
Reactive Planning Idioms for Multi-Scale Game AI

Ben G. Weber, Peter Mawhorter, Michael Mateas, and Arnav Jhala

Abstract— Many modern games provide environments in
which agents perform decision making at several levels of
granularity. In the domain of real-time strategy games, an
effective agent must make high-level strategic decisions while si-
multaneously controlling individual units in battle. We advocate
reactive planning as a powerful technique for building multi-
scale game AI and demonstrate that it enables the specification
of complex, real-time agents in a unified agent architecture. We
present several idioms used to enable authoring of an agent that
concurrently pursues strategic and tactical goals, and an agent
for playing the real-time strategy game StarCraft that uses these
design patterns.

I. INTRODUCTION

Game AI should exhibit behaviors that demonstrate intel-

ligent decision making and which work towards long-term

goals. In the domain of real-time strategy (RTS) games,

an agent must also reason at multiple granularities, making

intelligent high-level strategic decisions while simultaneously

micromanaging units in combat scenarios. In fact, many

modern video games require agents that act at several levels

of coordination, behaving both individually and coopera-

tively. We explore the use of reactive planning as a tool for

developing agents that can exhibit this type of behavior in

complex, real-time game environments.

A multi-scale game AI is a system that reasons and

executes actions at several granularities. To achieve effective

multi-scale game AI, a system must be able to reason

about goals across different granularities, and be able to

reason about multiple goals simultaneously, including both

dependent and independent goals. In RTS games, a com-

petitive agent is required to perform micromanagement and

macromanagement tasks, which makes this a suitable domain

for the application of multi-scale systems. At the microman-

agement level, individual units are meticulously controlled

in combat scenarios to maximize their effectiveness. At the

macromanagement level, the agent works towards long-term

goals, such as building a strong economy and developing

strategies to counter opponents. Similar distinctions between

different scales of reasoning can be made in other genres

of games as well, such as the difference between squad

management and individual unit behavior in first person

shooters [1]. One of the major challenges in building game

AI is developing systems capable of multi-scale reasoning.

A common approach to this problem is to abstract the

different scales of reasoning into separate layers and build

interfaces between the layers, or simply implement one layer

Ben Weber, Peter Mawhorter, Michael Mateas, and Arnav Jhala are
with the Expressive Intelligence Studio at the University of California,
Santa Cruz. 1156 High Street, Santa Cruz, CA, USA (email: bwe-
ber,pmawhort,michaelm,jhala@soe.ucsc.edu).

as complex actions within another. These layered architec-

tures raise difficulties when there is not a clear separation

between the different scales of reasoning, or when decision

processes at one scale need to communicate with another.

In RTS games, a unit may participate in both individual

micromanagement and squad-based actions, which forces

different systems to coordinate their actions. Another issue

that arises from a layered architecture is that different lay-

ers may compete for access to shared in-game resources,

resulting in complicated inter-layer messaging that breaks

abstraction boundaries. Because of these issues, we claim

that multi-scale reasoning in game AI is most productive

when a unified architecture is used.

Reactive planners provide such an architecture for express-

ing all of the processing aspects of an agent [2]. Unified agent

architectures are effective for building multi-scale game AI,

because they deal with multiple goals across scales, execute

sequences of actions as well as reactive tasks, and can re-use

the same reasoning methods in different contexts [3].

We introduce several AI design patterns (of both classic

and more novel varieties), programmed in the reactive plan-

ning language ABL [4], which address the problems of multi-

scale reasoning. By explaining these idioms here, we hope

to both demonstrate their usefulness in solving multi-scale

AI problems, and to give illustrative, concrete examples so

that others can employ these idioms. In order to validate our

use of these idioms and present concrete examples of them,

we also present our current progress on the EISBot, an AI

system that uses the presented design patterns to play the

real-time strategy game StarCraft.

II. RELATED WORK

Techniques such as finite state machines (FSMs) [5],

behavior trees [6], subsumption architectures [7], and plan-

ning [8] have been applied to game AI. FSMs are widely

used for authoring agents due to their efficiency, simplicity,

and expressivity. However, FSMs do not allow logic to be

reused across contexts and designers end up duplicating state

or adding complex transitions [9]. Additionally, finite state

machines are generally constrained to a single active node at

any point in time, which limits their ability to support parallel

decision making and independent reasoning about multiple

goals.

Behavior trees provide a method for dealing with the

complexity of modern games [6], and have a more modular

structure than finite state machines. An agent is specified as

a hierarchical structuring of behaviors that can be performed,

and agents make immediate decisions about actions to pursue

using the tree as a reasoning structure. The main limita-

tion of behavior trees is that they are designed to specify



behavior for a single unit, which complicates attempts to

reason about multiple goals simultaneously. Achieving squad

behaviors with behavior trees requires additional components

for assigning units to squads, as well as complicated per-unit

behaviors that activate only within a squad context [1]. This

approach is not suitable for general multi-scale game AI,

because a separate mechanism is required to communicate

between behavior trees for various levels of reasoning, which

introduces the problems of layered game AI systems.

In subsumption architectures, lower levels take care of

immediate goals and higher levels manage long term goals

[7]. The levels are unified by a common set of inputs

and outputs, and each level acts as a function between

them, overriding higher levels. This approach is good for

reasoning at multiple granularities, but not good at reasoning

about multiple separate goals simultaneously. Because the

RTS domain requires both of these capabilities, subsumption

architectures are not ideal.

Planning is another approach for authoring agent behav-

ior. Using classical planning requires formally modeling

the domain and defining operators for game actions with

preconditions and postconditions. The AI in F.E.A.R. builds

plans using heuristic-guided forward search through such

operators [8]. One of the difficulties in using planning is

specifying the game state logically and determining the

preconditions and effects of operators. Classical planning

is challenging to apply to game AI, because plans can

quickly become invalidated in the game world. F.E.A.R.

overcomes this by intermixing planning and execution and

continuously replanning. Multi-scale game AI is difficult to

implement with classical planning, because plan invalidation

can occur at multiple levels of detail within a global plan,

and separate plans for specific goals would suffer from the

same synchronization problems as a layered architecture.

Reactive planning avoids the problems with classical plan-

ning by being decompositional rather than generative. Similar

to hierarchical task networks [10], a reactive planner decom-

poses tasks into more specific sub-tasks, which combine into

an ultimate plan of action. In a reactive planner, however,

task decomposition is done incrementally in real time, and

task execution occurs simultaneously. Reactive planning has

been used successfully to author complex multi-agent AI in

Façade [11], and has been used to build an integrated agent

for the real-time strategy game Wargus [12].

Another promising approach is cognitive architectures,

which are based on a human-modeling paradigm. SOAR

[13], [14] and ICARUS [15] are cognitive architectures that

have been applied to game AI. These systems are examples of

unified agent architectures that address the multi-scale game

AI problem. The main difference between these systems

and our implementation is that cognitive architectures make

strong claims about modeling human cognitive processes,

while our approach, although it encodes the domain knowl-

edge of human experts, does not make such claims. However,

the idioms and techniques for multi-scale RTS AI described

in this paper could be fruitfully applied in architectures such

as SOAR and ICARUS.

In the domain of RTS games, computational intelligence

has been applied to tactics using Monte Carlo planning

[16], strategy selection using neuroevolution of augmenting

topologies (NEAT) [17], and resource allocation using co-

evolution of influence map trees [18]. However, each of these

approaches reasons at only a single level of granularity and

needs to be integrated with additional techniques to perform

multi-scale reasoning.

III. STARCRAFT

One of the most notoriously complex games that requires

multi-scale reasoning is the real-time strategy game Star-

Craft1. StarCraft is a game in which players manage groups

of units to vie for control of the map by gathering resources

to produce buildings and more units, and by researching

technologies that unlock more advanced buildings and units.

Building agents that perform well in this domain is chal-

lenging due to the large decision complexity [19]. StarCraft

is also a very fast-paced game, with top players exceeding

300 actions per minute during peak play [12]. This means

that a competitive agent for StarCraft must reason quickly

at multiple granularities in order to demonstrate intelligent

decision making.

Our choice of StarCraft as a domain has additional mo-

tivating factors: Despite being more than 10 years old, the

game still has an ardent fanbase, and there is even a profes-

sional league of StarCraft players in Korea2. This indicates

that the game has depth of skill, and makes evaluation against

human players not only possible, but interesting.

Real-time strategy games in general (and StarCraft in

particular) provide an excellent environment for multi-scale

reasoning, because they involve low-level tactical decisions

that must complement high-level strategic reasoning. At

the strategic level, StarCraft requires decision-making about

long-term resource and technology management. For exam-

ple, if the agent is able to control a large portion of the

map, it gains access to more resources, which is useful

in the long term. However, to gain map control, the agent

must have a strong combat force, which requires more

immediate spending on military units, and thus less spending

on economic units in the short term.

At the resource-management level, the agent must also

consider how much to invest in various technologies. For

example, to defeat cloaked units, advanced detection is re-

quired. But the resources invested in developing detection are

wasted if the opponent does not develop cloaking technology

in the first place.

At the tactical level, effective StarCraft gameplay requires

both micromanagement of individual units in small-scale

combat scenarios and squad-based tactics such as formations.

In micromanagement scenarios, units are controlled individ-

ually to maximize their utility in combat. For example, a

1StarCraft and its expansion StarCraft: Brood War were developed by
Blizzard EntertainmentTM

2Korea e-Sports Association: http://www.e-sports.or.kr/



common technique is to harass an opponent’s melee units

with fast ranged units that can outrun the opponent. In these

scenarios, the main goal of a unit is self-preservation, which

requires a quick reaction time.

Effective tactical gameplay also requires well coordinated

group attacks and formations. For example, in some situ-

ations, cheap units should be positioned surrounding long-

ranged and more expensive units to maximize the effective-

ness of an army. One of the challenges in implementing

formations in an agent is that the same units used in micro-

management tactics may be reused in squad-based attacks.

In these different situations, a single unit has different goals:

self-preservation in the micromanagement situation and a

higher-level strategic goal in the squad situation. At the

same time, these goals cannot simply be imposed on the

unit: in order to properly position the cheap sacrificial units,

knowledge about the location of the more expensive units

must be processed.

StarCraft gameplay requires simultaneous decision making

at both small and large scales. Building layers and interfaces

between these scales is difficult for StarCraft, because differ-

ent layers may compete for shared resources, such as control

of a unit. Additionally, a single unit may be concurrently

pursuing local, group and global goals in coordination with

other units. Besides multiple scales, StarCraft also involves

multiple independent goals: two harassing units on opposite

sides of the map may need to pursue similar local objectives

completely independently.

These challenges motivate the use of reactive planning,

which can concurrently pursue many goals at multiple

granularities. Our agent, the EISBot, uses reactive planning

to manage and coordinate simultaneous low-level tactical

actions and high-level strategic reasoning.

IV. ABL

Our agent, the EISBot, is implemented in ABL [4].

ABL (A Behavior Language), a reactive planning language

based on Hap [2], adds significant features to the original

Hap semantics. These include first-class support for meta-

behaviors (behaviors that manipulate the runtime state of

other behaviors) and for joint intentions across teams of

multiple agents [20]. ABL is effective for building multi-

scale game AI, because it enables agents to pursue multiple

goals concurrently and provides mechanisms for facilitating

communication between behaviors. Importantly, it also sup-

ports the design patterns presented in this paper as relatively

simple code structures.

ABL is a reactive planning language in which an agent

has an active set of goals to achieve. Agents achieve goals

by selecting and executing behaviors from an authored col-

lection. A behavior contains a set of preconditions which

specify whether it can be executed given the current world

state. There is also an optional specificity associated with

behaviors that assigns a priority, and behaviors with higher

specificities are selected for execution before considering

lower specificity behaviors.

�

Goal 1

Root 
Behavior

Goal 2

Sequential
Behavior

Parallel 
Behavior

Goal 3 Physical Act Mental Act

Fig. 1. An example active behavior tree (ABT)

During the execution of an ABL agent, all of the goals

an agent is pursuing are stored in the active behavior tree

(ABT) [2]. Each execution cycle, the planner selects from

the open leaf nodes and begins executing the selected node.

A leaf node is a behavior that pursues a goal and consists of

component steps. Component steps can be scripted actions,

small computations, or other behaviors. When a node is

selected, its component steps are placed in the ABT as the

children of the goal. An example ABT is shown in Figure 1.

A core component of ABL agents is working memory.

ABL’s working memory serves as a blackboard for main-

taining the agent’s view of the world state as well as the

current expansion of the active behavior tree. The agent’s

working memory is maintained through the use of sensors,

which add, update and remove working memory elements

(WMEs) from ABL’s working memory. An agent’s working

memory can also be modified by the agent at runtime or by an

external system [21]. Using working memory as a blackboard

enables several idioms for authoring agents in ABL.

One of the benefits of using ABL to author game AI

is that scheduling of actions is handled by the planner.

Component steps that contain physical acts begin execution

as soon as they are selected from the ABT. Physical acts

in ABL can take several game frames to perform. While

executing a physical act, the step associated with the act is

marked as executing, blocking steps after the physical act

in an enclosing sequential behavior until the physical act

completes (steps that are part of parallel behaviors in the

ABT continue). Therefore, a separate scheduling component

is not necessary for scheduling the actions selected by an

ABL agent.

V. ABL SEMANTICS

In this section, we introduce ABL semantics in order to

familiarize the reader with concepts in reactive planning and

build a foundation for discussing the concrete implementa-

tion of AI design patterns in ABL.

ABL agents are written by authoring a collection of

behaviors. Behaviors can perform mental acts, execute phys-

ical acts in the game world, bind parameters and add new

subgoals to the active behavior tree. Goals are represented by



behaviors in ABL: each behavior represents actions (and/or

other behaviors) that work to accomplish some goal. How-

ever, there may be multiple behavior rules with the same

name that represent multiple means of achieving a particular

goal. Thus the name of a behavior is the goal which it

accomplishes, while the contents represent the actual means

of achieving that goal.

An example agent with the goal of sayHello is shown

in Figure 2. The agent begins executing the root behavior,

defined as initial tree, which adds the subgoal sayHello to

the active behavior tree. The agent then selects from the be-

haviors named sayHello to pursue the goal. In this example,

the agent will select the behavior sayHello, resulting in the

performing of a physical act that prints to the console.

initial_tree {

subgoal sayHello();

}

sequential behavior sayHello() {

act consoleOut("Hello World");

}

Fig. 2. An agent with the goal of saying hello

ABL behaviors can be sequential or parallel. When a

behavior is selected for expansion, its components steps are

added to the ABT. For sequential behaviors the steps are

executed serially: steps are available for expansion once the

previous step has completed. For parallel behaviors, the steps

can be expanded concurrently.

sequential behavior attackEnemy() {

precondition {

(PlayerUnitWME type==Marine ID::unitID)

(EnemyUnitWME ID::enemyID)

}

act attackUnit(unitID, enemyID);

}

Fig. 3. Behavior preconditions

Behaviors can include a set of preconditions which specify

whether the behavior can be selected. Preconditions evaluate

Boolean queries about the agent’s working memory. If all

of the precondition checks evaluate to true, the behavior

can be selected for expansion. An example behavior with a

precondition check is shown in Figure 3. The behavior checks

that there is an agent-controlled unit with the type Marine

and that there is an enemy unit. The first precondition test

is performed by retrieving unit working memory elements

(WMEs) from working memory and testing the condition

type==Marine. The example also demonstrates variable bind-

ing in a precondition test. The unit’s ID attribute is bound to

the unitID variable and used in the physical act. The second

precondition test retrieves the first enemy unit from working

memory and binds the ID to enemyID.

An ABL agent can have several behaviors that achieve

a specific goal. An optional specificity can be assigned

to behaviors to prioritize selection. Behaviors with higher

specificities are evaluated before lower specificity actions,

but otherwise identically-named behaviors (different ways of

accomplishing a specific goal) are selected randomly. This

enables authoring of agents that have a prioritized set of

behaviors to pursue a goal.

Behaviors may also be parameterized. When a parameter-

ized behavior is expanded, it must be given a parameter as

an argument. The contents of the behavior can then reference

this argument. This allows for the same behavior to be

instantiated multiple times. For example, an attack behavior

could be instantiated individually for many different units,

and could then order each unit to attack based on that unit’s

health. Behavior parameterization is a powerful tool for re-

using behaviors across multiple contexts.

Behaviors can perform mental and physical acts. Mental

acts are small chunks of agent processing and are written in

Java. Mental acts can be used to add and remove WMEs from

working memory. An example mental act is shown in Figure

4. Physical acts are actual actions performed by the agent in

the game. For example, the attackUnit act in Figure 3 will

cause the player’s unit to attack an enemy unit. Physical acts

can be instant or have duration. Physical acts are performed

in a separate thread from the decision cycle and do not block

the execution of the ABT. They are removed from the ABT

once completed.

sequential behavior initializeAgent() {

spawngoal incomeManager();

mental_act {

System.out.println("Started manager");

}

}

sequential behavior incomeManager() {

with (persistent) subgoal mineMinerals();

}

Fig. 4. Spawngoal and persistent keywords

ABL provides several features for managing the expansion

of the active behavior tree. The spawngoal keyword enables

an agent to add new goals to the active behavior tree at

runtime. The spawned goal is then pursued concurrently

with the current goal. The persistent keyword can be used

to have an agent continuously pursue a goal. The use of

these keywords is demonstrated in the example in Figure 4.

Upon execution, the initializeAgent behavior adds the goal

incomeManager to the active behavior tree and then executes

the mental act. The persistent modifier is used to force the

agent to continuously pursue the mineMinerals goal. Note

that if subgoal was used instead of spawngoal in the example,

the mental act would never get executed.

Behaviors can optionally include success tests and context

conditions. A success test is an explicit method for recog-

nizing when a goal has been achieved [2], whereas a context

condition provides an explicit declaration of conditions under

which a goal is relevant. If a success test evaluates to true,

then the associated behavior is aborted and immediately suc-



sequential behavior waitForMarine() {

precondition { (TimeWME time::startTime) }

context_condition {

(TimeWME time < startTime + 10)

}

with success_test {

((PlayerUnitWME type==Marine)

} wait;

}

Fig. 5. Success tests and context conditions

ceeds. Conversely, if a context condition evaluates to false,

the associated behavior fails and is removed from the ABT.

An example showing success tests and context conditions

is shown in Figure 5. The behavior binds the current time

to the startTime variable. The context condition checks that

no more than 10 seconds have passed since starting the

execution of the behavior. The success test checks if the agent

possesses a Marine. When combined with the wait subgoal,

success tests suspend the execution of a behavior until the

test conditions evaluate to true. In the example, the behavior

will either return success as soon as the agent has a Marine,

or return failure after 10 seconds have passed.

VI. DESIGN PATTERNS

We present several design patterns that enable authoring

of multi-scale game AI. These design patterns facilitate

development of agents that are capable of reasoning at

many granularities while simultaneously reacting to events.

Each of these idioms is realized in the EISBot, enabling

the agent to concurrently pursue high-level strategic goals

while simultaneously reacting to unit-specific events. These

patterns, however, are general and could be used to facilitate

robust multi-scale AI development in other AI systems. We

discuss them here as programmed in ABL in order to give

concrete examples of their instantiation and use.

A. Daemon Behaviors

A multi-scale system must be able to reason about several

goals simultaneously. In ABL, this is achieved through the

use of daemon behaviors. A daemon behavior is a behavior

that spawns a new goal that is then continuously pursued by

the agent. This new goal can then reason about a separate

problem from the current thread of execution. Daemon

behaviors in ABL are analogous to daemon threads. In ABL,

a daemon behavior can be created using the spawngoal and

persistent keywords. Spawngoal is used to create a new goal

for expansion and the persistent modifier is used within the

spawned behavior to continuously pursue a subgoal.

The EISBot uses daemon behaviors to spawn new threads

of execution for managing subtasks. An example daemon

behavior for managing worker units is shown in Figure 4.

The initializeAgent behavior spawns the daemon behavior

incomeManager that continuously pursues resource collec-

tion in parallel with the agent’s other goals.

B. Messaging

Communication is necessary to facilitate coordination be-

tween different behaviors in a multi-scale AI system. In ABL,

several messaging idioms are possible by using working

memory as an internal mental blackboard [22]. The EISBot

uses message passing idioms to support the decoupling of

different components.

Common messaging patterns in ABL are the message

producer and message consumer idioms. A message producer

is a behavior that adds a WME to working memory, while a

message consumer removes a WME from working memory

after operating on its contents. In ABL, WMEs can be

manipulated by mental acts. An example of the message

producer and message consumer idioms are shown in Figure

6. The strategyManager behavior is a message producer

that adds a construction WME to working memory and the

constructionManager behavior is a message consumer that

removes the construction WME from working memory.

C. Managers

One of the challenges of building multi-scale game AI

is authoring several different aspects of a game within a

single agent. Managers are a design pattern for conceptually

partitioning an agent into distinct areas of competence. A

manager is a collection of behaviors that is responsible for

managing a distinct subset of the agent’s behavior. Managers

can use message passing to coordinate behaviors between

their various domains. This partitioning helps to take ad-

vantage of sophisticated domain knowledge developed by

human players, and also increases code modularity which

eases development [12].

The EISBot is split into several managers based on anal-

ysis of expert StarCraft gameplay. For example, our agent

has a high-level strategy manager that makes decisions about

what buildings to build, but does not reason about where

to place them or how to issue orders to build them. This

separation of different reasoning levels between different

managers makes the reasoning easier to author. When writing

rules for high-level strategic decisions, the programmer does

not have to think about the details of building placement or

order sequences.

D. Micromanagement Behaviors

The EISBot combines high-level decision making with

reactive unit-level tasks. This is achieved through the use

of micromanagement behaviors in ABL. Micromanagement

behaviors are an idiom for implementing highly compartmen-

talized behaviors in an agent. While managers perform high-

level decision making, micromanagement behaviors perform

reactive low-level tasks, and are especially useful for speci-

fying per-unit behavior in a domain where an agent controls

multiple units.

A micromanagement task is instantiated by using spawn-

goal to create a new goal for managing a specific unit.

An example behavior for micromanaging vultures is shown

in Figure 7. The spawnMicroTask behavior waits for new



sequential behavior strategyManager() {

// precondition check

mental_act {

WorkingMemory.add(

new ConstructionWME(factory));

}

}

sequential behavior constructionManager() {

precondition {

construction = (ConstructionWME)

}

mental_act {

WorkingMemory.delete(construction);

}

// construct factory

}

Fig. 6. An example of a manager that uses message passing

sequential behavior spawnMicroTask() {

with success_test {

vulture = (VultureWME)

}

wait;

spawngoal micromanageVulture(vulture);

}

sequential behavior micromanageVulture(

VultureWME vulture) {

context_condition{

(vulture.isAlive())

}

mental_act {

WorkingMemory.delete(vulture);

}

// micromanage vulture

}

Fig. 7. An example micromanagement task

vultures to appear in the game and spawns a new micro-

manageVulture for each vulture. This is accomplished by

parameterizing the micromanagement behavior, and passing

it a reference to the discovered unit when it is spawned. The

context condition is specified so the behavior terminates if

the unit is no longer alive.

VII. EISBOT

The EISBot is an agent that plays StarCraft: Brood War.

By developing a competitive agent in a difficult domain, we

aim to fully explore the capabilities of reactive planning,

and to find effective ways to use this technique to build a

multi-scale agent. EISBot is also a concrete instantiation of

the design patterns discussed above, and to the extent that it

works, validates their applicability to multi-scale AI.

�

StarCraft 

Brood War API 

Control process Proxybot

Sensor1 Act

WME1

Working Memory 

Sensors

ABT

ABL

Fig. 8. EISBot StarCraft interface

A. Connecting EISBot to StarCraft

Our agent consists of a bridge between a game instance

and a control process, as well as an ABL-based agent that

senses game state and issues commands to the game. The

bridge has two main components. The first, Brood War API,

is a recent project that exposes the underlying interface of the

game, allowing code to directly view game state, such as unit

health and locations, and to issue orders, such as movement

commands. This is written in C++, which compiles into a

dynamically linked library. Within this library, our system

has hooks that export relevant data and convey commands.

These hooks use a socket to connect to the ProxyBot, our

Java-based agent. The ProxyBot handles game start and end

events, and marshals the incoming information from the

game process to make it available to ABL as a collection of

working memory elements. Our agent, compiled from ABL

into Java code, runs on these elements, and issues orders

through the ProxyBot back over the socket to the Brood War

API running in the game process. The interface between the

ABL agent and StarCraft is shown in Figure 8.

B. Agent Architecture

Our agent architecture is based on the integrated agent

framework of McCoy and Mateas [12], which plays com-

plete games of Wargus. While there are many differences

between Wargus and StarCraft, the conceptual partitioning

of gameplay into distinct managers transfers well between

the games. Our agent is composed of several managers:

a strategy manager is responsible for high-level strategic

decisions such as when to initiate an attack, an income

manager is responsible for managing the agent’s economy

and worker population, a production manager constructs

production buildings and trains units and the tactics manager

manages squads of units. The main difference between our

agent and the Wargus agent is the addition of squad-based

tactics and unit micromanagement techniques. We also added

a construction manager to handle the complexity of building

construction in StarCraft.



Initial_tree 

Strategy Manager Production Manager Tactics Manager 

Attack 
Enemy

Build 
Factory

Train 
Vulture

Assign 
Vulture

Vulture Manager 

Vulture Task Squad Task 

Plant 
Mine Flee Harass 

Unit

Legend
Sequential behavior 
Parallel behavior 
Context condition 
Subgoal 
Daemon behavior 
Message passing 

Fig. 9. A subset of the agent’s behaviors. The root behavior starts several daemon processes which manage distinct subgoals of the agent. The assign
vulture behavior spawns micromanagement behaviors for individual vultures. The messaging passing arrow shows the communication of squad behaviors
between the strategy manager and individual units.

C. Design Patterns in Our Agent

As discussed in section 6, we used ABL design patterns

in our agent to separate high-level and low-level reasoning,

and to isolate behaviors related to different in-game systems,

such as resource management and combat. But we also used

these idioms to unify systems in some cases, and to manage

different aspects of the game at appropriate levels.

To address high-level strategic reasoning needs, our strat-

egy manager makes decisions about what buildings to build.

However, the construction manager handles the details of

building placement and specific unit orders when instructed

to build something by the strategy manager. Thus we employ

manager and message-passing patterns to help make the code

more modular and to effectively reason cooperatively about

a task like construction.

Squad-based tactics and micromanagement are handled by

the tactics manager. For some units, each individual unit has

its own behavior hierarchy that directs its actions, authored

using the micromanagement behavior pattern. This strategy

is effective for quick harassing units that operate indepen-

dently. However, it becomes cumbersome when coordinated

tactics are required, because individual units cannot reason

efficiently about the context of the entire battle. For this

reason, some units are managed in groups, using behaviors

written at the squad level.

In StarCraft, vultures are a versatile unit effective for ha-

rassing enemy melee units, laying mine fields and supporting

tanks. These tasks require different levels of cooperation.

When harassing enemy forces, vultures are controlled at a

per-unit level to avoid taking damage from enemy melee

units. When supporting tanks, vultures work as a squad and

provide the first line of defense. These dual roles exemplify

the problem of multi-scale reasoning.

A subset of the agent’s behaviors is shown in Figure 9.

The root behavior starts several daemon behaviors that spawn

the different managers. Each manager then continuously

pursues a set of subgoals concurrently. In this example, the

strategy manager is responsible for deciding when to produce

factories and when to attack the opponent, the production

manager constantly trains vultures, and the tactics manager

spawns micromanagement behaviors for produced vultures.

The agent coordinates squad behavior through the use

of squad WMEs. The attack enemy behavior is a message

producer that adds a squad WME to working memory

when executed. The squad task behavior is an event-driven

behavior that reacts to squad WMEs. Upon retrieval of a

squad WME, a vulture will abort any micromanagement task

that it is engaged in, and defer to orders issued by a squad

behavior. This is accomplished by a context condition within

the micromanagement behavior that suspends it when the

vulture is assigned to a squad. The key difference between

this scheme and one where a squad-specific behavior was

implemented within the micromanagement behavior is that

the squad behavior reasons at a higher level than the individ-

ual unit, and so it can give an order to a particular vulture

based on a larger context. The EISBot manages individual

units as well as the formulation of squads within a unified

environment, enabling the agent to dynamically assign units

to roles based on the current situation.

By using managers, daemon behaviors, and message pass-

ing, our agent is able to reason about different goals at differ-

ent scales simultaneously, and to coordinate that reasoning



TABLE I

WIN RATES ON THE MAP POOL OVER 20 TRIALS

Versus
Protoss Terran Zerg

Andromeda 85% 55% 75%
Destination 60% 60% 45%
Heartbreak Ridge 70% 70% 75%
Overall 72% 62% 65%

to achieve a coherent result. Goals at different scales can

not only override one another when necessary, but they can

pass messages to influence or direct each others’ behavior.

This leads ultimately to an agent that is responsive, flexible,

and extensible: an agent that is able to respond to highly

specific circumstances appropriately without losing track of

long-term goals.

D. Evaluation

We have evaluated our agent against the built-in StarCraft

AI. The agent was tested against all three races on three

professional gaming maps that encourage different styles

of gameplay. The results are shown in Table 1. The agent

achieved a win rate of over 60% against all of the races.

Additionally, analysis of the agent’s replays demonstrates

that the agent performed over 200 game actions per minute

on average, which shows that the agent was able to combine

highly reactive unit micromanagement tasks with high-level

strategic reasoning.

VIII. CONCLUSIONS AND FUTURE WORK

Using StarCraft as an application domain, we have imple-

mented an agent in ABL to demonstrate the ability of reactive

planning to support authoring of complex intelligent agents.

By presenting new idioms, we have shown concretely how a

reactive planning language like ABL provides the structure

required to support multi-scale game AI.

Our reactive planning agent reasons at multiple scales and

across many concurrent goals in order to perform well in the

StarCraft domain. Different threads communicate with each

other and cooperate to give rise to effective unit control in

which complicated multi-unit behaviors are explicit rather

than emergent. The explicit property of our higher-level tac-

tics allows complicated strategic reasoning processes to deal

directly with these tactics, instead of trying to manipulate the

state of individual units to give rise to some desired emergent

behavior. Using this unified reasoning architecture, our multi-

scale agent is able to play competitively against the built-in

StarCraft AI.

We have extensive plans for future work on the agent.

We have not yet addressed some of the most interesting

challenges about the domain of StarCraft, and our agent per-

forms poorly against even moderately skilled human players.

Problems such as spatial reasoning about building placement

and knowledge management for hidden-information play

have not been addressed in our current implementation, but

are high on our list of priorities. By implementing these

distinct reasoning processes in ABL, we will be able to

easily integrate them within the context of our multi-scale

agent. Future work also includes evaluating the performance

of EISBot in the AIIDE 2010 StarCraft AI competition.

REFERENCES

[1] D. Isla, “Halo 3-Building a Better Battle,” in Game Developers

Conference, 2008.
[2] A. B. Loyall, “Believable Agents: Building Interactive Personalities,”

Ph.D. dissertation, Carnegie Mellon University, 1997.
[3] P. Langley and D. Choi, “A Unified Cognitive Architecture for

Physical Agents,” in Proceedings of AAAI. AAAI Press, 2006, pp.
1469–1474.

[4] M. Mateas, “Interactive Drama, Art and Artificial Intelligence,” Ph.D.
dissertation, Carnegie Mellon University, 2002.

[5] S. Rabin, “Implementing a State Machine Language,” in AI Game

Programming Wisdom, S. Rabin, Ed. Charles River Media, 2002, pp.
314–320.

[6] D. Isla, “Handling Complexity in the Halo 2 AI,” in Game Developers

Conference, 2005.
[7] E. Yiskis, “A Subsumption Architecture for Character-Based Games,”

in AI Game Programming Wisdom 2, S. Rabin, Ed. Charles River
Media, 2003, pp. 329–337.

[8] J. Orkin, “Three States and a Plan: The AI of F.E.A.R.” in Game

Developers Conference, 2006.
[9] G. Flórez-Puga, M. Gomez-Martin, B. Diaz-Agudo, and P. Gonzalez-

Calero, “Dynamic Expansion of Behaviour Trees,” in Proceedings of

Artificial Intelligence and Interactive Digital Entertainment Confer-

ence. AAAI Press, 2008, pp. 36–41.
[10] H. Hoang, S. Lee-Urban, and H. Muñoz-Avila, “Hierarchical Plan

Representations for Encoding Strategic Game AI,” in Proceedings of

Artificial Intelligence and Interactive Digital Entertainment Confer-

ence. AAAI Press, 2005.
[11] M. Mateas and A. Stern, “Façade: An Experiment in Building a Fully-

Realized Interactive Drama,” in Game Developers Conference, 2003.
[12] J. McCoy and M. Mateas, “An Integrated Agent for Playing Real-Time

Strategy Games,” in Proceedings of AAAI. AAAI Press, 2008, pp.
1313–1318.

[13] J. Laird, “Using a Computer Game to Develop Advanced AI,” Com-

puter, vol. 34, no. 7, pp. 70–75, 2001.
[14] S. Wintermute, J. Xu, and J. Laird, “SORTS: A Human-Level Ap-

proach to Real-Time Strategy AI,” in Proceedings of the Artificial

Intelligence and Interactive Digital Entertainment Conference. AAAI,
2007, pp. 55–60.

[15] D. Choi, T. Konik, N. Nejati, C. Park, and P. Langley, “A Believable
Agent for First-Person Shooter Games,” in Proceedings of Artificial

Intelligence and Interactive Digital Entertainment Conference. AAAI
Press, 2007, pp. 71–73.

[16] M. Chung, M. Buro, and J. Schaeffer, “Monte Carlo Planning in RTS
Games,” in Proceedings of the IEEE Symposium on Computational

Intelligence and Games. IEEE Press, 2005, pp. 117–124.
[17] S. Jang, J. Yoon, and S. Cho, “Optimal Strategy Selection of Non-

Player Character on Real Time Strategy Game using a Speciated
Evolutionary Algorithm,” in Proceedings of the IEEE Symposium on

Computational Intelligence and Games. IEEE Press, 2009, pp. 75–79.
[18] C. Miles, J. Quiroz, R. Leigh, and S. Louis, “Co-Evolving Influence

Map Tree Based Strategy Game Players,” in Proceedings of the IEEE

Symposium on Computational Intelligence and Games. IEEE Press,
2007, pp. 88–95.

[19] D. W. Aha, M. Molineaux, and M. Ponsen, “Learning to Win: Case-
Based Plan Selection in a Real-Time Strategy Game,” in Proceedings

of the International Conference on Case-Based Reasoning. Springer,
2005, pp. 5–20.

[20] M. Mateas and A. Stern, “A Behavior Language for Story-Based
Believable Agents,” IEEE Intelligent Systems, vol. 17, no. 4, pp. 39–
47, 2002.

[21] B. Weber and M. Mateas, “Conceptual Neighborhoods for Retrieval
in Case-Based Reasoning,” in Proceedings of the International Con-

ference on Case-Based Reasoning. Springer, 2009, pp. 343–357.
[22] D. Isla, R. Burke, M. Downie, and B. Blumberg, “A Layered Brain Ar-

chitecture for Synthetic Creatures,” in Proceedings of the International

Joint Conference on Artificial Intelligence, 2001, pp. 1051–1058.


