
Divergent Physical Design Tuning for
Replicated Databases

Mariano P. Consens
Univ. of Toronto

consens@cs.toronto.edu

Kleoni Ioannidou
UC Santa Cruz

kleoni@cs.ucsc.edu

Jeff LeFevre
UC Santa Cruz

jlefevre@cs.ucsc.edu

Neoklis Polyzotis
UC Santa Cruz

alkis@cs.ucsc.edu

ABSTRACT
We introduce divergent designs as a novel tuning paradigm for
database systems that employ replication. A divergent design in-
stalls a different physical configuration (e.g., indexes and materi-
alized views) with each database replica, specializing replicas for
different subsets of the workload. At runtime, queries are routed
to the subset of the replicas configured to yield the most efficient
execution plans. When compared to uniformly designed replicas,
divergent replicas can potentially execute their subset of the queries
significantly faster, and their physical configurations could be ini-
tialized and maintained (updated) in less time. However, the spe-
cialization of divergent replicas limits the ability to load-balance
the workload at runtime.

We formalize the divergent design problem, characterize the prop-
erties of good designs, and analyze the complexity of identifying
the optimal divergent design. Our paradigm captures the trade-off
between load balancing among all n replicas vs. load balancing
among m ≤ n specialized replicas. We develop an effective al-
gorithm (leveraging single-node-tuning functionality) to compute
good divergent designs for all the points of this trade-off. Ex-
perimental results validate the effectiveness of the algorithm and
demonstrate that divergent designs can substantially improve work-
load performance.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

General Terms
Performance

Keywords
physical design tuning, divergence, replicated databases

1. INTRODUCTION
Data replication is an ubiquitous feature in distributed database

systems. In a nutshell, the system maintains several copies (or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

replicas) of the data at different nodes, and ensures that they remain
synchronized when updates are applied to the database. Replication
may occur at different levels of granularity, from subsets of tuples
to a complete database. In all cases, the main motivation behind
replication is to cope with node failures and ensure high availabil-
ity, but quite often replication is also used to enable the parallel
servicing of a workload in a load-balanced fashion.

In this work, we introduce the paradigm of a divergent design,
which leverages replication for the purpose of tuning the database
system more effectively. Specifically, a divergent design installs
a different physical configuration (e.g., indexes and materialized
views) with each replica in order to specialize it for a subset of the
workload. In this fashion, a query statement in the incoming work-
load is routed to the replica that can evaluate it most efficiently.
Our proposed approach is in contrast to the current state of the
practice, where each replica has the exact same physical configu-
ration (a uniform design). By allowing the configuration of each
replica to diverge, a divergent design utilizes the aggregate storage
in the system more effectively (i.e., more indexes and materialized
views are built overall) and consequently enables higher benefits
for more queries in the workload together with faster initialization
and maintenance of replicas.

Several real-world systems employ replication and can thus ben-
efit directly from divergent designs. Database systems that run in
the cloud using a Database-as-a-Service provider are one example.
These providers typically employ commodity hardware to run the
database system and rely on replication to cope with failures as
well as achieve scalability. Two such examples are Microsoft SQL
Azure [2], which employs 3-way replication, and Amazon’s Rela-
tional Database Service [1], where up to 5 read replicas of MySQL
databases can be launched on-demand to provide scalability. These
systems fully replicate the database on several nodes, thus allowing
a query to be evaluated on any replica. In both cases, a divergent
design will allow replicas to specialize for subsets of the workload
and thus improve performance of query processing. A similar case
can also be made for parallel database systems which employ repli-
cation for high availability, failure recovery, and performance e.g.,
the recently announced Teradata Unity feature. In addition, diver-
gent designs can be particularly beneficial in the context of ad-hoc
data analytics. For instance, a data scientist may procure several
machines from a private or public cloud (e.g., Amazon EC2), spin
up several database instances for the same data set, and then use di-
vergent designs to efficiently evaluate a heavy analytics workload
in parallel. In all these examples, using a divergent design does not
require any changes to the underlying query processor. It is only
a matter of installing a different configuration on each replica and
taking care of routing queries to the appropriate replicas.

The focus of our work is the problem of divergent design tun-
ing, i.e., how to compute a beneficial divergent design for a system
that employs database replication. The problem involves numer-
ous technical challenges. Choosing a good divergent design re-
quires reasoning about possible subsets of the workload and how
they can benefit from possible configurations, which already leads
to a doubly-exponential space of solutions. In particular, diver-
gent design tuning can be viewed as a generalization of physical
design tuning for a single node, which is already known to be a
hard problem [5]. Another source of complication is the tension
between best-case performance and load balancing. Specifically,
the specialization of replicas to different subsets of the workload
may cause a query to have really good performance on one replica
but really bad performance everywhere else. In turn, this variability
can result in load imbalance and bad overall performance, e.g., in
the case where a query cannot be routed to its “best” replica. Our
work shows that it is non-trivial to determine a good trade-off point
between specialization and load balancing.

There is a long line of studies on physical design tuning, however
no previous work examines the concept of divergent designs that
we introduce in our work. Several studies investigate the problem
of tuning the configuration of a single system [3, 4, 10], but they do
not examine the interplay with replication. In fact, the current state
of the practice is to apply these techniques to tune the configuration
of a single replica, and then to copy the resulting configuration on
every other replica. The concept of fractured mirrors [12] is similar
in spirit to divergent designs, except that it assumes exactly two
replicas of the database that are stored in row- and column-based
format respectively, and also requires a modified query processor.
In contrast, a divergent design installs a “richer” configuration on
each replica based on the data structures (e.g., indexes, materialized
views, row- and column-based storage) that are already supported
by the query processor. (A more detailed review of related work
appears in Section 7.)

Contributions. The technical contributions of our work can be
summarized as follows.

• We formally introduce the concept of a divergent design and
define the problem of divergent design tuning (Section 2). Our
formalization casts the problem as computing a partition of the
workload across replicas, and then using existing tools (e.g.,
DB2’s Design Advisor, or the Index Tuning Wizard of MS SQL
Server) to compute the corresponding configurations. In this
fashion, a divergent design yields configurations that are readily
tailored to the capabilities of the underlying query processor.
Our definition also models the tension between divergence and
load balancing, by requiring each query to have a least number
of “good” replicas.

• We analyze the complexity of the problem and the properties of
good divergent designs (Section 3). Not surprisingly, our anal-
ysis reveals that finding the optimal divergent design is an NP-
Hard problem. At the same time, we identify an intuitive prop-
erty that characterizes good divergent designs, and which we
use in the development of our tuning algorithm. We prove that
the current state of the practice (a uniform design replicating
the single-system configuration to all replicas) can be subopti-
mal. Furthermore, we show that that there is a big performance
gap between good and bad designs, and that there are few good
designs (hence, chances are against an application design been
optimal).

• We propose an efficient algorithm to compute effective diver-
gent designs (Section 4). The algorithm computes an initial

partition of the workload and then refines it in an iterative fash-
ion. We formally show that each iteration leads to a better par-
tition and also that the generated designs have provably good
properties.

• We present an extensive experimental study using a commercial
DBMS to evaluate the potential of divergent designs and also
the effectiveness of our tuning algorithm (Section 5). The re-
sults demonstrate that our tuning algorithm runs efficiently and
yields divergent designs that have several benefits: the available
space budget for physical configurations is utilized more effec-
tively; the time to build the configuration of each replica drops
significantly as the configuration size increases; update state-
ments are executed faster; and, query performance improves
significantly, without compromising the ability to load-balance
the system.

We also discuss the implementation of divergent designs in an
actual DBMS (Section 6). Existing systems can already reap some
benefits from divergent designs. However, to realize the full poten-
tial of divergent design tuning, it becomes necessary to modify the
policies for query routing and load balancing.

2. DIVERGENT DESIGN TUNING: PROB-
LEM STATEMENT

Preliminaries. We first review some basic concepts from the con-
ventional problem of physical design tuning over a single database.
The problem of divergent design tuning extends these concepts to
a parallel environment where the database is replicated.

In conventional physical design tuning, we are given a represen-
tative workload W and a space budget b, and the goal is to com-
pute a configuration that minimizes the cost to evaluate W and fits
within the space budget b. The computed configuration typically
comprises materialized views and (primary or secondary) indexes
over tables and views. Formally, let W = Q ∪ U where Q is the
query workload and U is the update workload. Since W plays the
role of a representative workload, it is common to provide a weight
function f : W → <, such that f(x) corresponds to the impor-
tance of query or update statement x in W . W and f are typically
specified by the administrator or they can be obtained automati-
cally, e.g., by mining the query logs of the database system.

We use cost(x, I) to denote the cost of evaluating (query or up-
date) statement x assuming that I is the configuration of the system.
The cost function can be evaluated efficiently in modern systems
(i,e., without materializing I) using a what-if optimizer [7]. Given
a configuration I , we can define the cost of evaluating W as fol-
lows:

SingleCost(W, f, I) =
∑
q∈Q

f(q)cost(q, I) +
∑
u∈U

f(u)cost(u, I)

Building on these definitions, the physical design tuning prob-
lem is defined as computing the configuration I such that I has
size not greater than b and SingleCost(W, f, I) is minimal. Physi-
cal design tuning has been the focus of a long line of research stud-
ies [3, 4, 10], and most commercial database management systems
come with a configuration advisor tool that automates the tuning
process [6, 9, 18]. We model a configuration advisor as a func-
tion DBAdv that takes as input the workload W , the weight func-
tion f , and the space budget b and outputs a configuration I , i.e.,
I = DBAdv(W, f, b). Since computing the optimal configuration
is an NP-Hard problem, the advisor relies on heuristics to output a
good solution that is hopefully close to optimal.

Divergent Physical Design Tuning. We extend the previous con-
cepts to a system where the database is replicated across n ma-
chines. We consider the cases described in Section 1, where each
replica i ∈ [1, n] holds a full copy of the database. Moreover, we
assume that replicas have the same space budget b for their config-
uration. Our techniques are readily extensible to the case where the
unit of replication is a partition of the database, or when replicas
may have different space budgets.

In this particular setting, each query statement q can be evaluated
by any replica in the system. (Of course, the performance of query
evaluation may be different depending on which replica is chosen.)
On the other hand, each update statement u has to be evaluated
at each replica, in order to ensure consistency. The system may
use different strategies to ensure synchronization for updates, e.g.,
eager vs lazy, but this choice is completely orthogonal to our tech-
niques.

The high-level idea of a divergent physical design is to allow
each replica to have a different physical design, tailored to a partic-
ular subset of the workload. Formally, let {Q1, . . . , Qn} denote a
partition of the query workload Q to n (potentially overlapping)
subsets. The partition of Q induces a partition of W in corre-
sponding subsetsW1, . . . ,Wn, that we call sub-partitions such that
Wi = Qi ∪ U . We use partitions(W) to denote the set of such
partitions. Essentially,Wi represents the subset of the workload for
which replica i is specialized. Note that each Wi contains U , since
all updates have to be applied to all replicas. We couple the parti-
tion {W1, . . . ,Wn} with a set of corresponding weight functions
{f1, . . . , fn}, where fi() sets the weights of queries and updates
in Wi. (We will impose certain restrictions on fi later.) In what
follows, we use p = {(W1, f1), . . . , (Wn, fn)} to denote the com-
bined information of workload subsets and weight functions. Note
that the uniform design punif = {(W, f), . . . , (W, f)} captures
the current practice in real systems, where each replica is equipped
with the same configuration Iunif = DBAdv(W, f, b) that is com-
puted based on the complete workload.

DEFINITION 2.1 (DIVERGENT DESIGN). Given a workload
W = Q∪U , a weight function f , and a number of replicas n, a di-
vergent design corresponds to a set p = {(W1, f1), . . . , (Wn, fn)},
such that:

• Wi = Qi ∪ U for all i ∈ [1, n], where Q1 ∪ · · · ∪Qn = Q.

• fi(u) = f(u) for all u ∈ U .

•
∑

i∈[1,n] fi(q) = f(q).

The configuration of each replica is computed as
Ii = DBAdv(Wi, fi, b).

Our definition places three constraints on p. The first one cor-
responds to our earlier observation that each Wi contains all the
updates. The second and third constraints regulate the weight func-
tions fi(). Specifically, fi(u) = f(u) preserves the importance of
an update on each replica, whereas

∑
i fi(q) = f(q) preserves the

weight of a query across all replicas. These properties are aligned
with the setting that we consider: each occurrence of u has to be
routed to every replica, whereas each occurrence of a query q is
routed to one replica. The definition also states that each replica
will be tuned with a configuration Ii that results from invoking
DBAdv() on the corresponding subset Wi and weight vector fi.

An implication of our definitions is that we essentially view the
function DBAdv() as a black box. We chose this modeling for two
reasons. First, we reduce the problem of divergent design tuning to
that of finding the right partition of the workload and correspond-
ing weight functions that maximize a suitable performance metric

(to be detailed shortly). Second, we can leverage the existing liter-
ature on automated tuning techniques, and in particular the existing
advisor tools, in order to compute the configuration of each replica.

pA
pB

cost(q, Jq
1) cost(q, Jq

2) cost(q, Jq
3)

Figure 1: An illustration
of the trade-off between
load balancing and perfor-
mance.

To model the performance
of a divergent design p we
could extend the SingleCost
metric, where each query q
in W is now evaluated by
the replica with the best phys-
ical design for q. For-
mally, let I1, . . . , In denote
the replica configurations cor-
responding to p. We de-
fine Jq

1 , . . . , J
q
n as the permu-

tation of I1, . . . , In such that
cost(q, Jq

1) ≤ cost(q, Jq
2) ≤

· · · ≤ cost(q, Jq
n), i.e., Jq

j is
the physical design of the j-th
best replica for q. Hence, the
best-case total evaluation cost for W can be expressed as follows:

BestCost(p) =
∑
q∈Q

f(q)cost(q, Jq
1) +

∑
u∈U

∑
i∈[1,n]

f(u)cost(u, Ii)

This metric reflects the total work performed by the system when
each query is routed to its best replica and each update is routed to
all replicas.

The problem with the previous metric is that it ignores com-
pletely the issues of load-balancing and parallel processing for queries.
Specifically, the metric does not guard against the case where cost
(q, Jq

1) << cost(q, Jq
2) and hence q performs badly on every

replica except the one with configuration Jq
1 . A schematic rep-

resentation is given in Figure 1, which depicts cost(q, Jq
j) for a

system with n = 3 replicas. Design pA ensures a low cost for
the best replica of q, but a much higher cost for other replicas. On
the other hand, design pB ensures that two replicas can evaluate
q with low cost, albeit higher than the best-case replica of pA. In
a sense, design pB trades off best-case performance for flexibility
in routing queries. The uniform design punif stands at the extreme
point of this trade-off, since every query has the same cost on every
replica.

To address load-balancing in our problem statement, we intro-
duce a load-balancing factor m ≤ n that specifies the number of
“low-cost” replicas in p for each query in Q. We expect the DBA
to set m based on the desired behavior of the system. If parallel
processing and load balancing are not important, then m = 1 will
optimize the choice of p for the best-case cost (essentially, the pre-
vious metric). On the other hand, m = n will lead to a design p
such that q has similar performance on all replicas. Values of m
between these two extremes will trade off best-case performance
for the ability to load balance. We incorporate factor m in the per-
formance metric as follows:

TotalCost(p,m) =
∑
q∈Q

∑
j∈[1,m]

f(q)

m
cost(q, Jq

j) +∑
u∈U

∑
i∈[1,n]

f(u)cost(u, Ii)

The second term is simply the cost to push updates to all the repli-
cas. The first term reflects the total work to evaluate the workload,
assuming that the cost of each query q is “distributed” across the
m replicas with the best physical designs for q. Hence, this met-
ric favors a divergent design that ensures at least m good options
for each query. Our proposed metric is a generalization of the cost

metric for conventional physical design tuning, to the case where
m replicas equally share the cost of each query. Returning to the
example of Figure 1, design pB outperforms pA for m = 2, but pA
is better for m = 1.

We now formulate the problem that we tackle in this paper, namely
computing the optimal divergent design.

DEFINITION 2.2 (OPTIMAL DIVERGENT DESIGN). Given a
workload W , a weight function f , a number of replicas n and a
load-balancing factor m ≤ n, compute the divergent design p that
minimizes TotalCost(p,m).

We can also formulate an alternative problem statement, where we
optimize m based on a desired trade-off between best-case perfor-
mance and load balancing.

DEFINITION 2.3 (OPTIMAL m AND DESIGN). Given a work-
load W , a weight function f , a number of replicas n, a threshold
τ ∈ (0, 1] and the uniform design punif = {(W, f), . . . , (W, f)},
compute the maximalm and corresponding divergent design p such
that TotalCost(p,m) ≤ τTotalCost(punif , n).

In this case, we seek to find the divergent design that offers the
most opportunities for load balancing and improves on the baseline
uniform design at least by a factor of τ . In the extended version
of the paper, we prove that any PTIME algorithm to solve the first
problem yields a PTIME algorithm to solve the second problem,
by using binary search to identify the maximal value form. Hence,
from this point onward, we focus on the first problem.

For purposes that will become clear in the next section, we dis-
tinguish the class of l-balanced divergent designs. The formal def-
inition follows.

DEFINITION 2.4 (l-BALANCED DESIGN). A divergent design
p = {(W1, f1), . . . , (Wn, fn)} is called l-balanced iff the follow-
ing two conditions hold:

• Each q ∈ W appears in exactly l sub-partitions of p, i.e.,
{i | i ∈ [1, n] ∧ q ∈ Wi} has exactly l elements for any
q ∈W .

• fi(q) = f(q)/l if q ∈ Wi and fi(q) = 0 otherwise, for any
q ∈W and i ∈ [1, n].

In an l-balanced design p, each query q directly affects the con-
figuration of exactly l replicas. Moreover, the original weight of q
is uniformly distributed among the l sub-partitions that contain q.
A special case of an l-balanced design is the fully-balanced design
pFB = {(W, fFB), . . . , (W, fFB)} where l = n, i.e., each query q
appears in every sub-partition with weight fFB(q) = f(q)/n. Sim-
ilar to the uniform design, the fully-balanced design installs the
same configuration IFB = DBAdv(W, fFB, b) in each replica. The
difference is that queries have their weights deflated by n, which
intuitively reflects the fact that q can be evaluated by any of the n
replicas with equal cost cost(q, IFB). The counter-part to the fully-
balanced design pFB is a 1-balanced design p, where each query
q directly affects the configuration of exactly one replica. Note
that application designs (when modeling each query as occurring
in only one application) are 1-balanced designs with the disjoint
partition determined by the given applications.

3. PROBLEM ANALYSIS
Having defined the problem of divergent design tuning, our next

step is to develop some intuition about the space of possible solu-
tions. Our approach is two-pronged. First, we present a theoretical
analysis on the complexity of the problem and the properties of

good divergent designs. We couple these theoretical results with
an exhaustive investigation of the space of divergent designs for
a small-scale instance of the problem. Overall, the theoretical re-
sults and our empirical observations demonstrate the challenges be-
hind the problem: there is a vast search space of divergent designs;
identifying the optimal design is computationally hard; there exists
a very big performance gap between good and bad designs; and,
there are relatively few good designs. These insights contribute di-
rectly to the design of the tuning algorithm presented in the next
section.

3.1 Theoretical Analysis
For the purpose of our theoretical analysis, we assume that

DBAdv(W, f, b) returns the optimal configuration for any W , f
and b. This assumption allows us to analyze the properties of di-
vergent design tuning without having to model the imperfections
of the advisor. We stress that the tuning algorithm we present in
Section 4 does not rely on this assumption.

First, we investigate the computational complexity of identifying
the optimal divergent design.

THEOREM 3.1. The optimal divergent design cannot be com-
puted in polynomial time unless P = NP .

The proof shows that the decision problem of divergent design tun-
ing is NP-Hard, through a reduction from the NP-Complete subset
sum problem. Therefore, instead of looking for an optimal al-
gorithm to solve the problem, our goal is to develop an efficient
algorithm that computes good divergent designs. In this direction,
we analyze further the space of possible divergent designs in order
to build some intuition on the properties of good solutions.

Recall that the fully-balanced design pFB installs the same con-
figuration in all replicas, computed based on the complete workload
W and a modified weight function fFB(q) = f(q)/n. The intuition
behind pFB is that each query q can be evaluated by any replica with
the same cost, and hence the original weight f(q) is equally spread
across all replicas. This intuition makes the fully-balanced design a
natural choice for m = n, and in fact we prove that it is an optimal
solution.

THEOREM 3.2. The fully-balanced design pFB is optimal ifm =
n, i.e., TotalCost(pFB, n) ≤ TotalCost(p, n) for any other de-
sign p.

Our next step is to consider the other extreme point of m = 1,
where we care for best-case performance. A 1-balanced design
is a natural choice for m = 1, since it naturally associates each
query with a single replica. However, proving optimality is far from
trivial, given that there are many such designs and also because
the best cost for q may not come from the configuration that has
considered q. Still, we are able to show an important result: the
fully-balanced design cannot beat any 1-balanced design for m =
1. In fact, we prove the following generalization:

THEOREM 3.3. TotalCost(p,m) ≤TotalCost(pFB,m) for any
m ∈ [1, n] and any m-balanced design p.

This result reflects the tension between load-balancing and per-
formance. The fully-balanced design offers the greatest flexibility
for load-balancing (and is in fact optimal for m = n), since each
query q has the same cost on each replica. On the other hand, an
m-balanced design tries to specialize m replicas per query, which
reduces the flexibility for load-balancing but improves the cost of
workload evaluation.

The previous two theorems lead us to the following intuition
about the properties of a “good” divergent design p: The overlap
between sub-partitions should increase asm increases. Indeed, the
fully-balanced design pFB, whose sub-partitions Wi overlap com-
pletely, is optimal for m = n. Conversely, for any m < n, pFB

cannot beat any m-balanced design where each q appears in ex-
actly m sub-partitions. These observations play a crucial role in
the divergent design algorithm that we describe in the next section.

We conclude our analysis by comparing divergent designs against
the current practice in real systems, which is the uniform design.
We expect punif to be mostly relevant for m = n, and hence a
natural starting point for our analysis is to compare punif to the op-
timal design pFB. We prove below that we should always prefer the
fully balanced design compared to the uniform design for any value
of the load balancing factor.

THEOREM 3.4. The uniform design cannot outperform the fully
balanced design for any load balancing factor, i.e.,
TotalCost(punif ,m) ≥ TotalCost(pFB,m) for any m ∈ [1, n]

Intuitively, this result can be explained by the asymmetry be-
tween queries and updates. Recall that a query q can be evalu-
ated by any single replica, whereas an update u has to be evaluated
by all n replicas. Hence, the contribution of queries to the total
work metric decreases by a factor of n compared to the updates.
The fully balanced design pFB uses fFB(q) = f(q)/n for query
weights, and therefore the configuration IFB = DBAdv(W, fFB, b)
takes directly into account this decrease in contribution. On the
other hand, punif ignores the deflation of query importance, as it
uses the unmodified query weights. The resulting configuration
Iunif = DBAdv(W, f, b) is basically oblivious to the increased
importance of updates.

We have already seen that pFB cannot lose to punif (Theorem
3.4), and by Theorem 3.3, we conclude that given a fixed value for
m, the uniform design punif cannot improve on any m-balanced
design p.

COROLLARY 3.5. TotalCost(punif ,m) ≥ TotalCost(p,m)
for any m ∈ [1, n] and any m-balanced design p.

This general result provides even stronger evidence in favor of sub-
stituting punif (again, the current state of the practice) with a diver-
gent design. Note that any m-balanced design has the potential to
improve on punif . The reason can be traced again to the asymme-
try between queries and updates, but also to the semantics of the
load-balancing factor m. Recall that m specifies that each query
q should have m replicas on which it has a low execution cost.
An m-balanced design p attempts to achieve this goal by placing
q in exactly m sub-partitions and thus having q affect the design
of m replicas. This placement still affords some specialization per
replica, since each Wi contains a subset of the queries. In contrast,
punif corresponds to a single configuration Iunif that is tuned for
the whole workload, which means that no replica is specialized.
Moreover, punif may over-provision in terms of load balancing,
since each query has the same cost on all n ≥ m replicas. These
two factors contribute to the sub-optimality of punif compared to
an m-balanced design.

3.2 Empirical Analysis
The second part of our analysis is empirical, and aims to provide

further insights on the space of good divergent designs.
We conduct a small-scale empirical study of l-balanced designs

with a workload of five queries from the TPC-DS benchmark [15],
using IBM DB2 as the underlying DBMS. The details of the ex-
perimental setup are given in Section 5. We focused on balanced

25-th Perc. Median 75-th Perc. Max
m = 1 ×2.54 ×4.47 ×25.1 ×26.8
m = 2 ×2.98 ×5.07 ×5.24 ×5.42

Table 1: Distribution statistics for divergent design costs in the
exhaustive experiment. For designs in each cost percentile, we
show the ratio of TotalCost to the optimal design cost.

designs in order to contain the scope of the study and also due to
the nice theoretical properties of these designs. We handpicked the
queries and tuned the available space budget to simulate the follow-
ing realistic scenario: different subsets of queries can benefit from
similar indexes, but the indexes for different subsets are too large
to fit in a single configuration. This is representative of what we
expect to see in practice. Intuitively, a good divergent design will
specialize a different replica for each subset.

We set n = 3 and then exhaustively enumerate all possible l-
balanced designs, for l ∈ [1, 3]. Overall, this yielded 486 distinct
designs. For each design p, we computed the corresponding con-
figurations I1, I2, and I3 by invoking the DB2 Design Advisor on
each sub-partition Wi. Finally, we used DB2’s what-if query opti-
mizer to compute TotalCost(p,m) for m = 1 and m = 2. (We
do not consider m = 3 since we already know that pFB is optimal.)

We performed the whole computation on Amazon EC2 using
ten separate IBM DB2 instances so that we could parallelize the
process. Overall, it required many hours of computation time in
order to fully explore the search space. The main overhead was
the cost of invoking DB2’s Design Advisor (several seconds) to
compute the physical design for each sub-partition Wi, even with
our toy workload. Since an exhaustive search will be impractical
for real workloads with tens of queries, any reasonable divergent
design tuning algorithm should explore only a small part of the
search space.

The results revealed several interesting properties for the space
of balanced designs for this particular setup. First, we observed
that the optimal design for a fixed value of m is an m-balanced de-
sign, for m ∈ [1, 3]. Intuitively, an l-balanced design with l > m
provides more flexibility for load balancing than specified by m,
and hence misses the opportunity to tighten the specialization of
replicas. On the other hand, l < m leads to over-specialization
and hence to imbalances among the first m replicas for each query.
Based on these empirical observations, we can formulate the fol-
lowing conjecture.

CONJECTURE 3.6. Let pm denote anm-balanced divergent de-
sign and pl denote an l-balanced design, for l 6= m. Then, it holds
that minpm TotalCost(pm,m) ≤ minpl TotalCost(pl,m).

As a next step in our analysis, we examine the distribution statis-
tics of the TotalCost() metric within each class of m-balanced
designs, for m = 1, 2. In each case, there are 6 designs, out
of the 243 designs in the class, which achieve the minimal value
for TotalCost(). Table 1 further shows the distribution of the
TotalCost() values within each class in relation to these optimal
designs. For instance, for m = 1, the 25-th percentile (that is, the
TotalCost value that bounds 25% of the designs) is ×2.54 worse
than the optimal cost within the class. Overall, the results show
that non-optimal designs have significantly higher cost, and hence
a random selection is not likely to yield a good solution to the di-
vergent tuning problem.

It is also interesting to examine the cost of punif with respect
to the optimal in each class. Specifically, TotalCost(punif , 1) is
×26.8 higher than the optimal cost for the class of 1-balanced de-
signs. The same ratio for m = 2 is ×5.42. Hence, the current

practice of employing a uniform design may lead to a huge loss in
performance compared to a divergent design.

4. THE DIVGDESIGN ALGORITHM FOR DI-
VERGENT DESIGN TUNING

In this section, we present an efficient algorithm called DIVGDESIGN
that computes effective divergent designs. We first provide an overview
of the key ideas behind the algorithm, and then present the detailed
pseudocode. We conclude with a theoretical analysis that demon-
strates the nice theoretical properties of DIVGDESIGN.

4.1 Overview of Our Approach
The first design choice behind DIVGDESIGN is to output m-

balanced designs, for the value of m in the problem specification.
This choice is justified by the theoretical evidence for the nice prop-
erties of such designs: the m-balanced design for m = n is opti-
mal; and anym-balanced design has the potential to improve on the
baseline punif partition. The key challenge therefore is to identify
an m-balanced design p such that TotalCost(p,m) is small.

Intuitively, a good design should have the property that Jq
1 , . . . , J

q
m

(the m best configurations for q among I1, . . . , In) correspond to
the configurations of the sub-partitions that contain q. Otherwise,
this implies that q affects directly the computation of some configu-
ration Ii = DBAdv(Wi, fi, b) (by being part of the workloadWi),
without however using Ii in the TotalCost metric. In that sense,
it is better to take q out of Wi, in order to allow Ii to be tuned even
further for the remaining statements in Wi.

Enforcing the aforementioned property is quite challenging, due
to the black-box nature of function DBAdv(). Essentially, it is
infeasible to partition queries based on some analysis of their fea-
tures, given that we do not make any assumptions about the imple-
mentation of DBAdv(). Instead, we have to rely on a trial-and-
error approach to identify a good partition p, but with a smart strat-
egy that avoids enumerating an exponential number of partitions.

The proposed DIVGDESIGN algorithm employs a strategy that is
inspired by the well-known k-means clustering algorithm. The lat-
ter is designed to solve clustering problems that employ a black-box
distance function. The idea is simple and yet quite effective: start
with a random selection of points as the cluster medoids, assign
the remaining points to clusters based on the closest medoid, iden-
tify the new medoid per cluster, and then iterate in the same fash-
ion until the clustering converges to a stable state. DIVGDESIGN
works in a similar fashion. First, it computes a random partition
of the workload {W 0

1 , . . . ,W
0
n} and the corresponding configu-

rations I0i = DBAdv(W 0
i , f

0
i , b), for i ∈ [1, n]. Subsequently,

the algorithm computes cost(q, I0i) for all q ∈ Q and i ∈ [1, n],
and “moves” each query q to the sub-partitions that correspond
to the lowest evaluation costs. This process yields a new parti-
tion {W 1

1 , . . . ,W
1
n}, which is used to compute new configurations

I11 , . . . , I
1
n and another assignment of queries to sub-partitions. This

iterative process continues until there is convergence.
Figure 2 illustrates an iteration of DIVGDESIGN with a simple

example. Assume that we have n = 2 replicas, m = 1 and the
workload contains three queries q1, q2, q3 and no updates. The al-
gorithm starts with an initial random partition p = {W 0

1 ,W
0
2 },

shown in Figure 2(a). We show the partition in the form of a ma-
trix, where a cell (i, q) is checked if q appears in W 0

i . This par-
tition yields configurations I01 = DBAdv(W 0

1 , f
0
1 , b) and I02 =

DBAdv(W 0
2 , f

0
2 , b), which are computed by invoking the config-

uration advisor on the corresponding sub-partitions. Subsequently,
the algorithm computes the execution cost of each query under
these configurations. An example of resulting costs are shown in

q1 q2 q3
W 0

1 X X
W 0

2 X

q1 q2 q3
I01 10 20 10
I02 20 10 5

q1 q2 q3
W 1

1 X
W 1

2 X X

(a) (b) (c)

Figure 2: An example of running the DIVGDESIGN algorithm
for m = 1, n = 2 and a workload of three queries: (a) Initial
design, (b) Query costs under the corresponding configurations
(minimum costs are indicated with bold); (c) Refined designs.

Function DIVGDESIGN(W,n,m, b)
Input: Workload W ; number of replicas n; load-balancing factor m;

space budget b.
Output: A divergent design p that is m-balanced.
Knobs: Improvement threshold ε; Max number of iterations IterMax

1 Pick a random m-balanced design p0 = {(W 0
1 , f

0
1), . . . , (W

0
n , f

0
n)}

2 x← 0
3 repeat
4 foreach i ∈ [1, n] do
5 Ixi ← DBAdv(Wx

i , fi, b)

6 Initialize Wx+1
i = U for all i ∈ [1, n]

7 foreach q ∈ Q do
8 Let Jq

1 , . . . , J
q
n be a permutation of Il1, . . . , I

l
n such that

cost(q, Jq
1) ≤ cost(q, Jq

2) · · · ≤ cost(q, Jq
n)

9 foreach j ∈ [1,m] do add q to Wx+1
i such that Ixi = Jq

j

10 px+1 ← {(Wx+1
1 , fx+1

1), . . . , (Wx+1
n , fx+1

n)}
11 x← x+ 1

12 until |TotalCost(px−1,m)− TotalCost(px,m)| < ε or
x > IterMax

13 return p
Figure 3: Pseudocode for DIVGDESIGN

Figure 2(b). Note that query q2 appears inW 0
1 and yet has the least

execution cost with configuration I02 . This may happen because
q2 is more “similar” to q3 in terms of beneficial configurations,
e.g., both benefit from the same indexes or materialized views, and
hence I02 , which is computed based on q3, is more effective for q2
compared to I01 . Based on the computed costs, the algorithm moves
each query to the sub-partition corresponding to the least cost. The
resulting partition {W 1

1 ,W
1
2 } is shown in Figure 2(c), where q2

now appears in the same sub-partition with q3. This new partition
becomes the input of the next iteration, and the iterations continue
until a convergence condition (which we discuss later) is satisfied.

Overall, DIVGDESIGN tries to create partitions that group queries
that are highly “similar” with respect to the configuration elements
(e.g., indexes or materialized views) that benefit them. This strat-
egy ensures that each resulting configuration Ii = DBAdv(Wi, fi, b)
is beneficial for all the queries inWi. Equally importantly, this sim-
ilarity is computed indirectly through the output of the black-box
function DBAdv(), without the need to model the logic of the con-
figuration advisor.

4.2 Algorithm Definition
Figure 3 shows the pseudocode of the DIVGDESIGN algorithm

that we introduce in this paper. The algorithm receives as input the
workload W , the number of replicas n, the space budget b, and the
load balancing factor m, and outputs an m-balanced design p such
that TotalCost(p,m) is small.

The algorithm picks (line 1) an initial design p0 = {(W 0
1 , f

0
1),

. . . , (W 0
n , f

0
n)} and then refines it in an iterative fashion (lines 3–

12). Keep in mind that the weight functions f0
1 , . . . , f

0
n are fully

specified through the sub-partitionsW 0
1 , . . . ,W

0
n given that p is an

m-balanced design (Definition 2.4). Hence, it suffices to pick a ran-
dom partition {W 0

1 , . . . ,W
0
n} in order to initialize p0. We use x as

the variable that tracks the current iteration number, and use px =
{(W x

1 , f
x
1), . . . , (W

x
n , f

x
n)} for the design at the beginning of the

current iteration, and px+1 = {(W x+1
1 , fx+1

1), . . . , (W x+1
n , fx+1

n)}
for the design at the end of the current iteration. (As always, the
weight functions are determined based on the sub-partitions ac-
cording to Definition 2.4.) Each iteration comprises two steps.
In the first step, the algorithm computes the configuration Ixi of
replica i by invoking the configuration advisor on W x

i , i.e., Ixi =
DBAdv(W x

i , f
x
i , b). In the second step, the algorithm computes

the new design based on these configurations. Specifically, for
each query q ∈ Q, DIVGDESIGN computes cost(q, Ixi) for all
i ∈ [1, n], and then identifies the m configurations Jq

1 , . . . , J
q
m

from Ix1 , . . . , I
x
n that yield the m least costs for q. Then, q is added

toW x+1
i if Ii is among Jq

1 , . . . , J
q
m. Hence, each query is assigned

to them sub-partitions that correspond to themmost efficient eval-
uation plans for the query.

How do we know that this iterative process converges to a good
design? One of our key contributions is to show that each itera-
tion of DIVGDESIGN cannot worsen the quality of p under certain
assumptions.

THEOREM 4.1. Let px be the design at the beginning of iter-
ation x (line 3 in Figure 3) and px+1 be the design at the end of
the iteration (line 10 in Figure 3). Assuming that DBAdv() re-
turns optimal configurations, it holds that TotalCost(px,m) ≥
TotalCost(px+1,m), for all x ≥ 0.

This theoretical result is interesting, since it relies solely on the op-
timality of DBAdv() and does not make further assumptions about
this black-box function. In practical terms, where DBAdv() is
imperfect but still identifies effective configurations, we have ob-
served that each iteration yields a design px+1 whose performance
is either significantly better or close to px. (The details appear in
Section 5.) Overall, the theoretical and empirical evidence suggest
that the algorithm converges to a good design.

The convergence condition (line 12) checks that the TotalCost()
value of the new design does not differ from the previous design
beyond a threshold ε, which is a parameter of the algorithm. Intu-
itively, this is a point where the algorithm has discovered a good
divergent design, and subsequent iterations refine this design with
diminishing returns. However, certain input instances may cause
the algorithm to terminate only after an exponential number of iter-
ations. To avoid such problematic cases, the convergence condition
also imposes an upper bound on the number of iterations, based
on a second parameter IterMax . Clearly, the two parameters con-
trol the trade-off between total execution time of the algorithm and
performance of the output partition p. Our experimental study in-
dicates ε = 1.0% and IterMax = 10 yields a good balance point
in practice.

To improve the chances of discovering a good divergent design,
we invoke the algorithm several times, each time starting with a
different initial design. In this fashion we collect several designs
and return the one with the minimum TotalCost() value.

An important detail of DIVGDESIGN is the choice of the initial
partition p0. In the current definition p0 is set as a random partition
(for each restart). There may be other methods of higher overhead
and perhaps of higher potential to improve the final output which
are worth investigating as future work. Another important point is
that the design px+1 may have sub-partitions that do not have any
queries. This can happen in the generation of W x+1

1 , . . . ,W x+1
n

at the end of the iteration, if no query in a previous part W x
i has

Ixi among its best m configurations (line 9). Such designs are not
desirable, as they reduce the effective number of replicas for query
processing. Our current implementation of DIVGDESIGN simply

Parameter Values
n 2, 3, 4
m 1, 2
Space budgets 0.25×, 0.5×, 1.0×, 2.0×, INF (infinite)

Table 2: Summary of experimental parameters.

aborts the current iteration if this happens and restarts the algorithm
with a different random design. Our experiments (Section 5) show
that random initialization and restarts work well in practice.

5. EXPERIMENTAL STUDY
This section presents the results of an experimental study that we

conducted in order to evaluate the effectiveness of the DIVGDESIGN
algorithm and the performance of the divergent designs that it com-
putes. We first discuss the methodology we followed for the exper-
iments and then present our findings.

5.1 Methodology
Data Sets and Workloads We employ data sets and workloads
from the standard benchmark TPC-H [16] and its successor TPC-
DS [15]. These benchmarks comprise analytic workloads consist-
ing of 22 and 99 query templates respectively. As a newer bench-
mark, TPC-DS includes more diverse and complex queries com-
pared to TPC-H.

For both benchmarks, we create 10GB databases and correspond-
ing query workloads using the supplied (data and query) generators
with the default parameters. Each workload is created as a single
query stream with all frequencies set to one, thus assigning equal
weight to each template. For TPC-H, we create a workload with up-
dates (termed TPC-H-u) using the 22 queries with refresh streams
RF1 and RF2 at the rate of 0.1% as prescribed by the benchmark.
These streams contain inserts and deletes respectively that are ap-
plied to both the LINEITEM and ORDERS tables. We create an addi-
tional update workload (termed TPC-H-u110) that has an increased
proportion of queries to updates. Specifically, we concatenate five
streams of 22 queries each, in addition to the refresh streams RF1
and RF2 mentioned above. We do not consider update workloads
for TPC-DS, as their implementation according to the benchmark
is quite complicated.

During our evaluation, we observed that TPC-DS queries 4 and
11 were so expensive that they effectively obscured all other queries
in the workload. It appeared that the the DB2 Design Advisor was
unable to recommend good indexes to improve those two queries,
therefore their costs would remain the same in a uniform or diver-
gent design. Moreover, each query of the two had a cost that ex-
ceeded the combined costs of the remaining 97 queries. For these
reasons we exclude those two queries from our TPC-DS workload.

Experimental Parameters. Our experiments vary the following
parameters: number of replicas n, load balancing factor m, and
index configuration space budget b. Table 2 shows the values that
we use in the experiments. The storage space budget is measured as
a multiple of the base data size, i.e., given our 10 GB base data size,
a space budget of 1.0× indicates a 10 GB storage space budget.

DIVGDESIGN Implementation. We completed a prototype imple-
mentation of DIVGDESIGN over IBM DB2 (Express-C version 9.7
for 64-bit Linux). As presented in Section 4.2, DIVGDESIGN uti-
lizes the system’s advisor (IBM DB2 Design Advisor, in this case)
to compute per-replica configurations, and the what-if optimizer to
estimate query costs under these configurations. In our implemen-
tation, we invoked the DB2 Design Advisor to compute index-only
configurations. We note that our methods are applicable for mate-
rialized views as well. Since DIVGDESIGN treats the DBAdv and

what-if query optimizer as black boxes, our implementation can be
easily ported to another database system with these features.

We set the convergence parameters of DIVGDESIGN to ε = 1%
and IterMax = 10. We actually performed minimal tuning for
these settings, and therefore they are not particularly tailored to the
workloads that we employ. Given input parameters W , f , b, n,
and m, we run the DIVGDESIGN algorithm five times and output
the lowest cost design out of the all the independent runs (see also
Section 4.2). We denote this final design as pdivg .

Metrics. We measure the performance of the divergent design pdivg
(computed by DIVGDESIGN) primarily through the value of the to-
tal cost metric TotalCost(pdivg ,m). We compute this metric by
invoking the what-if optimizer to estimate the costs of queries and
updates under the configurations implied by pdivg . This method-
ology, which is consistent with previous studies on physical design
tuning, allows us to gauge the effectiveness of DIVGDESIGN in iso-
lation from any estimation errors in the optimizer’s cost models. In
several cases, we report the improvement of TotalCost(pdivg ,m)
compared to TotalCost(punif ,m), which measures the performance
of the uniform design (the current practice in real-world systems).

We also perform several experiments where we measure the wall-
clock time to execute workloads using the configurations corre-
sponding to pdivg (again, with IBM DB2 as the DBMS). In these
experiments, we actually build the indexes corresponding to each
replica. To ensure statistical robustness, we repeat these experi-
ments three times and report the average execution time.

Experimental Platforms. In all experiments, DIVGDESIGN and
IBM DB2 run on Ubuntu Linux 10.04 LTS inside a VMWare vir-
tual machine. The virtual machine infrastructure provides the con-
venience of setting up identical environments over different host
machines.

We employ two experimental platforms for the host machines.
All experiments that measure the TotalCost(pdivg ,m) metric run
in a single host machine with a dual-core Intel 2.6GHz CPU and
8GB of memory. All experiments that measure wall-clock time
run on a local cluster of host machines, each having two dual-core
AMD 2.0GHz CPUs and 8GB of RAM. The host machines in the
local cluster are connected with a gigabit network and switch. In
both platforms, the virtual machine running IBM DB2 is assigned
2 cores and 4GB of RAM.

5.2 Behavior of DIVGDESIGN

The first set of experiments examines the behavior of DIVGDESIGN
and the characteristics of the divergent designs that it computes.

Iterative improvement in DIVGDESIGN. We first examine how
each iteration of DIVGDESIGN improves the currently computed
design. Theorem 4.1 states that each iteration cannot lead to a
worse design if the DBMS advisor is optimal, so our goal is to
examine the validity of this result under the imperfect DB2 Design
Advisor. For this experiment, we employ the TPC-DS workload
with b = 0.25, n = 4 and m = 1, but we obtained similar results
for other values.

Figure 4 shows the TotalCost(p,m) metric at each iteration of
the algorithm, where p is the design at the end of the iteration. Each
of the five curves represents an independent run of DIVGDESIGN
with a different initial (random) partition. (Recall that pdivg is the
best design out of these five runs, which is run 4 in this example.)

The results show that most iterations successfully improve the
currently computed design, which matches the theoretical result of
Theorem 4.1 even though the advisor is imperfect. In fact, run 4
shows a slight upward trend at the fourth iteration, which is due pre-
cisely to this imperfection. Still, DIVGDESIGN was able to recover

from this setback in subsequent iterations, and this run resulted in
the best design overall.

In all the experiments that we present, DIVGDESIGN converged
to a solution within six iterations, well before the IterMax cutoff of
ten iterations. This also had a beneficial effect on running time. As
an example, for the TPC-DS workload of the previous experiment
(97 queries), DIVGDESIGN required around three minutes per iter-
ation, leading to a maximum of 18 minutes per run. We observed
similar run times for all other experiments.

95	

105	

115	

125	

135	

145	

155	

1	
 2	
 3	
 4	
 5	
 6	

To
ta
lC
os
t	
 (
x1
06
)	

Itera2on	
 Number	

Run	
 1	
 Run	
 2	
 Run	
 3	
 Run	
 4	
 Run	
 5	

Figure 4: Five independent runs of DIVGDESIGN.

Diversity of output design pdivg . Next, we evaluate the diversity
of the divergent design pdivg computed by DIVGDESIGN. Diver-
sity is a primary differentiator for divergent designs and one of the
key motivations behind their usage. Since our prototype imple-
mentation invokes the DB2 Design Advisor to compute index-only
configurations, we measure the diversity of pdivg in terms of the
number of distinct indexes contained in the corresponding configu-
rations I1, . . . , In. As a yardstick for comparison, we also measure
the number of distinct indexes in the configuration Iunif of the uni-
form design punif for the same number of replicas. Clearly, our
expectation is that pdivg should contain a significant number of ad-
ditional indexes compared to punif .

Table 3 reports the total count of distinct indexes for pdivg and
punif , for input instances with m = 1. We select m = 1 because it
corresponds to maximum specialization and hence maximal diver-
sity. As shown, the number of additional indexes varies across the
experiments, but overall the results demonstrate that pdivg contains
significantly more indexes compared to punif . The value of these
additional indexes will become evident in the experiments that fol-
low. For a few cases we examined the indexes in punif that do not
appear in pdivg and found that they were mostly indexes on smaller
tables. Somewhat surprisingly, pdivg has a higher diversity even for
the infinite space budget, but this is due to the imperfection of the
DB2 Design Advisor.

5.3 Performance for Query-Only Workloads
The next set of experiments evaluates the performance of pdvg

on query-only workloads based on the TotalCost() metric. Re-
sults with mixed workloads of queries and updates appear in the
following sub-section.

Figure 5 shows the performance of pdivg as we vary the space
budget and the number of replicas, for m = 1 and the TPC-H
workload. Figure 6 shows the same results for TPC-DS. In both
cases, we report the improvement of TotalCost(pdivg ,m) over
TotalCost(punif ,m), where punif is again the baseline uniform
design for the same number of replicas. The results demonstrate a
wide range of gains with several interesting trends. The largest per-
formance improvements for TPC-H are 16% and 20% for n = 2

0%	

5%	

10%	

15%	

20%	

25%	

0.25x	
 0.5x	
 1.0x	
 2.0x	
 INF	

To
ta
lC
os
t	
 I
m
pr
ov
em

en
t	

Space	
 Budget	

n=4	
 n=2	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

0.25x	
 0.5x	
 1.0x	
 2.0x	
 INF	

To
ta
lC
os
t	
 I
m
pr
ov
em

en
t	

Space	
 Budget	

n=4	
 n=2	

Figure 5: Performance of divergent design for TPC-
H query-only workload and m = 1.

Figure 6: Performance of divergent design for TPC-
DS query-only workload and m = 1.

50	

52	

54	

56	

58	

60	

62	

64	

66	

0.25x	
 0.5x	
 1.0x	
 2.0x	
 INF	

To
ta
lC
os
t	
 (
x1
06
)	

Space	
 Budget	

Punif	
 Pdivg-­‐one	
 Pdivg	

40	

60	

80	

100	

120	

140	

160	

0.25x	
 0.5x	
 1.0x	
 2.0x	
 INF	

To
ta
lC
os
t	
 (
x1
06
)	

Space	
 Budget	

Punif	
 Pdivg-­‐one	
 Pdivg	

Figure 8: Performance of divergent designs for TPC-
H query-only workload, n = 4, m = 2.

Figure 9: Performance of divergent designs for TPC-
DS query-only workload, n = 4, m = 2.

40	

60	

80	

100	

120	

140	

160	

0.25x	
 0.5x	
 1.0x	
 2.0x	
 INF	

To
ta
lC
os
t	
 (
x1
06
)	

Space	
 Budget	

Punif	
 Pdivg	

Figure 7: Performance of divergent design and uniform design
for TPC-DS query-only workload, m = 1, n = 4.

and n = 4 respectively at the 0.25× space budget. TPC-DS shows
a 38% improvement for n = 2 at 0.5× and 48% improvement for
n = 4 at 1.0× space budgets.

The general trend is that improvements increase at lower space
budgets and also with a higher number of replicas. A divergent
design makes better usage of the aggregate disk space for config-
urations, and can thus install more indexes than punif even at low
space budgets (see also Table 3). Accordingly, as n increases, a di-
vergent design can specialize each replica to a smaller subset of the
workload, thus yielding better performance. It is interesting to note
that the gains are consistently higher for TPC-DS than for TPC-H.
TPC-DS is much more diverse and with far more beneficial indexes
(see again Table 3), thus the divergent design is able to partition the
workload and distribute the indexes more effectively.

The performance gains become smaller as the space budget grows,
because at some point there is enough space to materialize all the

Space Budget
0.25× 0.5× 1.0× 2.0× INF

TPC-H, n = 2
pdivg 27 31 39 42 42
punif 22 23 35 40 42

TPC-H, n = 4
pdivg 35 39 42 43 43
punif 22 23 35 40 42

TPC-DS, n = 2
pdivg 138 165 191 229 275
punif 119 134 154 185 269

TPC-DS, n = 4
pdivg 172 197 237 275 279
punif 119 132 152 184 268

Table 3: Number of distinct indexes in the configurations of
punif and pdivg .

beneficial indexes. We observed this to be near 2.0× for TPC-
H and 7.5× for TPC-DS. An exception to this observation is the
slight gain for the INF budget in Figure 5, which however can
be attributed to the imperfect heuristics employed by the advisor.
Overall, the improvements shown at each space budget appear to
match well with the proportion of additional distinct index counts
shown in Table 3.

Figure 7 shows in detail the performance of pdivg and punif for
the TPC-DS workload and n = 4. Here we chart the TotalCost()
metric of each design. We observe that the cost of the divergent
design decreases rather smoothly with the larger space budgets as
expected, exhibiting the same stable behavior as the uniform de-
sign. More importantly, we observe the following interesting pat-
tern: the divergent design with a space budget of 0.25× performs

nearly the same as the uniform design with a 1.0× space budget,
and the same holds for the 0.5× divergent design versus the 2.0×
uniform design, and for the 1.0× divergent design versus the 5.0×
uniform design. In other words, given four replicas, the divergent
design for TPC-DS can perform as well as the uniform design with
only 1

4
of the space budget per replica. (We obtained similar re-

sults with TPC-H.) This intuitive property validates the effective-
ness of DIVGDESIGN in computing a good divergent design, even
though the algorithm does not have any visibility in the structure of
the workload (which is quite complicated in this experiment) or in
the inner workings of the DBMS configuration advisor. Moreover,
these results indicate that a divergent design may be particularly
beneficial if the configuration space budget is restricted.

Our last set of experiments evaluates the effect of parameter m
on the performance of the divergent designs computed by DIVGDESIGN.
To illustrate the trade-off between performance and load-balancing,
we consider one additional design in these experiments that we de-
note as ponedivg and which is the design computed by DIVGDESIGN
for m = 1. Clearly, ponedivg has higher specialization than pdivg and
can thus yield better performance if every query q can be routed to
its best replica. On other hand, q may have a much higher cost on
its 2nd-best replica in ponedivg , which implies less flexibility in terms
of load balancing.

Figure 8 shows the TotalCost metric for designs pdivg , punif
and ponedivg for the TPC-H workload, n = 4, m = 2. Figure 9 shows
the same results for TPC-DS. Overall, the results confirm our intu-
ition: ponedivg has worse performance than pdivg , and in most cases it
performs even worse that the uniform design punif . These results
indicate that the specialization in ponedivg causes great imbalance for
the cost of the same query across different replicas, thus leading to
a high TotalCost() metric for m = 2. On the other hand, pdivg
creates a specialization of replicas that directly takes into account
factor m, which in turn yields consistent improvements over the
uniform design. The gains are small for TPC-H but very significant
for TPC-DS, ranging from 32% to 39% over punif .

To summarize, our results demonstrate that the divergent designs
computed by DIVGDESIGN outperform the baseline uniform de-
sign, often by a significant margin. The improvement is more pro-
nounced with the TPC-DS workload, which is somewhat expected
given that this workload is more complex than TPC-H and also be-
cause IBM DB2 is heavily optimized for the execution of TPC-H
queries (as are many commercial systems).

5.4 Results with Mixed Workloads
Next we evaluate the performance of divergent designs with mixed

workloads of queries and updates. In this case, any design has to
balance the benefits of the per-replica configurations against the
maintenance cost due to updates. The experiments that follow em-
ploy the TPC-H-u and TPC-H-u110 workloads, to evaluate the ef-
fect of the query-to-update ratio on the performance of divergent
designs. We first present experiments withm = 1 (highest special-
ization) and then consider the effect of m > 1.

Figure 10 shows the percent improvement of pdivg over punif ,
for the two TPC-H workloads and m = 1. The gains are small for
TPC-H-u, since the cost of updates leads the DB2 Design Advisor
to recommend relatively few indexes for both designs. Conversely,
the gains increase with the TPC-H-u110 workload, ranging from
19% to 33% for n = 4, since the higher percentage of queries
justifies the creation of more indexes in the divergent design. We
also observe an increase in gains as n grows, which is in accordance
to the trend for query-only workloads.

To gain further insights on the gains of the divergent designs, we
break down the improvement per queries and updates for TPC-H-

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

0.25x	
 0.5x	
 1.0x	
 2.0x	
 INF	

To
ta
lC
os
t	
 I
m
pr
ov
em

en
t	

Space	
 Budget	

TPC-­‐H-­‐u110(n=4)	
 TPC-­‐H-­‐u110(n=2)	
 TPC-­‐H-­‐u(n=4)	
 TPC-­‐H-­‐u(n=2)	

Figure 10: Performance of divergent designs for TPC-H with
updates and m = 1.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

0.25x	
 0.5x	
 1.0x	
 2.0x	
 INF	

To
ta
lC
os
t	
 I
m
pr
ov
em

en
t	

Space	
 Budget	

Queries	
 Updates	

Figure 11: Percent improvement breakdown for queries and
updates in TPC-H-u110, n = 4, m = 1.

u110 and n = 4. The results are shown in Figure 11. We observe
that query performance is improved by 18% at b = 0.25, but from
that point onwards queries have essentially the same performance
between the divergent and uniform design. The big difference is
in the cost of updates, where the improvement ranges from 30% to
over 70%. The reason can be traced again to the asymmetry be-
tween queries and updates–a query can be executed by any single
replica, whereas an update has to be executed by all replicas. Intu-
itively, the cost to apply the update is multiplied by n. The uniform
design ignores this magnified effect and results in indexes whose
maintenance cost is much higher than their benefits. In contrast,
the divergent design pdivg takes this asymmetry directly into ac-
count, and results in indexes that strike a better balance between
benefit and maintenance cost.

Table 4 shows the number of indexes in pdivg and punif for b =
1.0 in the previous experiment, for the ORDERS and LINEITEM ta-
bles that receive all the updates. The reported counts support our
previous observation. The divergent design places far fewer in-
dexes across the replicas, which in turn leads to reduced mainte-
nance cost (over 50% reduction, as shown in Figure 11). Moreover,
we verified that pdivg comprises all the indexes of punif , except
that they are distributed across different replicas. It is interesting
to note that we observed similar results when we examined pdivg
and punif for b = INF : the divergent design installed a total of 20
indexes, compared to 72 indexes for the uniform design. As shown
in Figure 11, this allocation results in 70% improvement in index
maintenance cost while retaining the same benefits for query eval-
uation. Thus, pdivg results in a more judicious allocation of indexes
even when the per-replica configurations are not constrained by the
space budget.

Additional experiments considered the effect ofm on the perfor-
mance of the divergent design computed by DIVGDESIGN. We ex-

Design Table Name #Indexes per
Replica

punif
ORDERS 5 5 5 5

LINEITEM 7 7 7 7

pdivg
ORDERS 2 2 1 1

LINEITEM 5 2 2 4

Table 4: Index counts of the ORDERS and LINEITEM tables per
replica for punif and pdivg for TPC-H-updates-110, n = 4, m =
1, b = 1.0.

perimented with m = 1 and m = 2, using the same methodology
as for query-only workloads. The results remained qualitatively the
same and are hence omitted in the interest of space.

Overall, our results demonstrate the divergent designs computed
by DIVGDESIGN continue to outperform the baseline uniform de-
sign. The improvement becomes more significant when the ratio
of queries increases, and most of the gains come from a judicious
allocation of indexes to replicas that reduces substantially the total
maintenance cost.

5.5 Performance with Concurrent Execution
We conclude with a set of experiments that evaluate the perfor-

mance of divergent designs in terms of query throughput. We set up
a replicated TPC-H database using n = 3 replicas and IBM DB2
as the DBMS. We create several concurrent client processes, each
executing a random permutation of a subset of the TPC-H work-
load (to be defined shortly). We tune the system according to a
specific design, and then measure performance in terms of the to-
tal wall-clock time to evaluate the query streams of the concurrent
clients. Hence, the execution time of the slowest client determines
the overall performance.

We invoke DIVGDESIGN to compute a divergent design pdivg
with b = 1.0 and m = 2, so that there is some flexibility to load
balance across the n = 3 replicas while maintaining some spe-
cialization. As in the previous experiments, we will compare pdivg
against the uniform design punif for the same values of b and n.

We select the workload in order to favor the execution of queries
under punif . Specifically, out of the 22 TPC-H queries, we select a
subset of 17 queries that have similar1 execution times under punif .
This property allows us to use a simple query routing policy that
is likely to work well for punif : When some client wishes to exe-
cute some query q, it routes q to the replica which currently has the
least number of concurrently executing queries. It is not difficult to
see that this policy is likely to evenly load each replica under punif ,
since each query has the same execution cost on all replicas and all
queries have similar execution costs. We employ a slightly modi-
fied routing policy for pdivg : the client routes q to the replica which
currently has the least number of concurrently executing queries
and is among the best two replicas for q. The routing policy here
follows the intuition of the divergent design (queries are routed to
their specialized replicas), but it is not optimal for load balancing
because the same query may have different execution costs across
different replicas and queries do not necessarily have similar ex-
ecution costs overall. Overall, we create a best-case scenario for
the uniform design and a potentially problematic scenario for the
divergent design.

Table 5 shows the total improvement of pdivg over punif in terms
of wall-clock time as we vary the number of concurrent TPC-H
clients. (We discuss the TPC-DS numbers later.) The divergent
design consistently outperforms the uniform design, with an over-
all improvement of up to 20% in terms of query throughput. This

1Within one standard deviation of the median.

15 clients 30 clients 45 clients
TPC-H 11.5% 20.1% 19.5%
TPC-DS 15.8% 23.3% 31.5%

Table 5: Total execution time improvement of divergent over
uniform design for 17 TPC-H and 20 TPC-DS Queries, n =
3,m = 2, b = 1, for 15, 30, and 45 concurrent clients.

magnitude is non-trivial for several reasons. First, the divergent de-
sign employs a suboptimal query routing policy that does not take
into account the actual load of each replica. Second, the predicted
improvement according to TotalCost() is only 3%, which means
that the non-linear effects of concurrent query execution magnify
the benefits of divergent designs. Third, m = 2 implies that each
query must have low execution cost on at least two out of the n = 3
replicas, limiting the specialization a divergent design can achieve.
Finally, IBM DB2 (as many commercial systems) is heavily opti-
mized to execute these benchmark workloads. Is it very significant
that we are able to improve performance by 20% by simply tuning
the configuration of each replica.

Beside improved execution time, the divergent design brings clear
benefits to the time required to tune the system. Specifically, the di-
vergent design required 50% less time to build the corresponding
indexes on all replicas, since fewer indexes are allocated per replica
while maintaining similar query benefits. (This is analogous to the
results we saw in Table 4.) Accordingly, the time to refresh the opti-
mizer’s statistics2 after the indexes are built is reduced by 14% . All
in all, if we count the end-to-end time to build the indexes, setup the
optimizer’s statistics, and execute the workload through the concur-
rent clients, the divergent design improves on the uniform by 67%
for 15 concurrent clients, and by 52% for 45 concurrent clients.

We performed the same experiment with TPC-DS by first using a
similar method to select a 20-query subset, and then executing the
full experiment as described. The results are included in Table 5
and show a 15.8%, 23.3% and 31.5% improvement for 15, 30, and
45 clients respectively, indicating the same performance trends as
the TPC-H experiment.

6. IMPLEMENTATION CONSIDERATIONS
The experimental results of the previous section show clearly

the performance benefits of divergent design tuning. In what fol-
lows, we consider the implications of implementing divergent de-
signs in a DBMS that employs replication. Our assumption is that
the DBMS already has the infrastructure to employ the baseline
uniform design punif .

An immediate observation is that the DBMS can readily replace
punif with the fully-balanced design pFB, i.e., the output of the
DIVGDESIGN algorithm for m = n. As in punif , pFB prescribes
the same configuration for each replica and hence the system can
handle query routing and load balancing in exactly the same way.
However, our analysis shows that pFB can never perform worse than
punif , and hence there is an immediate benefit to switching to di-
vergent designs.

For m < n, the divergent design may assign a different con-
figuration to each replica and hence the query routing policy is af-
fected. Specifically, the DBMS must route an incoming query q to
the currently-best replica, taking into account the load in the sys-
tem and also the cost terms cost(q, Ii) for each replica i ∈ [1, n].
These terms are already known for a query q ∈ W . For an unseen
query q 6∈ W , it is possible to perform what-if optimization or to
estimate these cost terms by mapping q to a similar query q′ that

2This corresponds to the RUNSTATS command in DB2.

has already been analyzed (e.g., using the similarity metric of [8]
or the general method of [13]).

The use of divergent designs also affects how the system re-
sponds to changes in node availability or the intensity of the work-
load. For instance, the failure of node i causes the queries in Wi to
be (temporarily) left with m − 1 “good” replicas and hence fewer
load-balancing choices (until a node brings Ii up again). Similarly,
scaling out the system implies that n increases, which likely causes
the current divergent design to become suboptimal. In general, ex-
amining the interplay between divergent designs and elasticity is an
interesting direction for future work.

7. RELATED WORK
Physical configuration tuning There has been a long line of re-
search studies on the problem of tuning the physical configuration
of a single DBMS [4, 6, 10, 11, 18]. The proposed methods typ-
ically take a representative workload W as input, and after some
analysis they recommend a physical configuration that optimizes
the evaluation of the workload according to the optimizer’s esti-
mates. Some of the proposed techniques have also found their way
in commercial advisor tools that come bundled with the DBMS.
However, the proposed methods work for a centralized system and
do not take replication into account. Extending them to the setting
of a replicated database is not obvious. Still, we show it is possible
to leverage existing tools to compute good divergent designs, pro-
vided that we can compute an effective partition of the workload.

Chaudhuri et al.[8] propose a method to cluster the queries of
a workload into disjoint subsets for the purpose of workload com-
pression. Unfortunately, the partitioning generated by [8] provides
an unspecified (and likely large) number of disjoint subsets, and
hence cannot be directly applied to solve the divergent index tun-
ing problem where the number of clusters is equal to the (small)
number of replicas. Additionally, the methods in [8] do not con-
sider key factors or the TotalCost metric, such as the space budget
constraint or the load-balancing factor m.

Shinobi [17] is a system that utilizes workload information to
partition the data and selectively index data within each partition.
This results in less expensive index maintenance and reorganization
costs, by creating and dropping indexes on subsets of the data (the
workload-based partitions) as the access patterns change. However,
Shinobi does not address replication of partitions or different index
configurations on replicas of the same partition, which is the prob-
lem that we examine in our work. In fact, our techniques can be
used to determine which indexes to install on each replica, and then
Shinobi can be responsible for maintaining only the fragments of
these indexes that are important for the current workload patterns.

Physical data organization on replicas. Previous works also con-
sidered the idea of diverging the physical organization of replicated
data. The technique of Fractured Mirrors [12] builds a mirrored
database that stores its base data in a different physical organi-
zations on disk (specifically, in a row-based and a column-based
organization). To take advantage of this storage model, the query
processor is modified to run query execution plans that can work on
both formats of the data. Similarly, Distorted Mirrors [14] presents
logically but not physically identical mirror disks for replicated
data. Neither of these explores different physical organization of
indexes and materialized views for each mirror.

8. CONCLUSIONS
In this paper, we introduced the novel paradigm of divergent

design tuning for database systems that employ replication. We
showed that the tuning problem is computationally hard, and hence

proceeded to design a heuristic tuning algorithm based on a theo-
retical and empirical analysis of the space of divergent designs. Ex-
perimental results validated the effectiveness of the algorithm and
demonstrated the many benefits of divergent designs in practice.

An interesting direction for future work is removing our treat-
ment of DBAdv() as a black box. By leveraging specific function-
ality or properties of DBAdv(), it may be possible to develop a more
effective divergent design tuning algorithm.

Acknowledgments. This work was supported in part by NSF grant
IIS-1018914, DOE grant DE-SC0005428 and an IBM Faculty De-
velopment Award.

9. REFERENCES
[1] Amazon relational database service (amazon rds)

aws.amazon.com/rds.
[2] P.A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan,

G. Kakivaya, D.B. Lomet, R. Manne, L. Novik, and
T. Talius. Adapting microsoft sql server for cloud computing.
In ICDE, pages 1255 –1263, 2011.

[3] N. Bruno and S. Chaudhuri. An online approach to physical
design tuning. In ICDE, 2007.

[4] N. Bruno and S. Chaudhuri. Constrained physical design
tuning. PVLDB, 1(1):4–15, 2008.

[5] S. Chaudhuri, M. Datar, and V. Narasayya. Index selection
for databases: A hardness study and a principled heuristic
solution. IEEE TKDE, 16(11):1313–1323, 2004.

[6] S. Chaudhuri and V. R. Narasayya. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. pages
146–155, 1997.

[7] S. Chaudhuri and V. R. Narasayya. AutoAdmin ’What-if’
Index Analysis Utility. In SIGMOD, pages 367–378, 1998.

[8] Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek
Narasayya. Compressing SQL workloads. In SIGMOD,
pages 488–499, 2002.

[9] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaït, and
M. Ziauddin. Automatic SQL Tuning in Oracle 10g. pages
1098–1109, 2004.

[10] D. Dash, N. Polyzotis, and A. Ailamaki. Cophy: a scalable,
portable, and interactive index advisor for large workloads.
PVLDB, 4(5):362–372, 2011.

[11] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.
Coradd: Correlation aware database designer for
materialized views and indexes. PVLDB, 3(1):1103–1113,
2010.

[12] R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for
fractured mirrors. The VLDB Journal, 12(2):89–101, 2003.

[13] P. Sarda and J. R. Haritsa. Green query optimization: Taming
query optimization overheads through plan recycling. In
VLDB, pages 1333–1336, 2004.

[14] J.A. Solworth and C.U. Orji. Distorted mirrors. In Parallel
and Distributed Information Systems, pages 10–17. IEEE,
1991.

[15] Transaction Peformance Council. TPC-DS Benchmark.
[16] Transaction Performance Council. TPC-H Benchmark.
[17] E. Wu and S. Madden. Partitioning techniques for

fine-grained indexing. In ICDE, pages 1127–1138, 2011.
[18] D. C. Zilio, J. Rao, S. Lightstone, G.M. Lohman, A. Storm,

C. Garcia-Arellano, and S. Fadden. DB2 Design Advisor:
Integrated Automatic Physical Database Design. In VLDB,
pages 1087–1097, 2004.

