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Abstract:

Neural networks are commonly used for classifica-
tion and regression. The Bayesian approach may be
employed, but choosing a prior for the parameters
presents challenges. As the parameters are not easily
interpretable, it can make sense to try to perform a
default Bayesian analysis. Examples discussed here
include Jeffreys priors and reference priors.
Key Words: Bayesian Statistics; Noninformative
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1 Introduction

Neural networks have gained popularity as a method
for nonparametric classification and regression, as
they often work well in practice. Operating within
the Bayesian paradigm also allows statements about
predictive uncertainty. Titterington (2004) gives a
recent review of the Bayesian approach for neural
networks. As seen in the references of that paper,
there is a general tendency to treat the procedure as
a “black box”, with little or no thought going into
the underlying probability model and its parame-
ters. This approach can lead to problems in the
Bayesian paradigm, where one must choose a prior
for the parameters. Without careful thought about
the choice of prior, one can inadvertently negatively
impact the posterior, which may also decrease the
quality of predictions from the model. Priors that
have been proposed in the literature include hierar-
chical priors that use a conjugate style structure for
computational convenience (Neal, 1996; Müller and
Rios Insua, 1998), priors for parsimony based on de-
viations from orthogonality or additivity (Robinson,
2001a; Robinson, 2001b), and an empirical Bayes
approach (MacKay, 1992).

2 Neural Networks

A neural network, despite frequent misconceptions,
is a probability model for the data, like other sta-
tistical models. It falls into the general class of sta-
tistical methods for nonparametric regression and
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classification, in the sense of not assuming a par-
ticular parametric form for the relationship between
the explanatory and response variables (either a re-
gression response or the probabilities for a multi-
nomial likelihood), but letting the functional form
be virtually arbitrary, such as any continuous func-
tion. Thus neural networks are closely related to
methods such as CART (classification and regres-
sion trees), wavelets, splines, and mixture models.
In particular, neural networks are a member of the
family of methods that use an infinite basis repre-
sentation to span the space of continuous functions.
Analogous to using an infinite series of polynomi-
als or using a Fourier series, a neural network uses
location-scale logistic functions to approximate any
continuous function arbitrarily closely. In practice, a
finite number of bases are used to get a close enough
approximation.

To be specific, first the model is defined for regres-
sion, and then for classification. In the regression
case, denote the explanatory variables by x (includ-
ing a column for the intercept) and the response by
y. The particular model for a (single hidden layer
feed-forward) neural network for univariate regres-
sion is:

yi = β0 +
k

∑

j=1

βjΨ(γt
jxi) + εi , (1)

where Ψ is the logistic function

Ψ(z) =
1

1 + exp(−z)
,

k is the number of logistic basis functions, the γ’s
are location and scale parameters defining the ba-
sis functions, and the β’s are the coefficients deter-
mining the linear combination of the bases. The

error terms are iid Gaussian: εi
iid
∼ N(0, σ2). It

has been shown that location-scale logistic functions
do span the space of continuous functions, square-
integrable functions, and other cases of interest (Cy-
benko, 1989; Funahashi, 1989; Hornik et al., 1989).
From Equation (1), it is easy to see that a neural
network is simply a basis expansion model. It is
also a special case of projection pursuit regression
(Friedman and Stuetzle, 1981).



To expand this formulation for a multivariate re-
sponse y, let yig be the gth component of the ith
case, g ∈ {1, . . . , q}, i ∈ {1, . . . , n}. Each dimension
g is now fit with a different linear combination of the
same logistic basis functions:

yig = β0g +

k
∑

j=1

βjgΨ(γt
jxi) + εig

εig
iid
∼ N(0, σ2) .

This model can be adapted for classification by
converting to a multinomial likelihood. The proba-
bilities of class membership are now given by a trans-
formation of the neural network outputs. For each
class observation yi, define a vector of indicator vari-
ables as to whether the ith observation is in the gth
class, i.e., yig = 1 if and only if yi is a member of
the gth category. Let n be the total number of ob-
servations and q be the number of possible classes.
Then

f (y|p) =

n
∏

i=1

q
∏

g=1

p
yig

ig (2)

where the class membership probabilities are

pig =
exp (wig)

∑q
h=1 exp (wih)

, (3)

and the w’s are the neural network outputs:

wig = β0g +

k
∑

j=1

βjgΨj(γ
t
jxi) .

For identifiability, β0q is defined to be zero. In com-
puter science, the transformation of Equation (3) is
called the softmax model (Bridle, 1989). In statis-
tics, this transformation appears in areas such as
generalized linear regression (e.g., McCullagh and
Nelder, 1989, p. 159).

2.1 Parameter Difficulties

It is important to note that the parameters are dif-
ficult or impossible to interpret in any meaningful
manner. Lee (2004, pp. 32–34) provides an exam-
ple where for fitting a two hidden node network to
real one-dimensional data results in the maximum
likelihood estimates of the γ parameters that are
two orders of magnitude larger than the scale of the
original data. Robinson (2001a, pp. 19–20) gives an
example on the predictive scale where even in terms
of the observables the parameters are extremely dif-
ficult to interpret.

Because the parameter values and predictions are
not well understood, it is important to realize that

the choice of prior can have unpredictable effects on
the posterior. Choosing a prior out of convenience
or heuristics is not only theoretically incoherent, be-
cause the prior is specifying beliefs about the param-
eters that the user cannot explain, but also poten-
tially harmful to predictive ability because the prior
may pull parameters toward a suboptimal part of
the parameter space.

3 Default Priors

Because it can be difficult to interpret the param-
eters in even basic cases, rather than imposing a
prior purely out of convenience, it makes more sense
to choose a prior that in some way represents our ig-
norance about the parameters. Such a default prior
could be derived from a formal statement of lack
of information, which can be done in a variety of
ways. Jeffreys (1961) was one of the first to develop
a formal procedure for finding a default prior. Kass
and Wasserman (1996) provide a thorough review
of this now extensive literature. Many of these pri-
ors have appealing invariance properties (Hartigan,
1964). Such priors can lead to confidence intervals
with good (Frequentist) coverage probabilities (Ba-
yarri and Berger, 2004).

One caveat is that in some cases, including that of
neural networks, procedures for creating default pri-
ors can produce an improper prior, one with infinite
probability mass. This is not a worry if the poste-
rior is proper. For example, in linear regression, a
flat prior can be used on the regression coefficients,
and Gelman et al. (1995) present some theoretical
advantages of this family of priors. However, for
neural networks, improper priors can result in an
improper posterior, so one needs to take appropri-
ate measures to ensure a valid posterior, as discussed
in the next section. Typically truncation will be suf-
ficient, and this can be done without practical effect
in a double-precision computing environment.

3.1 Flat Priors

A simple quantification of ignorance is to claim that
all values of the parameter are equally likely. This
claim translates to a flat prior, P (γ, β) ∝ 1 in the
case of classification, or P (γ, β, σ2) ∝ 1/σ2 for re-
gression (which is flat with respect to the log of the
variance; this sort of prior is well-established in least-
squares regression, see for example, Gelman et al.
(1995)). As the prior is improper, the choice of con-
stant is unimportant, so 1 is used here for simplicity.
Note that this prior is improper, and it results in an
improper posterior. To ensure posterior propriety,



it is necessary to truncate the prior to be positive
over a finite region. There are two problems that
occur with the unrestricted prior. First, it is nec-
essary for the logistic basis functions to be linearly
independent (analogous to requiring a full-rank de-
sign matrix in linear regression). The second issue is
that unlike in most problems, the likelihood does not
necessary go to zero in the tails. In certain infinite
regions, the limit is a non-zero value. For example,
consider the case of a single explanatory variable,
and then let γ0, γ1 → ∞ such that γ0

γ1

→ c where c
is any constant. In this case, the logistic basis func-
tion converges to an indicator function, and while
this may not be the optimal basis function, the like-
lihood converges to a non-zero value for a substantial
range of coefficients β. Further details of these is-
sues in the context of regression are in Lee (2003;
2004). It can also be shown that the truncated prior
is asymptotically equivalent to the untruncated one
in both global and local senses (Wasserman, 2000).

In practice, truncation done correctly does not
make any noticeable change in the fitted values. The
logistic function reaches its limits rather quickly, so
that in double precision only a fairly small range
is necessary. In particular, for the logistic function
Ψ(z) = 1/(1 + exp(z)), if the argument z is larger
than 41, Ψ(z) is exactly one in double precision, and
if z < −750, Ψ(z) = 0. So beyond certain values,
large γs are redundant, not changing the fitted val-
ues at all. Unlike some problems where the choice
of truncation point can greatly affect the results,
as long as the truncation point is reasonably large,
nothing is lost because of the truncation here.

For classification, this flat prior has the potentially
appealing property of treating all class predictions
equivalently, leading to equal mean prior predictive
class probabilities. Thus the statement of prior ig-
norance also translates to the observables.

3.2 Jeffreys Priors

One major issue with flat priors is that if the model
is re-parameterized using a non-linear transforma-
tion of the parameters, then the same transforma-
tion applied to the prior will not result a flat prior.
Jeffreys (1961) introduced a rule for generating a
prior that is invariant to differentiable one-to-one
transformations of the parameters. Denote the pa-
rameter vector by θ (which consists of γ, β, and σ2

in the regression case, and just γ and β for classifi-
cation). The Jeffreys prior is the square root of the
determinant of the Fisher information matrix:

PJ (θ) =
√

|I(θ)| (4)

where the Fisher information matrix, I(θ), has ele-
ments

Iij(θ) = Covθ

[(

∂

∂θi
log f(y|θ)

) (

∂

∂θj
log f(y|θ)

)]

(5)
where f(y|θ) is the likelihood and the expectation is
over y for fixed θ. The Jeffreys prior is frequently in-
tuitively reasonable and leads to a proper posterior.
However, the prior can sometimes fail to produce a
proper posterior (e.g., Berger et al. 2001; Jeffreys
1961). Indeed for neural networks, the Jeffreys prior
does lead to an improper posterior, so truncation
will be necessary as it was with the flat prior.

In some cases, Jeffreys (1961) argued that treating
the classes of parameters as independent, and com-
puting the priors independently (treating parame-
ters from other classes as fixed) will produce more
reasonable priors. This does seem to be the case
for linear regression and neural network regression
(Lee, 2004). To distinguish this approach from the
joint approach described above, the collective prior
(Equation 4) is sometimes called the Jeffreys-rule

prior. In contrast, the independence Jeffreys prior

is the product of the Jeffreys-rule priors for each
class of parameters independently, while treating the
other parameters as fixed.

In the case of regression, working with the preci-
sion τ = 1/σ2, the Jeffreys-rule prior is (Lee, 2004):

PJ(θ) ∝ τ ((r+2)k−1)/2

∣

∣

∣

∣

GtG GtΓ

ΓtG ΓtΓ

∣

∣

∣

∣

1/2

,

where Γ has elements Γij and the n x (r+1) k matrix
G has elements Gij = βgxihΓig(1 − Γig), where g is
the integer part of j

r+1 and h is the remainder, i.e.,
h = j − (r + 1) ∗ g. The independence Jeffreys prior
is:

PIJ (θ) ∝
1

τ

∣

∣FtF
∣

∣

1/2
,

where F is just G without any of the βg terms, i.e.,
Fij = xihΓig(1 − Γig) where g is the integer part of

j
r+1 and h is the remainder. As with the flat prior,
both of these priors are improper and also lead to
improper posteriors, so the parameter space needs to
be suitably truncated. Note that the large exponent
on the τ term is eliminated in the independence Jef-
freys prior, analogously to the linear regression case.

However, for neural network classification, the in-
dependence Jeffreys prior is quite similar to the
Jeffreys-rule prior because the complex multinomial
likelihood prevents any separation of the parame-
ters. The only difference is that the determinant
is over a block-diagonal matrix, without any of the

Covθ

(

∂
∂βab

log f(y|θ), ∂
∂γcd

log f(y|θ)
)

terms from



the full Fisher information matrix. The quantities
in the diagonal blocks are identical. These priors do
not have compact representations, as they do in the
regression case. The full equations and other details
are available in Lee (2005).

3.3 Reference Priors

An information-theoretic approach is to create a
prior that will minimize its effect on the posterior.
Bernardo (1979) introduced a class of reference pri-

ors that are based on maximizing the change in
information provided by the data, as measured by
a variant of the Shannon information. A key idea
is that parameters are separated into groups, with
more important parameters listed first, nuisance pa-
rameters at the end. The goal is to maximize the
effect of the data on the parameters of interest.
Note that if all parameters are treated as a sin-
gle group, this approach reduces to the Jeffreys-rule
prior. A more recent discussion of this approach is
given in Berger and Bernardo (1992), along with an
in-depth description of algorithms for the construc-
tion of these priors. Because of the frequent collab-
oration of those authors on this topic, these priors
are sometimes called “Berger-Bernardo priors”.

The full derivations of reference priors are avail-
able in Lee (2004) for regression and in Lee (2005)
for classification. In both cases, the γ parameter is
put first, with β next, and σ2 last in the regression
case. For regression, a reference prior is

PR ∝
1

τ
|Ft

(

I− Γ(ΓtΓ)−1Γt
)

F|1/2 .

Again, this prior requires truncation for propriety
of the posterior. For classification, an intractable
integral is reached, resulting in a less useful prior.
Leaving both parameter groups together reduces to
the Jeffreys-rule prior.

4 Examples

4.1 Regression

To provide an illustration of the posteriors resulting
from the regression priors discussed herein, Figure 1
shows the posterior means from these priors for neu-
ral networks with six hidden nodes. The data come
from Breiman and Friedman (Breiman and Fried-
man, 1985) where groundlevel ozone concentration
(a pollutant) is being modeled as a function of var-
ious meteorological variables. To keep the example
simple and easily visualized, the only covariate used
here is day of the year. The priors shown are the
flat prior, the independence Jeffreys prior, and the

reference prior. They all pick up a fair amount of
movement in the data. One could make the case
that six hidden nodes is too many, and that these
posterior means are overfitting the data. But this
does demonstrate the flexibility of the model, and
that these default priors result in little smoothing,
allowing the data to have the largest influence.

4.2 Classification

As an example in classification, we turn to the well-
studied iris data from Fisher (1936). In order to be
able to create pictures to help with the intuition,
we first consider only a single explanatory variable,
sepal length. From this we attempt to predict which
of three species of iris each of the 150 samples be-
longs to, with the possible species being Setosa, Ver-
sicolor, and Virginica. The 150 samples are com-
prised of 50 of each type. Neural networks are fit us-
ing just two hidden nodes, to keep the pictures sim-
ple. The results are summarized in Figure 2. Each
row shows the data and fitted probabilities for one of
the three species of iris. The left column shows the
actual data as a probability density histogram, and
the probabilities of class membership as estimated
by maximum likelihood using the R code of Ven-
ables and Ripley (1999). The right column shows
the posterior mean fitted probabilities using two of
the priors from this paper, a flat prior and a Jeffreys-
rule prior. The flat prior is shown with the solid
lines and the Jeffreys prior with dashed lines. No-
tice that the MLE and the posterior mean from the
flat prior are very similar, as one would expect them
to be. The Jeffreys prior leads to posterior means
that are a little less smooth in this case, with the
interesting feature that it is attempting to fit some
probability to the third class (Virginica) for small
sepal lengths because of one observation with sepal
length 4.9, whereas the MLE and flat prior models
basically ignore this one observation. In terms of se-
lecting a fitted class by choosing the class whose fit-
ted probability is the highest of the three, the three
different formulations agree on all observations ex-
cept for a sepal length of 6.3, which the MLE assigns
to Virginica while both Bayesian models assign it to
Versicolor. As there are six Virginicas and three Ver-
sicolors in the sample with sepal length 6.3, this gives
a slight advantage to the MLE in overall misclassi-
fication rate. Across the whole sample, the overall
misclassification rates are 25% and 27% respectively.

Realistically, one is not usually dealing with just
a single explanatory variable. The basic iris dataset
contains four (sepal length and width, and petal
length and width). Using all four variables and a
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Figure 1: Comparison of posteriors from default priors

neural network with two hidden nodes leads to all
three approaches (MLE, flat prior, Jeffreys prior) fit-
ting quite well, misclassifying only one observation
out of the 150.

5 Conclusions

When the parameters are difficult or impossible to
interpret, one should admit ignorance and attempt
to choose a prior consistent with this ignorance. This
paper has introduced some examples of the quantifi-
cation of ignorance for neural networks. These pri-
ors do not unduly restrict the posterior to a part of
the space with low likelihood values. One can thus
obtain good models in practice while still being a co-
herent Bayesian. Alternatively, one can be a “prac-
tical Bayesian”, getting approximately the same fits
as standard maximum likelihood while also gaining
the ability to directly estimate uncertainty.

It is important to note that since little or no in-
formation is being specified in the prior, the issue of
model selection becomes important. Left to its own
devices, a neural network with too many basis func-
tions will tend to overfit the data. Thus choosing
an appropriate number of basis functions is critical.
The problem of model selection (or Bayesian model
averaging) has a wide variety of proposed solutions
in the literature, and many can easily be combined

with the priors of this paper. Some examples of
methodology that have been applied specifically to
neural networks include Lee (2001), MacKay (1994),
and Murata et al. (1994).

Finally, the focus of this paper is on the case when
little or no prior information is available. Should the
practitioner have some information on the relation-
ship between covariates and class membership, or
even marginal information about classes, it is prob-
ably better to use a different model where this in-
formation can be coherently incorporated into the
prior. Neural networks are at their best when flex-
ibility is desired, when interactions may occur in
higher dimensions, and when little is known a priori.
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