo_Words”.
next state in its list to CHECK. When a state is exhausted fo . .
. o When CHECK is called with the flagTwo_Words” or
ossible TRACEs, it is removed from SOURCES. . . .
P 5) ICHECK(currenIt—Istate \lfinal— et recursion-level “One_Word", if the recursion level is greater than 1 and
. : iy s ' the current state is irfinal-states CHECK returns TRUE.
check-flag). This (j(_atermlnes wheth_er a given state V'O|ateatherwise ifcurrent-state is of the form(0, k) CHECK will
the flagged conditions or not. If it _doe_s, CHECK returnrseturnFALSE if the flag is “One_Word” and will set the flag
TRUE and so does TRACE. Otherwise if the current statee ual to ‘One.Word” if it is currently “Two.Words”. In the
is in SOURCES, it assembles a list of all targets of edgfq - y N i

. . Atter case or ifcurrent-state is not of the form 0,k) or if
in SQUARE with source equal to the current state. It cal e recursion level is 1. and durrent-state is in éOU)RCES

TRACE with this as the list of initial states. CHECK returnsCHECK builds thenext-states list as described in Il-A and

the result of this call. Otherwise, if the current state is not in . .
SOURCES, CHECK returnsaLsE. returns the result of a recursive call, TRAGEXt-states, final-

states, (updated) check-flag).

A. Identifying a Code This works because if a cod& is not #-free, then by
' definition (section II-A, item 3), there is an element 0(X)
To verify that X is a code, ©@DEGEN TRACEs through andy, z € ¥* such thatyf(z)z € X2 Letz = z1--- ;4

SQUARE until an ambiguous path is identified — whereupondind yzz = y1ys - - y-0(x)10(z)2 - - - 0(x)s2122 - - - 21, Where

returnsTRUE— or until it exhausts all possible paths or reaches< r = |y|, 0 < s = |z|, 0 < t = |z| and z;, y;, 2z, € X for

an excessive recursion level. In either of the latter casesliK i < s,1 < j <r andl <k <t. Thenf(x) is the label

returnsFALSE. of some pathrg = ¢ --- €, in Fy. Further,yxz is the label

S

1868

of some pathrymy, for 1y = f1--« fu, 72 = g1+ - gr1s1¢—w Peudo-code, thé parameter is a list of initial stateg; is a
petals inF (oru = 0 or u = r+ s+t — one of the two can be list of final states/ is the check level flag passed by reference
the empty word). Then the label ¢}, - - - f,, concatenated between the routines® is the recursion level, an&/ is the
with the label ofg; -+ grystt—w—r+1 = gs+e+1 IS €qual to list of states created for purposes of recursion.
0(x). M (found in SINGLETRACE IV-A.2) is a restraint on the

Let ¢,, be the source of,.; in F, and letq,, be the target depth of recursion. Currently this constant is seff to where
of fi in Ffor1 < i < u. Let q,,,, be the target ofy; [is the number of states i.

X P e
(1/ < i g s —u). Let Tyt similarly, bg the sotjrce oéi/m A. Main Algorithm
' (1 < i < s), where the target of, is0 =¢), = ¢, .))])]
Then (¢, qw) = ¢ is in Fo(Q) x F(Q). Finéﬁ)l/, ¢ ils '_I'RAC'E. is the entry-p_omt tq the main algorithm. It' receives
the source, and’, - the target of an edge if?, for ach a list qf initial states, a |ISF of final states', and a flag indicating
) Vg1, what it should look for in the TRACEing of SQUARE or

L <7 < s by definition, so that these edges form a path W4 ARE INVOLUTION. It sends these, and the integer 1,
may callm” = ejez---e; in Pg. Sincer, andr, are pete/x/ls as the initial recursion level to the interior function MULTI-
in F, there is at most :[/he one Statg’!f in the interior of7 TRACE. It returns the value it receives from MULTITRACE
such thatg,, =0 andg,, # 0. after renewing the SOURCES structure.

Algorithm 1 TRACE(I, F, L)
11 : 1. Trace«— MULTITRACE(I, F, L,1)
(I 2: Renew SOURCES
P g 3: Return Trace

ﬁlll
I
L1l

S

N, Ariiwton (ks

1) MULTITRACE: receives a list of initial states, a list of
: : : terminal states, the flag, and an integer equal to the recursion
i,0) (0,k) 0 level. If it has not exhausted the initial state list, it sends
the next state on this list, together with the final states,
Fig. 5. Justification of thé-free algorithm.If X is not 6-free, there exist the ﬂ_ag at its current values, and the recursion level to the
z, f,g € X as shown. The square automaton of the flower automaton with ~ function SINGLETRACE. If SINGLETRACE returnSRUE,
the flower of X' contains a path between states (0, <) and (0, j) with at most so does MULTITRACE. Otherwise, when the initial state list
one state of the form (k, 0) (k # 0). is exhausted, MULTITRACE returnsALSE.

Conversely, if such a path may be tracedfn this shows
the existence of a sequence of edge$ ineginning at symbol
r+ 1 (r > 0) of some petalr; and ending either within

Algorithm 2 MULTITRACE(I, F, L, R)
1: if R = MaximumRecursionghen

that petal or, after reaching its end, continuingdges into 2 RetumFALSE
another petalrs of JF, the label of which is equal téd(x) 3 end if
for somez € X. But then there exisy,z € ¥* such that 4 Index—0
y8(x)z = wiws, wherew; is the label ofr;, so X is not 5 While Index < #F” do
Dt 6: Multitrace — SINGLETRACE([Index],F,L,R)
7. if Multitrace = TRUE then
C. 6-Compliance 8: ReturnTRUE
To check whether a codeY is strictly 6-compliant, 9 end if

CODEGEN forms ¥ andP, and assembles a list 6%, states 10: Index« Index+1
with one zero coordinate as described above in II-B. 11: end while

Then TRACE attempts to find a path # which demon- 12: RetUrnFALSE
strates thai is notf-compliant. This means a call to TRACE,

just as in llI-B, except with the flagOne_Word". It will 2) SNGLETRACE: is the connection to the actual path
return thenTRUE if a path inPy indicates that a word in the exploration accomplished in the function CHECK.
code is the complement of some subwordXof 3) CHECK: performs the various checks described in Ill-

The justification of this algorithm is similar to that forA and IlI-B. After that it returnsTRUE or FALSE from a
strict -freedom. The non-strict versions of both require minaecursive call to TRACE. To make this call, it uses the targets
variations on the strict versions. of edges in PATH which have the state it is checking as a

source.
IV. IMPLEMENTATION OF THEALGORITHMS

We first present pseudo-code for the main algorithm, fo8- Computation Time
lowed by computation time calculations and the collection This algorithm uses calls to standard string routines, and the
of objects through which GDEGEN is implemented. In the number of these calls is proportional to the total depth of all

1869

Algorithm 3 SINGLETRACE(S, F, L, R)
1: OldFlag+ L

. SingleTrace— FALSE

:D+—D+1

if R= M then
SingleTrace— FALSE

else
SingleTrace— CHECK(S, F), L, R)
if SingleTraceFALSE and OldFlag is unalterethen

RemoveS from SOURCES

end if

- end if

: L — OldFlag

: Return SingleTrace

©eNOO R WD

[S T
W N P O

Algorithm 4 CHECK(S, F, L, R)
1: if L and R meet the required conditions arftis in F
then
ReturnTRUE
. else if S is in SOURCEShen
L — new value, if necessary
N « the targets of edges in SQUARE with sourge
Return MULTITRACEW, F, L, R+ 1)
. else
ReturnFALSE
- end if

©e N TR WD

recursions it makes. Since each such call either retunraia
and halts, or eliminates a target(®f 0) from SOURCES, i.e.,

one state irP or Py, the computation time — at the most — i

S

proportional to(g), wheres is the number of states i or
Py. It is thereforeO(s?).

Suppose that containsn symbolsay, . .., a,,. Every edge

in the flower has one of thegelabels. The number of edges

in the flower, !, is the total length of all words inX by
construction. Ifz; is the number of occurrences of in X,
whereX = {ay,...,a,}, then there must be

n
2
DL
i=1

edges inP. Thus,s, the number of states A is O(?), where

| = Y] z;. But by the observation above, the computation

time of whetherX is a code isO(I*).

For this reason, the setting 8f to f* (f is the number of
states inF) is more than generous.

Suppose the length of the longest word %his m. Then
the recursion level in the computation of whethgris 6-

Note that the number of states Jty is

n
E TiYi,
=1

where y; is the number of occurences i of the symbol
9_1(%).

In designing @DEGEN, we observed that checking the
remaining # properties using the same algorithm demands
a disproportionate amount of memory. The program makes
these checks using standard string methods on appropriately
constructed objects. The computation time turns out to be
linear. We discuss the implementation next.

C. Object-Oriented Implementation

CoDEGEN was designed in Visual Basic 6.0, which offers
a limited form of OOP. Its objects therefore have no inher-
itance. There are eight language-theoretic objects used: the
classes Point, Pointlist, Alphabet, Word, WordList, Involution,
Automaton, and Language.
1) The Point class is a wrapper for tuples, with .X and .Y
as its primary members.

) The PointList class wraps an array of Points, useful
for storing paths in an Automaton and offers expected
functions as .Add, .Remove, etc.

The Alphabet class treats a set of symbols like a bag, and
is also able to display its members properly. It ignores
attempts to .Add symbols it already contains.

The Word class wraps a string and makes it behave like
a word.

The WordList class wraps an array of Words, and its
Add function return&FALSE when an attempt is made

3)

4)

5)

S to add a word it already contains.

6) The Involution class contains the assignment pattern of
an involution.

The Automaton class is where the TRACE algorithm
takes place. This class knows if it represents a flower
or square automaton and behaves like a finite graph.
Its most significant data member is Paths, an array of
PointLists which hold the edges traced in the automaton,
as in the graph representing it. Its .MakeFlower and
.MakeSquare functions behave as described in IllI-.1.
The Language class has a WordList and an Involution. It
holds three Automatons as well, representing its flower
automaton &), square automatori}, and the product

of the involution of its flower with its flower ®y). It
offers the methods .AddRandomWord, .AddWord, and
.Test, which call the TRACE routine of the appropriate
automata. The results areeth available in public class
members.

Through these objects ADEGEN limits the number of

8)

compliant oré-free is bound by one or two times the lengtt§tfing operations used in testing fé(k, m., m2)-subword
of the longest word inX, respectively. Thus computation timec®Mpliance and in testing for whether a codefis. These

totals at most

((7;)> or<(2;n)> , respectively.

2 2

are standard routines which construct Language objects and
attempt to add the involution of words to them. Since the
number ofk-length subwords is a linear function of the size
of a code, these tests are performed in linear time.

1870

x
File ‘iew Help
Alphabet [nvolution
E_,, e Irvolution Selection Involution Mappings
ok j b : : Source Target
Cutrent Alphabet: —at ik A T
AGCT i B
c G
Alphabet Selection Alphabet Creation ® MepliEn © At
Enter a
alphabet! Symbal: |I— New Delete Add Symbol | Delete Spmbol
alphsbet? Invalution | Invalution Mapping Mapping
Al
Syrmbol Ward
Delete Test Levels T Source T Parameters
Symbol
v CODE
Save
Al [~ 8 Subword Compliant
Create MNew B . .
Delete Alohabst Alphabet £ Sj i Sj m2) Sj
Help Details " 8 Compliant
Add sprnbols bo the new or esisting Alphabet one at a time, J I [ax i‘
then click 'Save Alphabet’ to save changes when done. [~ B Free hd
Fig. 6. Main Screen
V. THE CODEGEN INTERFACE complementary subwords of prefixes or suffixes of individ-

algl words. The disallowed subword (hybridization) length

The interface allows the user to obtain new sets of co . . .
. ... 1S chosen ink. The distances between the subword and its
words or expand an existing set of code words. All capabllltl%sm lement (the length of the “hairpin” loop) cannot be
are presented on a main screen, consisting of three parg%gr?er than the valuegset m1l or lon <§r than tﬁe value set
labeledAlphabet, Involution, andWord (Figure 6). . 9

These may be accessed in any order, but an alphabet rﬁn#ﬁé © Compliant box is checked, this enables verification
be selected or created before an involution can be set, and P ’

involution must be selected foge testing or generating Codeo?%ee-com.p.llan_t property. If th® Free box is ghecked, this
words. After the language has been tested and verified, it C%rhables ver|f-|c-at|(-)n of thé-free property (s<_ae |tem§ 2 and 3
be saved. in 1I-A.). Verification of the e—k. propgrty (item 5_ in 1I-A)

— the strongest of thé@ properties — is enabled if th®-k

A. Alphabet box is checked. This rules out the presence of complementary

. subwords (cross-hybridizing sequences) of the length det in
The DNA alphabe{ A, T, C, G} is present and selected by this is possible (see II-B).

default. Other alphabets can be cezhtsaved or deleted and

may contain up to 256 numerior character symbols. The Word
number of alphabets is currently limited to twelve. Tesilevels | Source | Paameters

X " Language file @ Importfile © Keybosrd © Random
B. Involution

testDHAwrds bt
wardsFile] et
wordsFilez bt

)]) | St [paTa) =l
The DNA (Theta) involution is present and selected by

Y

default, and cannot be altered. Up to three different involu- “JEFF_classes
_JCodeGen

wordsFiled it

tions may be defined over each alphalddbrphism may be
selected for regular concatenation of wordsAatimorphism

for Watson-Crick complementarity, as discussed in II-A. ImportWords
C. Word
Language operations take place on three tabdMord Fig. 7. Language Source Selection Tab

(although see V-D)Test Level Source andParameters

1) Test Level: (see bottom right of Figure 6) sets the 2) Source: (Figure V-C.1) is where the code words are
desired properties of the languaggode is basic (item 1 in actually created. It has four radio buttons.
[I-A). Checking Subword Compliant enables detection of « Language file This displays all of the previously saved
the “hairpin” DNA hybridization (item 4 in 11-A), avoiding language files in the current directory, and allows the user

1871

to select one. These languafijles contain the relative
alphabet and involution, plus the words and previously
defined properties of the language. Once a language file
is selected, all of the words are displayed and the user
may add or delete words, or test the language.

& Current Language x|

Status

NOT TESTED atcurrent levels

Test Levels

Code =YES

Subword Compliant = NO
k=3 ml=3 m2=3

6 Compliant= NO

Parameters
M GC Content = 66%
MAx Symbol Reps = 3

‘Word Length MIN =2

Import file The directory informtion is displayed to @ Free - ES Word Length MAX - 6
allow the user to locate and select a text file of words S i Totsl Words =9
to be imported into the current language. Words in the o -
text file should be one per line and are imported with AAC
only two restrictions: they must contain symbols from AAG
. GGG
the current alphabet, and no words may be duplicated. T
After importing words, the new language is displayed in cce
the Language View pop-up window and can be tested Qgc
for the desired properties. CCOCCCoe
Keyboard Words may be added directly from the key-
board. Limitations are that words must consist of symbols il
from the current alphabet and that words cannot be = ‘ - ‘ ‘

duplicated. The list of words currently in the language

is displayed and can be modified or tested at any point.
o Random The program will generate random code words

according to the choseiiest Levels and Parameters

(see V-C.3). Words are reported as they are generalgdinese |evels using thEest button. The window updates
until the request is met or until the process exceegs gisplay the properties and values the language supports.

program limitations (see IV-A). The code words and thepe status label then changes to read “VERIFIED at current
properties of the generatedriguage are then displayedeyels”. Save will then store the language — namely, code

in the Language Viewwindow. words, parameters, and verified levels.
Finally, the user may change desired test levels and retest

Fig. 9. Language Display Screen

Word : the current language, delete any or all of the words, create a
TestLevels T Source T Parameters: .
_ new language as spelled out in V-C.2, or set up new alphabets
WoreLengh 1 [Symbol fepefiion B (see V-A) and involutions (see V-B).
MIN 8J Fope —
- - VI. LIMITS AND WHAT IS YET TO BE DONE
+ ||| e o *
hes 12) Coentl 0 % = CoDEGEN version 1 is an object-oriented program that has
S been developed in Microsoft Visual Basic 6.0. It currently runs
~ only on Microsoft Windows platforms. The recursion in the
=1 main algorithm demands at least 128 MB of memory. It is
an ongoing project. Version 2 should be a translation to Java

for multi-platform use, andat take advantage of the more
Fig. 8. Random Language Generation Parameters Selection Tab complete objecbriented features of that language.
At present, @DEGEN cannot generate or operate with
3) Parameters. (see Figure 8) sets values for the gerwords or alphabets consisting of more than 256 symbols, al-
eration of code wordsMINimum and MAXimum word though the language size is limited only by available memory.
lengths display and can be adjusteddax Reps sets the Version 2 will deal with a more serious iSSueOGEGEN
maximum number of consecutive symbol repetitions, whilill at present generate a maximum of 4096 random code
GC Content sets the maximum percentage of toté and words before giving noticeghat the search is incomplete.
Gs in each word for DNA based languagd®atal Words The word-generation technique uses a typical pseudo-random
displays and sets the number of words in the language. Alimber generator and may words that are already in the
values change to reflect the properties of words currentgnguage, thus failing to produce the requested code words
in the language. A language meeting these parameters (amén if when request is combinatorially possible to satisfy.
the Test Levels see V-C.1) may then be generated using This is addressed already in vauis theorems in [14], where
Word — Source—~Random—Generate several methods are outlined for using a relatively small
number of shorter code words to generate infinite sets of
words of any length satisfying gpticular requirements. As
From the menu baWiew—Show Languagedisplays all mentioned in II-A, for instance, iK is a code and all possible
the words and properties of the current language in a sepaacatenations of two words frold is 6-k, then X* is 6-k
window (see Figure 9). The language may then be testédhe words in X are at leask symbols long. The next step

D. Language View window

1872

in the development of the algorithms we present here is t@] U. Feldkamp, S. Saghafi, W. Banzhaf, H. Rauhe, “DNASequenceGener-
supplement pseudo-random generation with code generation ator - A Program for the construction of DNA sequencédfceedings
techniques drawn from [14].
The languages and properties described here are theoretifgalu. Feldkamp, H. Rauhe, W. Banzhaf, “Software Tools for DNA sequence
but have been shown in the laboratory to give hybridization-
free code words (see [19]). It is to be understood, though, tlm]
CoDEGEN is not an attempt simulate ta vitro DNA behavior
in silico as in theEdna project of Garzon [11], [10], but an

attempt to model DNA's chemical properties algebraically.

[11]

This project is part of the wier effort to facilitate generation

of code words and DNA sequences for various applicatign
purposes including biotechnology and computation encodi

g.

VIlI. ACKNOWLEDGMENTS [13]

Development of these algorithms, their programmatic in?m
plementation, and the character of its user interface are’in
large part creditable to the continuous firm guidance and
valuable advice of Natasha Jonoska. In addition, the auth&rd
are indebted to the anonymous reviewers of this paper for their

many helpful suggestions.

[16]

This work has been supported by grant EIA-008615 frof’]
the National Science Foundation, USA.

(1]
(2]

(3]
(4]

(5]
6]

(7]

REFERENCES [18]

M. Arita, S. Kobayashi, “DNA sequence design using templaté&y
Generation Computing, vol. 20, pp. 263-267, 2002.

E. B. Baum, “DNA sequences useful for computation,” unpublishe 0
article, available at: http://www.neci.nj.nec.com/homepages/eric/seq.ps,
1996.

J. Berstel, D. PerrinTheory of Codes, Orlando: Academic Press, 1985.

J. H. Chen, N. R. Kallenbach, N. C. Seeman, “A specific quadrilater:fil]
synthesized from DNA branched junctionggurnal of the Am. Chem.

Soc., vol. 111, pp. 6402-6407, 1989.

J. Chen, N. C. Seeman, “Synthesis from DNA of a molecule with the
connectivity of a cube,/Nature vol. 350, pp. 631-633, 1991. o
R. Deaton et al, “A DNA based implementation of an evolutionary searéf%]
for good encodings for DNA computationProceedings of the |EEE
Conference on Evolutionary Computation, ICEC-97, pp. 267-271, 1997. 23]
D. Faulhammer, A. R. Cukras, R. J. Lipton, L. F. Landweber, “MoIecuIaL
Computation: RNA solutions to chess problemByoceedings of the
National Academy of Sciences of the United Sates, vol. 97 (4), pp.
1385-1389, 2000.

[19]

1873

of the 7th International Meeting on DNA Based Computers, N. Jonoska,
N. C. Seeman, edsLNCS, vol. 2340, pp. 179-188, 2001.

design,”Genetic Programming and Evolvable Machines, vol. 4 pp. 153-
171, 2003.

M. Garzon, D. Blain, K. Bobba, A. Neel, M. West, “Self-assembly of
DNA-like structures In Silico,”Genetic Programming and Evolvable
Machines, vol. 4, pp. 185-200, 2003.

M. Garzon, R. Deaton, D. Reanult, “Virtual test tubes: a new method-
ology for computing,”Proceedings of the 7th International Symposium

on Sring Processing and Information Retrieval, IEEE Computer Society
Press, pp. 116-121, 2000.

12] M. Garzon, K. Bobba, B. Hyde, “Digital information encoding on DNA,”

Aspects of Molecular Computing, N. Jonoska, G. Paun, G. Rozenberg,
eds.,LNCS vol. 2950, pp. 153-166, 2004.

N. Jonoska, D. Kephart, K. Mahalingham, “Generating DNA code
words,” Congressus Numerantium, vol. 156, pp. 99-110, 2002.

N. Jonoska, K. Mahalingham, “Languages of DNA based code words,”
Preliminary Proceedings of the 9th International Meeting on DNA Based
Computers, J. Chien, J. Reif, eds., pp. 58-68, 2003.

L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, “Sticky free and
overhang free DNA languagesicta Informatica, vol. 40 (2), pp. 119-
157, 2003.

Z. Li, “Construct DNA codewords using backtrack algorithm,” preprint.
S. Hussini, L. Kari, S. Konstantinidis, “Coding properties of DNA
languages,Proceedings of the 7th International Meeting on DNA Based
Computers, N. Jonoska, N. C. Seeman, eds\CS, vol. 2340, pp. 107-
118, 2001.

Q. Liu et al, “DNA computing on surfacesNature, vol. 403, pp. 175-
179, 2000.

K. Mahalingam, “Involution Codes: with application to DNA coded
languages,” preprint.

A. Marathe, A. E. Condon, R. M. Corn, “On combinatorial DNA word
design,” Proceedings of the 5th International Meeting on DNA based
computers, 1999. Also appears injournal of Computational Biology,
vol.8 (3), pp. 201-219, 2001.

A. J. Ruben, S. J. Freeland, L. F. Landweber, “PUNCH: An evolutionary
algorithm for optimizing bit set selection,Proceedings of the 7th
InternationalMeeting on DNA Based Computers, N. Jonoska, N. C.
Seeman, edsLLNCS, vol. 2340, pp. 260-270, 2001.

N. C. Seeman, “De Novo design of sequences for nucleic acid structural
engineering,"Journal of Biomolecular Sructure & Dynamics, vol. 8 (3),

pp. 573-581, 1990.

E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, “Design and self-
assembly of two dimensional DNA crystald\ature, vol. 394, pp. 539-
544, 1998.

