
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

The 2010 Mario AI Championship:

Level Generation Track
Noor Shaker, Julian Togelius, Georgios N. Yannakakis, Ben Weber, Tomoyuki Shimizu, Tomonori Hashiyama,
Nathan Sorenson, Philippe Pasquier, Peter Mawhorter, Glen Takahashi, Gillian Smith and Robin Baumgarten

Abstract—The Level Generation Competition, part of the
IEEE CIS-sponsored 2010 Mario AI Championship, was to
our knowledge the world’s first procedural content generation
competition. Competitors participated by submitting level gen-
erators — software that generates new levels for a version of
Super Mario Bros tailored to individual players’ playing style.
This paper presents the rules of the competition, the software
used, the scoring procedure, the submitted level generators and
the results of the competition. We also discuss what can be
learnt from this competition, both about organizing procedural
content generation competitions and about automatically gen-
erating levels for platform games. The paper is co-authored by
the organizers of the competition (the first three authors) and
the competitors.

I. INTRODUCTION

In the last few years, a number of game AI competitions
have been run in association with major international confer-
ences, several of them sponsored by the IEEE Computational
Intelligence Society. These competitions are based either on
classical board games (such as Othello and Go) or video
games (such as Pac-Man, Super Mario Bros and Unreal
Tournament). In most of these competitions, competitors
submit controllers that interface to the game through an API
built by the organizers of the competition. The competition is
won by the person or team that submitted the controller that
played the game best, either on its own (for single-player
games such as Pac-Man) or against others (in adversarial
games such as Go). One interesting variation on this formula
is the 2k BotPrize, where the submitted entries are not
supposed to play the game as well as possible, but in
an as human-like manner as possible [1]. Several of these
competitions have spurred valuable research contributions as
reported in [2], [3] (among others).

However, NPC behaviour is not the only use for compu-
tational intelligence (CI) and artificial intelligence (AI) in
games. In fact, according to some game developers [4], it

NS, JT and GNY are with the Center for Computer Games Research,
IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen,
Denmark. BW, PM, GT and GS are with the Department of Computer
Science, University of California at Santa Cruz, 1156 High Street,
CA 95064, USA. TS and TH are with the University of Electro-
Communications, 1-5-1 Cofugaoka, Chofu-shi, Tokyo, Japan. NS
and PP are with Simon Frasier University, 8888 University Drive,
Burnaby B.C V5A 1S6, Canada. RB is with Imperial College,
London SW7 2AZ, UK. emails: {nosh, juto, yannakakis}@itu.dk,
{gsmith, pmawhort,bweber}@soe.ucsc.edu, glen.takahashi@gmail.com,
tomoyuki@media.is.uec.ac.jp, hashiyama@is.uec.ac.jp, {nds6,
pasquier}@sfu.ca robin.baumgarten06@doc.ic.ac.uk

might not even be the area where new advances in AI are
needed the most. Another very interesting area, in which
there is growing interest both from the CI and AI research
communities and from game developers, is procedural con-
tent generation (PCG).

PCG refers to any method which creates game content
algorithmically, with or without the involvement of a human
designer. There are several reasons one might want to cre-
ate game content automatically: saving development costs,
saving storage or main memory (e.g. in creating “infinite”
games), or adapting the game to players and augmenting
human creativity. The field has a fairly long history (see
for example the early eighties’ games Rogue (AI Design
1983) and Elite (Acornsoft 1984)), but only recently have
approaches from artificial and computational intelligence
begun to be explored in the context of creating central game
elements such as levels, maps, items and rules. In partic-
ular, “search-based” approaches to PCG, building on evo-
lutionary algorithms or other stochastic search/optimisation
algorithms, have recently been the subject of some interest
in the computational intelligence and games community [5],
[6], [7]; recent overviews of such techniques can be found
in [8], [9], along with a taxonomy of PCG in general. The
coupling of player experience and PCG under a common
framework named “Experience-Driven PGC” is introduced
in [10].

A key concern for many commercial game developers is
the spiralling cost of creating high-quality content (levels,
maps, tracks, missions, characters, weapons, vehicles, art-
work etc) for games. As the graphics and other technical
capabilities of game hardware have increased exponentially,
so has the demands on game content. However, the most
common use of PCG in commercial games today is offline
creation of trees and vegetation 1. Even though there are
a few examples of level generation in commercial games
— e.g. Rogue and games inspired by it such as Diablo
(Blizzard 1996) — PCG algorithms are still rarely used for
the creation of central game elements, or for on-line creation
of game content during gameplay. This is because available
PCG techniques are not seen, by many game developers, as
efficiently and reliably producing content of sufficient quality
to be used in such roles. Therefore, given the need for making
content creation faster and more reliable, the development
of better PCG techniques is an important research direction

1See http://www.speedtree.com



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

for industrially relevant game AI research and beyond. As
there are many different types of game content that could
potentially be generated (levels, maps, weapons, rules, stories
etc.), and several different roles that could be imagined for
PCG within a game, different content generation problems
are expected to require different approaches [11].

Apart from being fast, reliable and producing high-quality
content, another desirable characteristic of PCG algorithms
in many contexts is that they are controllable. A controllable
PCG algorithm can take parameters that describe desired
features of the generated content, and produce content that
complies to these specifications. Such features can be de-
fined on different levels of abstraction, from the geometric
aspects (e.g. the length of a race track or the ruggedness
of a landscape) to gameplay aspects (e.g. how hard a level
would be to clear for a particular player). This is useful
when content is produced collaboratively by human designers
and algorithms, so that the human designer can request
content with particular features suitable for further human
editing or content that fits into already human-authored
content [12], [13], [14]. It is also important when using
PCG to automatically adapt a game to the human player (e.g.
producing more challenging levels for better players or more
fun levels for particular player types) [15], [16], [5], [10].
Such personalisation becomes increasingly important as the
game-playing population gets more diverse [17], [18].

With the importance of research on effective and control-
lable PCG in mind, we created the Level Generation Track
within the Mario AI Championship to spur and benchmark
development of PCG algorithms. To the best of our knowl-
edge, this is the first PCG competition within an academic
research community, and the first competition about adaptive
or controllable PCG.

Competitors participated in the competition by submitting
controllable content generation algorithms, which would
create game content intended to maximise enjoyment for
individual players. In order to ensure the relevance of the
competition, we set ourselves the goals of addressing an
important content generation problem with considerable gen-
erality, within a complex and well-known game context. We
then evaluate the generated content in a fair and accurate
manner. These goals were addressed by using Infinite Mario
Bros (Persson 2008), an all-Java clone of the classic platform
game Super Mario Bros (Nintendo 1985). For that game the
content type is specified to be complete levels which yields
a particularly complex content generation task with room
for diverse strategies. The submitted level generators were
evaluated by letting human players play levels generated to
suit their particular playing style, and ranking them in order
of enjoyment.

Our hope is that this competition will spur research in
methods of creating levels for platform games, and also
in modelling players of such games and adapting levels
to individual players. The competition is also expected to
advance the study on computational gameplay aesthetics,
playing experience modelling and experience-driven PGC

[10]. Many concerns relevant to designing platform game
levels recur in the design of levels and maps for other games,
for example rhythm and variation may be as important in e.g.
FPS levels and RPG dungeons as in platform games, and
it is likely that principles for generating levels that include
these features carry over to other game genres. Appropriate
challenge balancing is an important concern in the design of
almost all game content.

The paper is structured as follows. First, a brief intro-
duction is given to Infinite Mario Bros and the Mario AI
Championship, a series of AI competitions built around this
game. This is followed a description of the Level Genera-
tion Track (part of the Championship), including the Java
interface between the game and the generators, the rules of
the competition and the scoring procedure. The section after
this describes the level generators that were submitted to the
competition. To ensure that the descriptions of the generators
are both accurate and allow for meaningful comparison,
the subsection about each level generator is written by the
authors of the corresponding generator. However, all authors
were asked to answer a specific set of questions about their
level generator within their text. After the presentation of
the submitted generators, the results of the competition are
presented. Moreover, a concluding section discusses what we
can learn from this competition, both in terms of generating
levels for platform games and in terms of organizing a PCG
competition.

II. INFINITE MARIO BROS

Infinite Mario Bros (Markus Persson 2008) is a public do-
main clone of Nintendo’s classic platform game Super Mario
Bros (1985). The original Infinite Mario Bros is playable on
the web, where Java source code is also available2.

The gameplay in Super Mario Bros consists in moving the
player-controlled character, Mario, through two-dimensional
levels, which are viewed sideways. Mario can walk and run to
the right and left, jump, and (depending on which state he is
in) shoot fireballs. Gravity acts on Mario, making it necessary
to jump over holes to get past them. Mario can be in one of
three states: Small, Big (can crush some objects by jumping
into them from below), and Fire (can shoot fireballs).

The main goal of each level is to get to the end of the
level, which means traversing it from left to right. Auxiliary
goals include collecting as many as possible of the coins
that are scattered around the level, finishing the level as fast
as possible, and collecting the highest score, which in part
depends on number of collected coins and killed enemies.

Complicating matters is the presence of holes and moving
enemies. If Mario falls down a hole, he loses a life. If he
touches an enemy, he gets hurt; this means losing a life if he
is currently in the Small state. Otherwise, his state degrades
from Fire to Big or from Big to Small. However, if he jumps
and lands on an enemy, different things could happen. Most
enemies (e.g. goombas, cannon balls) die from this treatment;

2http://www.mojang.com/notch/mario/



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

others (e.g. piranha plants) are not vulnerable to this and
proceed to hurt Mario; finally, turtles withdraw into their
shells if jumped on, and these shells can then be picked up
by Mario and thrown at other enemies to kill them.

Certain items are scattered around the levels, either out in
the open, or hidden inside blocks of brick and only appearing
when Mario jumps at these blocks from below so that he
smashes his head into them. Available items include coins,
mushrooms which make Mario grow Big, and flowers which
make Mario turn into the Fire state if he is already Big.

No textual description can fully convey the gameplay of a
particular game. Only some of the main rules and elements of
Super Mario Bros are explained above; the original game is
one of the world’s best selling games, and still very playable
more than two decades after its release in the mid-eighties.
Its game design has been enormously influential and inspired
countless other games.

The original Super Mario Bros game does not introduce
any new game mechanics after the first level, and only
a few new level elements (enemies and other obstacles).
There is also very little in the way of story. Instead, the
player’s interest is kept through rearranging the same well-
known elements throughout several dozens of levels, which
nevertheless differ significantly in character and difficulty.
This testifies to the great importance of level design in this
game (and many others in the same genre), and to the
richness of the standard Super Mario Bros vocabulary for
level design.

III. THE MARIO AI CHAMPIONSHIP

The Mario AI Championship was set up as a series of
linked competitions based on Infinite Mario Bros. In 2009,
the first iteration of the Championship (then called the Mario
AI Competition) was run as a competition focusing on AI for
playing Infinite Mario Bros as well as possible. A writeup of
the organisation and results of this competition can be found
in [3].

The 2010 Mario AI Championship was a direct successor
of this competition, but with a wider scope. It consisted of
three competition tracks (the Gameplay Track, the Learning
Track and the Level Generation Track) that were run in
association with three international conferences (EvoStar,
IEEE Congress on Evolutionary Computation and IEEE Con-
ference on Computational Intelligence and Games). While
the championship was open to participants from all over the
world, the cash prizes (sponsored by the IEEE Computational
Intelligence Society) could only be awarded to competitors
that were physically present at the relevant competition event.

IV. THE LEVEL GENERATION TRACK

While the Gameplay and Learning tracks, which will be
discussed at length in a separate paper, focused on controllers
that could play Infinite Mario as well as possible, the Level
Generation track focused on software that could design
levels for human players. For this track, special software
was designed that allowed the game to connect with the

submitted level generators, and that partly automated the
scoring procedure. The competition also required inventing
a scoring system, as well as laying down general rules for
what was and was not allowed.

A. Rules

The competition was open to individuals or teams from
all over the world without any limitations e.g. in terms of
academic affiliation. (In practice, all competing teams in
the Level Generation Track included at least one graduate
student, but this is incidental; the other tracks of the cham-
pionship had several entrants without academic affiliation.)
While the highest-scoring competitor would be the overall
winner of the competition and receive the certificate, in
case no representative of the winning team was present at
the competition event, the IEEE CIS-sponsored prize money
would be awarded to the highest-scoring competitor who was
actually present. The competition event was held August
19, 2010 in Copenhagen (during the IEEE Conference on
Computational Intelligence and Games), and final entries
had to be submitted by a deadline a week before that date.
The final submissions were expected to already fulfill the
technical requirements, but technical assistance was available
from the organizers up until the deadline.

The main technical requirement was that the software
should be able to interface to an unmodified version of the
Java framework built by the organizers around the Infinite
Mario game. It was not a requirement that the submissions
be written in Java, though no particular assistance was given
for non-Java development. Another key requirement was that
the call to the level generation routine should return within
one minute on a standard MacBook from 2009 — in other
words, that a level should always be generated in under a
minute.

In what was probably the most controversial rule, which
was later relaxed, the organizers decided to impose certain
arbitrary and unpredictable requirements on the generated
levels. The interface was extended so that in addition to
data about how the human judge played the test level, the
required number of coin blocks, turtles and gaps in the
ground was passed to the level generator (the final numbers
were not revealed to the competitors until the competition
event). Originally, it was intended that any level generator
which generated levels with numbers of gaps, turtles and
coin blocks that differed from those specified would be
disqualified. The motivation for this rule was to prevent
competitors from bypassing the purpose of the competition
by entering “level generators” that only generated a sin-
gle, human-designed (and presumably well-designed) level
at each method call, or one that simply generated minor
variations on a single level. However, some competitors
complained that the rule overly restricted the level generators,
and after some deliberation the organizers decided to not
disqualify any level generator that was deemed to generate
sufficiently dissimilar levels each time.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

All important information regarding the Mario AI Cham-
phionship including rules and software was posted on a ded-
icated website3. Prospective participants and other interested
parties were encouraged to join a Google Group devoted to
the competition4. All technical questions were supposed to
be posted and answered publicly within the group, so that the
archive of the group could function as a searchable repository
of technical knowledge regarding the championship.

B. Scoring procedure

The rationale behind the scoring was that the level gen-
erator which generates levels that were preferred by most
players should win. As mentioned earlier, the primary aim
of the competition was the generation of personalised Super
Mario level for particular players. For this purpose, we used
human judges as Mario players to assess the quality of
each submitted competitor; everyone who was present at
the competition event was encouraged to participate in the
judging. Each human judge was given a test level to play,
and his or her performance on that level was recorded and
passed on to the level generators. The judge then played two
generated levels from two competing generators, and ranked
them according to how how much fun they were to play.

A two-alternative forced-choice questionnaire was used ac-
cording to which each judge expressed a pairwise preference
of fun after completing the two levels (i.e. ”which game of
the two was more fun to play?”). (The concept of “fun” was
deliberately not defined further, so as not to bias judges more
than what is unavoidable.) The adoption of this experimental
procedure was inspired by earlier attempts to capture player
experience via pairwise preference self-reports which were
introduced by the competition organizers (see [19], [20], [21]
among others). For all competition entries to be treated fairly
all generators had to be played an equal number of times
by the judges and compared against all other generators
submitted. On that basis, the required minimum number of
judges was 15 given that there were six competitors (i.e. all
possible combinations of 2 games out of 6 competitors). To
control for order of play effects, each pair was played by the
same judge in both orders.

To make sure that each pair of competitors were judged
at least once in both orders we setup an online SQL
database that initially contained all possible pairs marked as
“unplayed”. Whenever a game session started, the software
connected to the database and asked for an unplayed pair
to load. Once the two level generators in the pair had
been chosen from the database, the levels were generated
according to the judge’s gameplay behavioural statistics and
the judge was set to play the generated two levels in both
orders. The level generators had access to player metrics such
as numbers of player jumps and coins collected (see next
subsection for more details about those data).

When the two games and the questionnaire were com-
pleted, the judge’s preferences and gameplay statistics were

3http://www.marioai.org
4http://groups.google.com/mariocompetition

stored to the database and the pair was marked as “played”.
The experiment is reset if there are no more pairs available
in the database to play (all pairs are marked as “played”).

C. Software and interface

An interface was designed to pass information between
the game and the level generator. In the main loop, the
level generator was called by the competition software with
information on the human player’s playing style and expected
to return a complete level, expressed as a two-dimensional
array of level elements.

Gameplay metrics were collected and statistical features
were extracted from these data. Features included number of
jumps, time spent running, time spent moving left, number
of opponents of each type killed and many others; for a
complete list of the data collected see [16]. The selection
of features was based on the organizers’ understanding of
what differentiates players in this particular game, and were
all features that could be extracted with a minimum of
processing from the game engine. These data about the
player’s behaviour were available to each competitor at the
end of the each level.

The resulting software is a single threaded Java application
that can run on any major hardware architecture and oper-
ating system, with the methods that the generators need to
implement specified in Java interface files. Level generators
had to implement the LevelInterface which specifies how the
level is constructed and how different type of elements are
scattered around the level:

public byte[][] getMap();
public SpriteTemplate[][] getSpriteTemplates()

The size of the level was constrained to be the same for
all competitors: 320× 15 level cells. Different levels can be
generated by placing different types of elements in each cell
of the level map. The type of elements that can be placed in
each cell may vary from basic level elements like a block, a
ground, a specific background and a coin to different enemy
types like a goomba, a turtle, a cannon, and a flower. The
total number of elements that can be used is 29.

Generators implement the LevelGenerator interface — that
is used to communicate with the simulator — and are bound
to respond to the GenerateLevel method call with a new level:

public LevelInterface generateLevel
(GamePlay playerMetrics);

The GamePlay interface provides information about the
player experience and might be useful to construct a per-
sonalized level. An example of five statistical features (as
captured by the GamePlay interface) that contain information
about level design parameters and gameplay characteristics
is as follows:

//total number of enemies
public int totalEnemies;
//total number of empty blocks
public int totalEmptyBlocks;
//total number of coins



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

public int totalCoins;
//number of Green Turtle Mario killed
public int GreenTurtlesKilled;
//total time spent running to the left
public int timeRunningLeft;
//number of empty blocks destroyed
public int emptyBlocksDestroyed;

Keeping with the tradition from previous IEEE CIS-
sponsored competitions, the competition software was open
source and full source code was published on the competition
web page.

V. THE COMPETITORS

In this section, the five level generators that took part in the
competition are presented. Each section is written by the au-
thor(s) of the level generator. In order to facilitate comparison
of the level generators, and make sure that information about
key features was present, a certain structure was imposed on
these descriptions. The competitors were asked to answer the
following questions about their generator, if possible in the
indicated order:

1) What is the main idea behind, and general architecture
of, the level generator?

2) Were any CI/AI techniques used for offline training?
If so, which?

3) Does the level generator adapt to the recorded playing
style of the human player? If so, how?

4) How much of the generated levels are actually designed
by a human designer? Conversely, what level of cre-
ative control would a human designer have when using
the generator?

5) What are the main strengths and weaknesses of the
level generator?

6) Could the underlying principles be generalized to work
for other games, or other types of content?

A. Ben Weber: Probabilistic Multi-Pass Generator

1) Idea and Architecture: The Probabilistic Multi-Pass
(ProMP) generator creates a base level and then iterates
through it several times, each pass placing a new component
type. The generation process consists of six passes, where
each pass places a different component type by traversing
the level from left to right. At each generation step, a set
of events specific to the current pass can occur based on
weighted probabilities. For example, during the initial pass
events can occur that change the ground height, begin a gap,
or end a gap. Events are selected using a uniform probability
distribution. In total, the system includes 14 event types with
author-specified weights. An overview of the level generation
process is shown in Fig. 1.

The system enforces two types of constraints. Playability
constraints are used to constrain the range of values that can
be selected by the generator, such as limiting the maximum
height of pipes to ensure that players can traverse the levels.
Competition constraints are enforced by limiting the number
of objects placed each pass. For example, if a generated level

contains the maximum number of gaps, the probability for
new gap placement is set to zero.

2) Offline Training: No offline training is performed.
3) Creative Control: The authorial control provided by

the ProMP generator is limited to parameter selection. The
author can manipulate weights of specific events in order to
change the frequency of gaps, enemies, and hills. However,
creating noticeably different levels requires modifying the
algorithm.

4) Adaptation: The initial ProMP algorithm did not adapt
based on the player log. Since the competition, the algorithm
has been modified to adapt event probabilities based on the
skill of a player. Level completion causes an increase in the
enemy and gap placement probabilities, while deaths cause
a decrease in these probabilities.

5) Strengths and Weaknesses: While the generator is
capable of building levels in real-time, it outputs levels of
limited variation. One of the main disadvantages of the
ProMP algorithm is that scaling up the range of the generator
is non-intuitive, because adding new event types or additional
passes may break previously playable levels.

6) Generalizability: The ProMP algorithm was designed
specifically for platformer level generation and has limited
application outside this domain. However, the concept of
creating a base level and then applying procedural decora-
tion [22] may translate well to other genres.

B. Tomoyuki Shimizu and Tomonori Hashiyama

1) Idea and Architecture: The main idea behind our level
generator is to make players experience flow, according to
the theory of Csikszentmihalyi [23]. A key element of the
theory of flow implies a linear relationship between challenge
and skill as an important factor of enjoyment. To realize
this relationship, we have implemented and combined three
separate modules: 1) the skill and preference estimator, 2)
the parts collector and the 3) parts connecter.

2) Offline training: Players’ skills and preferences are
evaluated by the skill and preference estimator with Game-
Play logs. Based on the player’s log from a test level,
this module carries out the inference using heuristic rules
given by the designers a priori. The premises of these rules
include parameters such as number of deaths, time spent
running, numbers of enemies killed by stomping, time spent
in each mode, and numbers of mode switches. Players’
skills are classified into five degrees from 4 (excellent) to 0
(below average). Players’ preferences are represented as three
values each corresponding to a distinct playing behaviour: 1)
CoinCollector, 2) BlockDestroyer, and 3) EnemyKiller. Each
preference is represented by a real number between 0 and
100, which denotes the percentages of: 1) coins collected, 2)
blocks destroyed, and 3) enemies killed by the player in the
test level.

The parts collector is a tool for the designers to collect
the appropriate parts corresponding to a set of sprites and
environments through interactive evolutionary computation
(IEC) [24]. This module works offline. Parts are generated



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Fig. 1. Passes applied by Ben Weber’s ProMP generator:(1) ground, (2) hills, (3) pipes, (4) enemies, (5) blocks, and (6) coins.

Fig. 2. This figure shows the overall architecture of the Tomoyuki
Shimizu and Tomonori Hashiyama’s level generator. The Parts collector runs
offline using interactive evolutionary computation. The Skill and preference
estimator derive players’ characteristics. Based on the outputs of these
modules, the parts connecter arranges the corresponding parts sequentially.

randomly at initialization, and their difficulty and features
are evaluated by the designer (collector). The difficulty of
these parts is classified into five degrees. Features of these
parts are classified into three categories depending on their
number of 1) coins, 2) blocks and 3) enemies. Five degrees of
difficulty and three categories of features correspond to those

of players’ skills and players’ preferences, respectively. The
parts used in this competition were evolved by us in advance
and saved into the parts pool.

The parts connecter is a module which generates a level as
serial connection of evolved parts. Some parts which match
best to the player’s skill and preferences as derived from
skill and preference estimator are selected as candidates.
This module connects these candidates from left to right
horizontally.

3) Adaptation: Our level generator estimates players’
skills and preferences through a skill and preference estima-
tor. Those parts which match the player’s skill and preference
best are selected and connected with a level by the parts
connecter.

At first, this module selects some candidate parts whose
difficulty matches the player’s skill. These parts are then
examined for whether they match the player’s preference.
The selected parts are connected sequentially the level, grow-
ing it from left to right. This selection-connection procedure
is repeated until the length of generated level meets the
requirement of the competition.

4) Creative Control: The designer can control the genera-
tor in at least two important ways. The estimation of players’
skills and preferences is done through human-authored rules,
based on our domain knowledge. Also, the parts are evolved
using IEC, and their difficulty and features evaluated by
human designers.

5) Strengths and Weaknesses: Our approach has two
main advantages. 1) We generate levels that correspond to
players’ skills and preferences. 2) Designers can affect the
composition of levels directly through IEC. No formula needs
to be derived for the fitness function of the evolutionary
algorithm, because the level parts are evaluated by designers



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

themselves.
The main weakness of our approach is that the variety of

levels depends on the evolved parts. If there is not enough va-
riety in parts pool, the generated levels may be monotonous.
The variety of levels also depends on that of the evolutionary
mechanism used in IEC. IEC relies on interaction with
humans; it becomes a bottleneck for evolution, because of
the (human) time required for evaluation.

6) Generalizability: Our approach is capable of applying
to various types of game content. The approach simply
consist of two main modules: 1) collecting parts of game
content through IEC, and 2) connecting these parts. More-
over, the propriety of rules for players’ skills and preferences
estimation could improve by tuning rules[25].

C. Nathan Sorenson and Philippe Pasquier

1) Idea and Architecture: Our system combines an evo-
lutionary algorithm and a constraint satisfaction solver to
generate levels in a top-down manner. It is a generic approach
which is able to create levels for a variety of games, and
Mario is one of its primary applications. As opposed to
bottom-up techniques characterized by low-level production
rules that can be inflexible and difficult to debug, our system
is ultimately driven by a high-level fitness function that
specifies desirable design goals independent of any particular
generative procedures. This fitness function, which we use to
guide the evolution of a population of potential level designs,
is based on the observation that certain configurations of
challenge are vital to a player’s experience of fun [26], [27].
Specifically, levels which present the player with alternat-
ing periods of high and low difficulty, known as rhythm
groups [28], are often considered examples of good design.

The fitness function used for the competition is a modified
form of one previously discussed [29], and is used to estimate
the entertainment value of a given level. Essentially, the
function infers the location of a number of rhythm groups,
according to threshold parameters which identify periods of
low challenge. Each of these rhythm groups is then assessed
to ensure it presents an appropriate amount of difficulty
to the player. The underlying model is described in (1),
where ci is a heuristic estimation of the challenge of rhythm
group i, and M represents ideal amount of challenge a
player can experience while still having fun. This formulation
rewards levels that have a large number of rhythm groups
with appropriate degrees of difficulty. Because rhythm groups
boundaries are located at periods of low difficulty, levels that
alternate between challenging and relaxing segments will be
rated the highest and be favoured for selection by the genetic
algorithm.

n∑
i=0

2ci
M
− c2i

M2
(1)

A challenge presented by the evolutionary approach is that
the crossover and mutation operations often yield infeasible
offspring which contain gaps that are too wide to leap across

or walls too high to jump over. A constraint satisfaction
subsystem is used to repair these unplayable designs, and is
detailed in previous work [30]. This subsystem is also used
to enforce the contest regulations that dictate the specific
number of various design elements that must be present in a
valid level.

2) Offline Training: Offline training is used to find values
for the constant terms in the fitness function. Our approach
attempts to find parameter values which assign high values
to well designed levels, and low values to poorly designed
levels. A number of actual levels from the original Super
Mario Bros. form the set of positive examples and a number
of levels randomly generated with no regard for player
enjoyment form the negative set. The optimal parameter
settings are those which best discriminate between the two
sets.

3) Adaptation: Currently, the generative process is guided
only by the fitness function, which results in challenge con-
figurations that resemble those of the original Super Mario
Bros. game. However, adaptive design could certainly be
considered in future work. By adjusting the model parameters
based on player feedback, levels could be generated that have
different challenge configurations. An example of this would
be generating easier levels by reducing the value of M if the
player is found to be failing more than expected.

4) Creative Control: One of the advantages of a top-down
generative approach is that it provides a human designer with
a small number of high-level parameters to manipulate. The
simplest way to influence the design of a level is through
the manipulation of the model parameters. By varying the
value of M over time, one can create levels with a specific
difficulty profile. For example, one could strategically inflate
M to produce levels that have a particularly difficult portion
at the halfway point, with another challenging section near
the end. Another approach to influence the generated levels
is to anchor any manually created elements of a design.
The evolutionary algorithm is then not permitted to alter
these human-created portions of the level. Because the fitness
function is applied to levels as a whole, this procedure results
in the algorithm selecting for designs that best incorporate
these fixed elements into a cohesive experience. In other
words, if a designer creates a very challenging segment of
a level by hand, the algorithm will naturally create easier
segments on either side of this section.

5) Strengths and Weaknesses: An advantage to the evo-
lutionary approach is the ability to influence the designs at
a high level by manipulating the fitness function. However,
genetic algorithms and constraint solvers are both computa-
tionally intensive, and, therefore, only offline generation of
levels is practical; it is not yet possible to generate a level on
the fly as a player is playing. Search time is not prohibitive,
however: if the original population of level designs is seeded
with existing well-designed levels, new viable designs can be
found quickly, even within the one minute time limit dictated
by the contest.

6) Generalizability: The system’s top-down design is mo-
tivated by the goal of devising a general approach to level



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

generation which is not bound to a single, specific game.
For example, the genetic encoding of the levels is not only
applicable to Mario, but can describe any spatial arrangement
of components; thus, it is suited to describing many different
types of game levels. More importantly, the fitness function
is defined only in terms of the configuration of challenge
over time, and is likely applicable to any game where this
dynamic is fundamental to player enjoyment, such as action
or arcade games. We are currently exploring the possibility
of using our system to create levels for top-down adventure
games such as The Legend of Zelda (Nintendo 1986). Though
this has proven to be a much more difficult task, our initial
results are promising.

D. Peter Mawhorter: Occupancy-regulated extension

1) Idea and Architecture: The Occupancy-Regulated Ex-
tension (ORE) algorithm [31] builds a level by fitting to-
gether small hand-authored pieces. Each piece (called a
“chunk”) is annotated with anchor points, which represent
positions that the player might occupy relative to that chunk
during game play. These anchor points are used to align
chunks as they are being placed, and once used, each anchor
point will not be re-used (unless all anchor points get used
up). The chunks, which come from a hand-authored library,
are annotated with various properties, and generation is
customized by defining rules for probabilistic chunk selection
that depend on these properties (in this way, the algorithm
bears some similarity to case-based reasoning [32]). Once
the level is constructed using chunks, there is a final post-
processing step that enforces some global constraints and
maintains a specified distribution of enemies and powerups.
An example of generator output is shown in figure 3.

Fig. 3. A screenshot from a particularly complex level generated by Peter
Mawhorter’s level generator.

2) Offline Techniques: The ORE algorithm doesn’t use
any AI techniques to optimize offline parameters, instead
relying on a human to build a chunk library and define
both the properties of each chunk and the biases with
which chunks are selected during generation. However, future
work on automatic extraction of chunks from existing levels
would change this, adding intelligent techniques for chunk

extraction and labelling, and more fully automating the level-
design process.

3) Adaption: For the purposes of the competition, and to
demonstrate the customizability of the basic ORE algorithm,
some basic adaption techniques were implemented. From
the given data, a very rough player model is constructed,
focusing mostly on how often the player used the run button
(more often being taken to imply higher skill) and how often
and how the player died. This player model is then used to
alter generated levels, both by altering the default rules for
chunk selection (such as by making chunks with a particular
label less common) and by altering the distributions of
enemies and powerups maintained by the post-processing
step. The adaption parameters were hand-tuned; more robust
methods would use some form of optimization, although
getting enough data to do so might be time-consuming. Of
course, because ORE is iterative, it should also be possible
to use it for dynamic difficulty adjustment. There would be
some additional challenges to overcome (such as finding
a way to run the post-processing on-line), but dynamic
difficulty adjustment has been shown to be a promising
application of procedural content generation [33].

4) Creative Control: Because the chunk library is hand-
authored, the human designer has quite a bit of control over
the types of levels generated, albeit in an awkward manner.
Since in this case, the chunk library author is the system
designer, it is easy to use knowledge of the specifics of
the system to author chunks that would result in certain
kinds of output (e.g. adding chunks to make levels that had
more height variance, for example). The ability to tune the
chunk library to achieve desired results does depend on a
thorough understanding of the algorithm, however, and so in
general, chunk authoring is not an interface that provides
much leverage on level design. On the other hand, the
ORE algorithm is almost purely incremental, so it is in
theory possibly to hand-author part of a level and have ORE
generate the rest. Given the right interface, and combined
with library manipulations, this would offer a rich interface
for mixed-initiative level design, which is a topic that has
already received some study[13].

5) Strengths and Weaknesses: The main strengths of the
ORE algorithm lie in the variety and unpredictability of
possible output (it is a generator that regularly surprises
even its author) and in the possibilities for customization.
Combinations of low-level chunks result in emergent struc-
tures that can be quite complex, which means that even
after playing many levels generated from the same chunk
library, one will still encounter surprising new constructs.
The ability to manipulate the chunk library, and the fact that
the algorithm is iterative, mean that ORE has lots of potential
for customization to different purposes. Unfortunately, the
iterative model means that certain constraints (including
playability constraints) are difficult to implement. In this
respect, ORE is unlike many other generators [34], [16],
[29], which take advantage of more constrained generation
to achieve a particular goal.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

6) Generalizability: As written, ORE could generalize to
another grid-based game quite easily, and in theory any spa-
tial (and even some non-spatial) content could be generated
using it. As long as there are concepts of anchor points and
chunks, ORE can generate content in a space. The strength
of the algorithm depends on the specifics of the anchors
and chunks, however. ORE works well in Super Mario Bros
in part because using potential positions as anchor points
naturally results in coherent levels.

E. Glen Takahashi and Gillian Smith: The Hopper Level
Generator

1) Idea and Architecture: Hopper was designed to create
levels that imitate the style of Super Mario World levels.
These levels are customized according to the style of player
and their skill at playing, both of which are inferred from
player metrics.

Hopper uses a rule-based approach to place level terrain,
enemies, coins, and coin blocks on a tile-by-tile basis. Levels
are built from left to right, with probabilities governing which
tile will be placed next. These probabilities are manually
tuned according to the inferred player types and difficulty
described below, and control the variance in terrain height,
occurrence and width of gaps, and frequency of enemy
placement. For example, an ”easy” level will have a low
probability of gap placement, and a level generated for a
speed run play style will be flatter than one created for a
player who jumps a lot. Obstacle placement is also influenced
by the number of times a player died on the particular
obstacle: for example, even in a medium difficulty level, there
is a lower probability of gaps appearing if the player has
previously died by falling down a gap. In order to ensure a
reasonable distribution of gaps and enemies, the probability
of placing these increases with the distance from the last
such feature.

2) Offline Training: No offline training was performed.
3) Adaptation: Based on metrics from the initial test level,

players are classified in two ways: by the type of behaviour
they exhibit, and their skill level. These classifications drive
the level generation process by influencing generation param-
eters. Hopper infers three different special styles of player
behaviour: a speed run style, an enemy-kill style, and a
discovery style. A player is categorized as a ”speed runner”
if they take very little time to complete a level and do not
engage in collecting coins or killing enemies. The enemy-kill
style is applied to players who spend a lot of time killing
enemies. Players are placed into the discovery style category
if they collect a large number of coins, powerups, and coin
boxes. These categories are not mutually exclusive; i.e. it is
possible for a player to have none of these traits, or more
than one of them. There are three discrete difficulty levels
– easy, medium, and hard – which are determined by the
number of times the player died in the test level, and how
long it took the player to complete it. Player styles, difficulty
levels, and the thresholds used to calculate them are based on

Fig. 4. Examples of the hidden coin zone (top left), fire zone (top right),
shell zone (bottom left), and super jump zone (bottom right), as used in
Glen Takahashi and Gillian Smith’s level generator.

informal observation of a number of players with differing
skill levels.

4) Creative Control: This base level generation algorithm
creates approximately 85% of a given level. The remainder
is taken up with ”special zones” that are built from human-
authored patterns. The four special zone patterns are: fire
zone, shell zone, super jump, and hidden coin area. A given
level may contain a small number of each type of zone,
depending on the inferred player behaviour and difficulty
level. Each zone has a varying length. Fire and shell zones
are more likely to appear for players who spend a lot of their
time killing enemies, the super jump zone appears for speed
run players, and the hidden coins appear for discovery style
players. Figure 4 shows an example of each zone.

5) Strengths and Weaknesses: Hopper is capable of creat-
ing a wide variety of levels for different player types; how-
ever, only the first level it creates is given to the player. Future
incarnations of this generator will incorporate a generate-
and-test structure similar to that found in an author’s prior
rule-based level generator [34]. Generate-and-test allows a
designer to exert additional control over created levels by
specifying global qualities of the level that they wish to see;
it would also be possible to choose levels that are similar to
others that the player has enjoyed.

The incorporation of special zones gives a designer direct
influence over the generator. These patterns and the proba-
bilities for their appearance are quite simple to specify. They
reflect a desire expressed by some 2D platformer designers
[35] for procedural level generation to support designers by
building a level around pre-authored sections.

Hopper’s parameters for adaptation are currently tuned
based on informal testing with friends and colleagues. A for-
mal study of different player behaviour in platformer levels
would improve Hopper’s adaptation and be a useful contri-
bution to the field. Incorporating a model of the difficulty
of certain combinations of geometry [33] is also a potential



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

way to improve adaptation. More information from player
metrics would be helpful in categorizing player behaviour;
for example, time-stamped player behaviour would allow us
to determine the purpose of a jump, or understand if the
player confidently killed enemies or made multiple attempts
before being successful.

6) Generalizability: Hopper’s level generation technique
is not particularly extensible to other genres; while rule-
based approaches in general have shown promise in content
generation [36], [37], they require a great deal of domain
specific information to be built into the rules. However,
the general approach of creating levels based on a formal
understanding of play styles and associated behaviour is an
interesting future direction for research in procedural level
generation.

F. Robin Baumgarten: LDA-based level generator

1) Idea and Architecture: This level generator uses Linear
Discriminant Analysis (LDA) to analyse the data provided
after the initial play-through of a player. The new data-
vector is projected into an LDA space created by playing
data gathered in a prior survey. This LDA representation
provides us with a single value that we interpret as skill
and use to create a level based on hand-crafted level-chunks
with varying difficulty.

Discriminant analysis is used in statistics and machine
learning to characterise or separate classes of objects based
on a set of measurable features and class information of
these objects. Linear discriminant analysis (LDA) utilises a
linear combination of these features to separate the groups of
objects. This combination can be used as a linear classifier or
for dimensionality reduction. LDA has previously been used
to estimate feature weights for heuristics in an Othello game
tree [38], and to automatically analyse logged game data to
identify the most significant metrics for player classification
in Pac-Man [39].

2) Offline training: In our case, we first gathered data
in a small survey, which comprised the playing data of
11 players playing 5 different levels each. The levels were
randomly generated (but the same across players) and had an
increasing difficulty. For data analysis, we use LDA to both
perform a dimensionality reduction and extract information
about player behaviour from the resulting transformed space,
which is shown in figure 5. We treat each set of 5 sessions
of a player as one class.

The weights of the features in the first dimensions of the
LDA transformed space indicate the most important features
that determine the behaviour of a player and how it differs
from other players. A positive side-effect of this method is
that unimportant or highly correlated features are eliminated
automatically.

3) Adaptation: As the LDA space automatically high-
lights variables that were especially helpful in separating
players from each other, we can use the first few dimensions
of the feature-vectors in LDA space to guide the level
generator in order to tailor a level suitable to the player.

Fig. 5. Linear discriminant analysis of 11 players with 5 sessions each,
projected onto the first two dimensions. Data used by Robin Baumgarten’s
level generator.

In our initial survey, we found that the first LDA dimension
(LD1 from now on) gave us a fairly accurate indication of
player skill, as players we (subjectively and manually) judged
as good (bad) players had a high (low) LD1 value. Thus, in
this initial version of our algorithm, we only used the LD1
value of each player to guide level generation.

4) Creative Control: Our level generator builds levels by
concatenating chunks of pre-designed level parts, each with
a length of slightly more than one screen (25 blocks). The
human designer manually annotates the expected difficulty of
each chunk, allowing a selection based on the LD1 skill level.
The proportion of easy, medium and hard chunks is directly
based on the estimated skill level, with a slight randomisation
and repetition avoidance to increase level diversity.

Thus, in this first version of the level generator, the human
designer still plays a big role in creating individual parts of
the level and annotating their difficulty.

5) Strengths and weaknesses: The process of judging the
skill of a player has been fully automated with the help
of Linear Discriminant Analysis using existing playing data
of other players, with the possible exception of interpreting
the first dimension of the LDA-space as the skill level.
However, our previous work indicates that a combination of
the first two or three dimensions should give an accurate
representation of player behaviour.

Weaknesses of our current implementation are the depen-
dency on a human designer to create the building blocks of
our level, and annotating their difficulty. Furthermore, there
was a programming error in the generator that was submitted
to the contest, which disabled the proper selection of level
chunks and always led to the selection of the most difficult
piece first, which led to a low ranking in the competition.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

This issue has been fixed for following studies.
The described version of the level generator leaves a lot

room for further automatisation, especially in selecting ap-
propriate dimensions of the LDA space for level generation,
and annotating the difficulty of level chunks, where our A*
playing bot could be used (described in [3]).

6) Generalizability: The approach of using LDA to gen-
erate a semi-automatic classification of players can easily
be generalised to at least some other games, as we have
shown with our Pac-Man study [39]. It could conceivably be
generalized further.

G. Taxonomic classification of competition entries

According to the taxonomical classification in [8], Ben
Weber’s, Robin Baumgarten’s, Peter Mawhorter’s and Glen
Takahashi and Gillian Smith’s level generators can all be
classified as constructive generators, as they construct their
levels in one or a fixed number of sweeps, without backtrack-
ing. Nathan Sorenson and Phillipe Pasquier’s level generator
is search-based, as it uses a search/optimization algorithm
(in this case a genetic algorithm) to search a space of
possible content (levels) in order. Tomoyuki Shimizu and
Tomonori Hashiyama’s level generator is a combination,
which performs a search-based generation of level segments
(using an interactive fitness function) offline, whereas the
online generation of complete levels is constructive.

Only three of the level generators attempted any kind
of adaptation to the playing style and/or inferred prefer-
ences of the judge. Shimizu and Hashiyama’s and Takahashi
and Smith’s generators adapt the levels using theory-driven
player models, i.e. the algorithms sort players into categories
(e.g. CoinCollector, speed run style) based on thresholds
explicitly specified by the human designers. Baumgarten’s
generator, on the other hand, uses a data-driven player model
where the classification is based on data collected from a
number of players.

VI. RESULTS

Following the scoring procedure presented in Sec-
tion IV-B, we needed to have at least 15 participants for a
fair competition result (with 15 participants we guarantee that
each pair of competitor submissions is played at least once
in both orders). Since we encouraged everyone presented at
the competition event to participate as a judge, we ended up
having more than 15 participants but less than 30. Thus, for
the sake of fairness, the winner was decided by taking into
consideration the first complete set with all pairs played by
the first 15 judges only. The results presented in Table I are
also taken from the first 15 participants.

The numbers presented in the score column in Table I refer
to the number of times the particular generator scores higher
than another generator when played in a pair. The maximum
value of the score is 10: the competitor is preferred to any
other of the 5 competitors in both orders. As can be seen from
the table, the winner of the competition was Ben Weber with
a difference of only one vote from Tomoyuki Shimizu and

TABLE I
THE RESULT OF THE LEVEL GENERATION TRACK FOR THE 2010 MARIO

AI CHAMPIONSHIP, TURING TEST TRACK

Name Affiliation Score
Weber University of California 9

Santa Cruz
Shimizu and Hashiyama Uni. of Electro-Communications 8

Tokyo
Sorenson and Pasquier Simon Fraser University 6

Canada
Mawhorter University of California 4

Santa Cruz
Takahashi and Smith University of California 2

Santa Cruz
Baumgarten Imperial College London 1

Tomonori Hashiyama who came in second, with the other
competitors relatively evenly spread out in the score table.

A. Level features and pairwise preferences

During the competition, all levels that were generated
by the generators were stored on the competition server
together with the reported preferences of the players. This
has given us an opportunity to extract statistical features
from the levels, and attempt to correlate these with player
reported preferences. Note that, in the first implementation
of the competition server-client system (used in the CIG
2010 competition), data related to player actions were not
collected. Thus, any attempt to relate level features generated
with player characteristics and furthermore with reported
fun preferences is not possible at this stage. On that basis,
reported pairwise preferences cannot be linked to individual
players’ playing styles (as done in [19] among others) but
only associated to level attributes. Any model learnt from
these data will therefore be a generic model that does not
take the differences between players into account.

Figure 6 presents a comparison between the average values
of eight key statistical features that have been extracted
from the data of all competitors: numbers of coins, rocks,
powerups, enemies and gaps, the average gap width, as
well as the spatial diversity of gaps (Gap H) and enemy
placements (Enemy H) which is measured by the entropy of
the number of gaps and enemies, respectively, appearing in a
number of 10 equally-spaced segments of the level (see [16]
for the more details on the calculation of entropy). All feature
values are uniformly normalised to the range [0,1] using
max-min normalization. As clearly seen from Fig. 6, the
winner’s entry (Weber) generates, on average, more gaps than
most competitors and the most enemies placed in a rather
unpredictable manner. The above-mentioned characteristics
contribute to more challenging levels which might be one
of the criteria that this level generator was preferred more
that any other entry. The levels generated by Shimizu and
Hashiyama’s generator reached second place in the compe-
tition with level features that are inverse to those of Weber:
the levels have, on average, fewer coins, enemies and gaps
while enemies are more evenly distributed across the level.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

Results from these two very different levels indicate that the
relationship between level characteristics and fun is most
likely not a simple linear function. They also reflect upon
the highly subjective notion of level aesthetics and gameplay
attributes.

At the bottom of the score board, the entry of Baumgarten
generates way too many rocks and gaps which result in
highly challenging levels that were not preferred by most
judges. It is also worth noticing that Takahashi and Smith’s
entry (which received two votes) generates, on average,
challenging levels with very wide gaps which are placed
in a rather unpredictable manner. The levels generated by
Mawhorter’s entry are characterised by many coins while the
entry of Sorenson and Pasquier seems to generate the most
powerups among all competitors. These level features appear
to be valued by some judges and brought these entries in the
middle of the score board.

Table II presents a correlation analysis between the
judges’s expressed fun preferences and the eight key level
features examined earlier. Correlation coefficients are ob-
tained through c(z) =

∑N
i=1{zi/N}, following the statistical

analysis procedure for pairwise preference data introduced in
[19], where N is the total number of game pairs (N is 15
in this paper) and zi = 1, if the judge preferred the game
with the larger value of the examined feature and zi = −1,
if the judge chooses the other game in the game pair i. The
p-values of c(z) are obtained via the binomial distribution.
A high positive correlation value indicates that levels with
a high value of the examined level feature are in general
preferred over levels with lower values of that feature. On the
contrary, features which are highly but negatively correlated
to fun preferences characterise levels which are not preferred.
A correlation value close to zero suggests that there is no
apparent linear relationship between the examined feature
and fun preferences. From the significant correlations of
Table II it can be inferred that levels with less coins and
rocks, smaller gaps and even distribution of enemies are,
in general, preferred (or generate more fun). There appears
to be a relationship between level fun preference and game
challenge showcased though these statistical effects: the
lower the challenge in a level the higher the preference for
that level. The clear relationship of the two can only be
obtained if the sample size of the judges is larger and, in
addition to fun preferences, the judges are asked to report the
level that generated the most challenging gameplay. Previous
work on the relationship between reported fun and reported
challenge in Super Mario Bros has demonstrated that they
are highly and positively correlated [16] (in contrast to what
is observed here), at least for a more restricted class of levels.

The correlation values obtained suggest that the relation-
ship between content characteristics and game preference is
most-likely non-linear (as also found in [16]) since the linear
relationships are far from being exact — i.e. the correlation
values are significant but not close to 1 or −1. Moreover,
studies have shown that player behavioural characteristics
are key towards the prediction of player preferences (see [16]

Coins Rocks Poweups Enemies Enemy H Gaps Gap width Gap H
0

0.2

0.4

0.6

0.8

1

 

 
Weber
Shimizu and Hashiyama
Sorenson and Pasquier
Mawhorter
Takahashi and Smith
Baumgarten

Fig. 6. Average values of eight statistical features that have been extracted
from all generated levels of each competitor.

TABLE II
CORRELATION COEFFICIENT VALUES BETWEEN EIGHT KEY STATISTICAL

FEATURES EXTRACTED FROM GENERATED LEVELS AND FUN PAIRWISE
PREFERENCES. SIGNIFICANT VALUES APPEAR IN BOLD —

SIGNIFICANCE EQUALS 5% IN THIS PAPER.

Extracted level feature c(z)

Coins −0.466
Rocks −0.466
Powerups −0.333
Enemies −0.333
Enemy H −0.466
Gaps −0.333
Gap width −0.466
Gap H −0.333

among others) which further implies that level personalisa-
tion would most likely yield more successful generators.

In order to further validate the results of the competition
with more participants/judges, we are currently performing
an additional round of data collection online. A Java applet
has been created and placed on a web page5, which has been
advertised over social networks, mailing lists and blogs.

VII. DISCUSSION

This section discusses what we can learn from this round
of the Level Generation Track (which was also the first
academic PCG competition and the first competition about
adaptive or controllable PCG), both about organizing a PCG
competition and about generating levels for platform games.

A. Organizing a PCG competition

Compared to other game AI competitions the PCG com-
petition attracted a reasonably large set of competitors, rep-
resenting a considerable diversity both geographically and in
particular in terms of algorithmic approaches to the particular

5http://noorshaker.com/participate in experiments.htm



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

content generation problem. All of the entries submitted con-
tain novel elements, most of the approaches are sophisticated
and some of them are connected to the competitors’ ongoing
research programes. The number and quality of submissions
indicate a fairly strong interest in the field of procedural
content generation forming a sub-community devoted to PCG
that lies within the broader game AI and computational
intelligence and games communities. Therefore, it seems
very plausible that given a simple enough interface and an
interesting enough content generation problem, future PCG
competitions will attract good attention.

In organizing this competition, the organizers drew on
experience of organizing several previous game AI-related
competitions, as well as a set of “best practices” that have
been accumulated within the computational intelligence and
games community over the past few years. One core principle
is that the competition should be as open as possible in every
sense, both in terms of source code, rules, procedures and
participation. Another key principle is that the software inter-
face should be so simple that a prospective competitor is able
to download the software and hack together a simple entry
in five minutes. Limitations in terms of operating systems
and programming languages should be avoided wherever
possible. It has also become customary to provide a cash
prize in the range of a few hundred dollars, along with a
certificate, to the winner. We believe that these principles
have served us well.

This not to say the current competition has been without
its fair share of problems, actual as well as potential. It
was until the last moment unknown how many members
of the audience would be willing and able to participate
in the judging, and it would in general be desirable to
have a larger number of votes cast in order to increase the
statistical validity of the scores. One of the key limitations
of the existing survey protocol is that all entries need to
be played against each other; ideally multiple times from
different judges. That generates a large number of judges
— which is combinatorial with respect to the number of
entries — required to sufficiently assess the entries. This
problem can be solved, in part, with a fair sampling of the
pairs and an adaptive protocol which is adjusted according
to the number of judges existent in the competition room. It
is also questionable how representative of the general game-
playing population an audience of game AI researchers is.
As already mentioned, an Internet-based survey is currently
running, where the software is included on a public web
page and judges are solicited through mailing lists and
social networking sites; this approach would undoubtedly
come with its own set of limitations, such as preventing the
competitors from gaming the system by voting multiple times
themselves.

Additional minor problems include the short time period
given for the presentation of the competition; the competitors
agree that it would have been very useful to have on-
spot presentations of their submissions as well. Moreover,
one of the entries included a trivial but severe bug which

was only discovered during the scoring, and which was
arguably responsible for the very low score of that entry. The
competition software repeatedly locked up on several of the
judges’ laptops during level generation for as yet unknown
reasons.

A potential problem which was briefly discussed in sec-
tion IV-A is that someone could submit a “level generator”
that essentially outputs the same human-designed level each
time and, if that level is good enough, it could win the
competition. As we have abandoned the idea of forcing
additional constraints on the level generators for fear of
restricting them too much, such a case would probably have
to be decided by the organizers of the competition based
on some fairly fuzzy guidelines. The deeper problem is that
the distinction between a level and a level generator and
is not clear. It should rather be thought of as a continuum
with intermediate forms possible, e.g. a fixed level design
that varies the number and distribution of enemies according
to the player’s skill level. (Bear in mind that several of
the submitted level generators included complete human-
designed level chunks of different sizes.)

A possible solution to the above problem would be to
let the judge play not one but several levels generated by
the same level generator with the same player profile as
parameters. In such a setting, a generator that always outputs
the same level would probably come across as boring. This
solution would also ensure that the judges rate that the
actual design capacity of the generator rather than just the
novelty value of a single generated level. If this is done, the
player metrics might be updated as the player plays, allowing
the generators to continuously adapt to a player’s changing
playing style. It would require that each judge spends more
time on judging, which might lead to a shortage of willing
judges, but given the considerable advantages it seems like
a good idea that the next level generation competition lets
judges play several levels from each generator.

There are certainly aspects of the questionnaire proto-
col used that could be improved on the next iteration of
the competition. A 4-alternative forced-choice questionnaire
scheme [40] could be adopted to improve the quality of self-
reported preferences. Such a questionnaire scheme would
include two more options for equal preferences (i.e. “Both
levels were equally fun” and “Neither level was fun”) and
thereby eliminate experimental data noise caused by judges
who do not have a clear preference for one of the two levels.

In the future, we might consider including hand-authored
levels (e.g. original Super Mario Bros levels) among the
generated levels; a litmus test for whether the (personalized
or other) level generators are really successful would be
whether they were generally preferred over professionally
hand-authored levels. We would also like to try to answer
not only the “which” question about fun levels, but also the
“why” question; asking judges why they prefer a particular
level over another would be interesting, but would require
significant human effort in interpreting the data. Another
method would be to ask not only which level was more fun,



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

but also which was more challenging, interesting etc., similar
to the questionnaires used in [16].

Another takeaway from previous CIG competitions is that
competitions usually benefit from repetition. When basically
the same competition is run a second or third time, com-
petitors get a chance to perfect their entries and learn from
each other, meaning that much better entries are submitted.
Refining individual entries also means that techniques that
are more appropriate for the problem stand out from initially
interesting ideas that fail to deliver on their promise. In
other words, the scientific value of a competition in general
increases with the number of times it is run.

B. Generating levels for platform games

The main point to note about the competition results is
that the simplest solution won. Ben Weber’s ProMP level
generator does not search and backtrack while constructing
the level, does not include any human-designed level chunks,
and does not in any way adapt to the judge’s playing
style. Above all, it does not attempt any form of large-scale
level structure, pacing or anything similar, but simply places
individual level elements in a context-free manner.

It would be premature to conclude that the above men-
tioned features (adaptation, human-designed chunks, search
in level space and macro structure), which were attempted
by the other generators, cannot in principle add to the
quality of generated levels. Rather, we believe that imperfect
implementation and a lack of fine-tuning was responsible for
the relative failure of the more complex level generators. It is
clear that the entrants need more time to perfect their entries,
and possibly recombine ideas from different approaches.
In addition, player behavioural information could assist the
generation of more personalised, and thereby preferred, lev-
els (as in [41]). While level generation studies in Super
Mario indicate features that are responsible for a level’s
high aesthetical value [16] we are still far from identifying
the complete set of features — which could be represented
computationally — that would yield a highly engaging plat-
form game. Earlier findings suggest that this feature set needs
to be individualized for each player behavioural type [16].
In other words, the competition needs to run again to give
the competitors further opportunities to improve their level
generators.

While Ben Weber’s level generator did not generate any
macro structure, it can be argued that it generates more
micro-structure than several of the other level generators.
Individual images of levels generated by Ben Weber’s gen-
erator tend to be densely filled with items, creatures and
landscape features and frequently give the false appearance
of macrostructure, such as there being multiple paths through
the level. This suggests that the current evaluation mechanism
incentivises judges to make judgements on level quality early
or based only on local features.

On a positive note, all the entries produced levels that
were, at least once, judged to be more entertaining than
some level generated by another entry. Also, the score

difference between the winner and the runner-up was very
small, despite the level generators being very dissimilar. This
suggests that widely differing approaches can successfully
be used to generate fun levels for Super Mario Bros. This
particular content generation problem is still very much an
open problem.

We have also attempted to see how much of the preference
for certain levels of others, and therefore the quality of
level generators, that can be explained by simple extracted
features using linear correlations. The analysis showed that
there are particular key level attributes, such as the number
of coins and rocks as well as the average gap width and the
even placement of enemies, that affect the fun preference
of judges. These features are all negatively correlated; more
items and more irregularly distributed items are associated
with less fun. The most succinct summary of the statistical
analysis would be that the less clutter, the more fun level.

At the same time, the correlations are far from strong
enough to explain all of the expressed preferences, suggesting
that the relationship between level features and quality is
too complex to be captured by linear correlations. We also
know from previous research that level preferences are highly
subjective. It is likely that an analysis of more extracted
features, including playing style metrics, from a larger set
of levels played by a larger set of judges could help us
understand the complex interplay of the different aspects of
level design better.

ACKNOWLEDGEMENTS

The research was supported, in part, by the European
Union FP7 ICT project SIREN (project number 258453)
and by the Danish Research Agency project AGameComIn
(project number 274-09-0083).

REFERENCES

[1] P. Hingston, “A new design for a turing test for bots,” in Proceedings
of the IEEE Conference on Computational Intelligence and Games,
2010.

[2] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V.
Butz, T. D. Lönneker, L. Cardamone, D. Perez, Y. Saez, M. Preuss,
and J. Quadflieg, “The 2009 simulated car racing championship,” IEEE
Transactions on Computational Intelligence and AI in Games, 2010.

[3] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario ai
competition,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2010.

[4] A. J. Champandard, AI Game Development. New Riders Publishing,
2004.

[5] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation in racing games,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games (CIG),
2007.

[6] E. Hastings, R. Guha, and K. O. Stanley, “Evolving content in
the galactic arms race video game,” in Proceedings of the IEEE
Symposium on Computational Intelligence and Games (CIG), 2009.

[7] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology,
2008.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in Proceedings of EvoApplica-
tions, vol. 6024. Springer LNCS, 2010.

[9] ——, “Search-based Procedural Content Generation: A Taxonomy and
Survey,” IEEE Transactions on Computational Intelligence and AI in
Games, 2011, (in print).



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

15

[10] G. N. Yannakakis and J. Togelius, “Experience-driven Procedural
Content Generation,” IEEE Transactions on Affective Computing,
2011, (in print).

[11] C. Remo, “MIGS: Far Cry 2’s Guay on the impor-
tance of procedural content,” Gamasutra, 11 2008,
http://www.gamasutra.com/php-bin/news_index.php
?story=21165.

[12] J. Doran and I. Parberry, “Controllable procedural terrain generation
using software agents,” IEEE Transactions on Computational Intelli-
gence and AI in Games, 2010.

[13] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proceedings of the International Conference on
the Foundations of Digital Games, 2010.

[14] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Integrat-
ing procedural generation and manual editing of virtual worlds,” in
Proceedings of the ACM Foundations of Digital Games. ACM Press,
June 2010.

[15] N. Shaker, J. Togelius, and G. N. Yannakakis, “Towards Automatic
Personalized Content Generation for Platform Games,” in Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE). AAAI Press, October 2010.

[16] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player Ex-
perience for Content Creation,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 1, pp. 54–67, 2010.

[17] T. L. Taylor, Play Between Worlds. MIT Press, 2006.
[18] J. Juul, A Casual Revolution. MIT Press, 2009.
[19] G. N. Yannakakis and J. Hallam, “Towards Optimizing Entertainment

in Computer Games,” Applied Artificial Intelligence, vol. 21, pp. 933–
971, 2007.

[20] G. N. Yannakakis, H. P. Martı́nez, and A. Jhala, “Towards Affective
Camera Control in Games,” User Modeling and User-Adapted Inter-
action, vol. 20, no. 4, pp. 313–340, 2010.

[21] G. N. Yannakakis and J. Hallam, “Real-time Game Adaptation for
Optimizing Player Satisfaction,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 1, no. 2, pp. 121–133, June 2009.

[22] J. Whitehead, “Toward Procedural Decorative Ornamentation in
Games,” in PCGames ’10: Proceedings of the 2010 Workshop on
Procedural Content Generation in Games. New York, NY, USA:
ACM, 2010, pp. 1–4.

[23] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
Harper Perennial, 1991.

[24] H. Takagi, “Interactive evolutionary computation: fusion of the capac-
ities of EC optimization and human evaluation,” in Proceedings of the
IEEE, vol. 89, no. 9, 2001, pp. 1275–1296.

[25] J. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” in
IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3,
1993, pp. 665–685.

[26] J. Juul, “Fear of failing? the many meanings of difficulty in video
games,” in The Video Game Theory Reader 2. New York: Routledge,
2009, pp. 237–252.

[27] K. Salen and E. Zimmerman, Rules of Play : Game Design Funda-
mentals. The MIT Press, October 2003.

[28] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of
2d platformer levels,” in Sandbox ’08: Proceedings of the 2008 ACM
SIGGRAPH symposium on Video games. New York, NY, USA: ACM,
2008, pp. 75–80.

[29] N. Sorenson and P. Pasquier, “The evolution of fun: Automatic level
design through challenge modeling,” in Proceedings of the First Inter-
national Conference on Computational Creativity (ICCCX). Lisbon,
Portugal: ACM, 2010, pp. 258–267.

[30] ——, “Towards a generic framework for automated video game level
creation,” in Proceedings of the European Conference on Applications
of Evolutionary Computation (EvoApplications), vol. 6024. Springer
LNCS, 2010, pp. 130–139.

[31] P. Mawhorter and M. Mateas, “Procedural level generation using
occupancy-regulated extension,” in Proceedings of the IEEE Confer-
ence on Computational Intelligence in Games (CIG), 2010.

[32] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI Communica-
tions, vol. 7, no. 1, pp. 39–59, 1994.

[33] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph:
dynamic difficulty adjustment through level generation,” in PCGames
’10: Proceedings of the 2010 Workshop on Procedural Content Gen-
eration in Games. New York, NY, USA: ACM, 2010, pp. 1–4.

[34] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2d platformers,” in FDG ’09: Proceedings of the
4th International Conference on Foundations of Digital Games. New
York, NY, USA: ACM, 2009, pp. 175–182.

[35] A. Neuse, “Personal communication to gillian smith,” May 2010.
[36] A. Smith, M. Romero, Z. Pousman, and M. Mateas, “Tableau machine:

A creative alien presence,” in AAAI Spring Symposium on Creative
Intelligent Systems 2008, March 2008.

[37] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Proce-
dural modeling of buildings,” in SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers. New York, NY, USA: ACM, 2006, pp. 614–623.

[38] M. Buro, “Statistical feature combination for the evaluation of game
positions,” Journal of Artificial Intelligence Research, vol. 3, no. 1,
pp. 373–382, 1995.

[39] R. Baumgarten, “Towards Automatic Player Behaviour Characterisa-
tion using Multiclass Linear Discriminant Analysis,” Proceedings of
the AISB Symposium: AI and Games, 2010.

[40] G. N. Yannakakis, “How to Model and Augment Player Satisfaction:
A Review,” in Proceedings of the 1st Workshop on Child, Computer
and Interaction. Chania, Crete: ACM Press, October 2008.

[41] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player
Experience in Super Mario Bros,” in Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games. Milan, Italy: IEEE,
September 2009, pp. 132–139.

Noor Shaker is a Ph.D. candidate at the IT
University of Copenhagen. She received a 5-year
BA in IT Engineering in 2007 from Damascus
University, and an M.Sc. in Artificial Intelligence
in 2009 from Katholieke Universiteit Leuven. Her
research interests include player modeling, proce-
dural content generation, affective computing and
player behavior imitation.

Julian Togelius is an assistant professor at the IT
University of Copenhagen. He holds a BA in phi-
losophy from Lund (2002), an MSc in Evoutionary
and Adaptive Systems from Sussex (2003) and
a PhD in Computer Science from Essex (2007).
Nowadays he’s doing game adaptivity, procedural
content generation, player modelling, reinforce-
ment learning in games and the like.

Georgios N. Yannakakis (S’04–M’05) is an asso-
ciate professor at the IT University of Copenhagen.
He received an M.Sc. (2001) in Financial Engi-
neering from the Technical University of Crete
and a Ph.D. in Informatics from the University of
Edinburgh in 2005. His research interests include
user modeling, neuro-evolution, computational in-
telligence in computer games, cognitive modeling
and affective computing, emergent cooperation and
artificial life.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16

Ben Weber is a Ph.D. candidate working with
Michael Mateas in the Expressive Intelligence Stu-
dio at the University of California, Santa Cruz.
His research focuses on the application of plan-
ning, machine learning and case-based reasoning
to game AI.

Tomoyuki Shimizu received the B.Eng.,
M.Eng. degrees from The University of Electro-
Communications Tokyo, in 2009 and 2011,
respectively. He worked with Fuji Xerox co., Ltd.,
TOKYO from 2011. His research interests include
computational intelligence for game applications.

Tomonori Hashiyama (M96) received the B.Eng.,
M.Eng., Dr.Eng. degrees in information electronics
from Nagoya University, Japan, in 1991, 1993 and
1996, respectively. He joined Nagoya University,
Nagoya City University and The University of
Electro-Communications Tokyo, in 1996, 2000 and
2007, respectively. His research interests include
computational intelligence for human computer
interactions.

Nathan Sorenson is a master’s student at Simon
Fraser University’s School of Interactive Arts and
Technology. With his background in mathematics
and computer science, Nathan researches the ap-
plication of computational intelligence to problems
that typically demand human creativity. His thesis
focuses on formal models of fun in video games
and automated level design.

Philippe Pasquier is Assistant Professor at Simon
Fraser University’s School of Interactive Arts and
Technology. His scientific research focuses on the
development of models and tools for endowing
machines with autonomous, intelligent or creative
behavior. Contributions vary from theoretical re-
search in artificial agent theories to applied re-
search in computational creativity and generative
processes.

Peter Mawhorter studies games and AI with
Michael Mateas at the University of California
Santa Cruz, focusing on procedural generation and
storytelling. He graduated from Harvey Mudd Col-
lege in 2008 with a Bachelor’s degree in computer
science, and is now working towards a Ph.D.

Glen Takahashi is currently a Freshman at the
University of California - Los Angeles where he
is studying computer science. He also he works at
an education company where he writes programs
to aid in the tutoring of children.

Gillian Smith (S10) received the B.S. degree in
computer science from the University of Virginia,
Charlottesville, in 2006 and the M.S. degree in
computer science from the University of California
Santa Cruz, Santa Cruz, in 2009, where she is
currently working towards the Ph.D. degree in
computer science. Her research interests include
procedural content generation and mixed-initiative
design tools..

Robin Baumgarten is a PhD student within the
Computational Creativity Group at Imperial Col-
lege London, supervised by Simon Colton. His
research interests are applying AI methods to game
design and automatically adapting video games.
He received an MSc degree in Advanced Com-
puting in 2007 at Imperial College London.


