
Conceptual Neighborhoods for Retrieval in
Case-Based Reasoning

Ben G. Weber and Michael Mateas

University of California, Santa Cruz
Santa Cruz, CA 95064, USA

{bweber, michaelm}@soe.ucsc.edu

Abstract. We present a case-based reasoning technique based on con-
ceptual neighborhoods of cases. The system applies domain knowledge
to the case retrieval process in the form of recall and generalize methods.
Recall methods utilize domain specific preconditions and perform exact
matching, while generalize methods apply transformations that general-
ize features in queries. The system uses a similarity function based on
edit distances, where an edit distance considers only a subset of the fea-
tures. This retrieval strategy enables the system to locate conceptually
similar cases within the feature space. We demonstrate the performance
of this approach by applying it to build-order selection in a real-time
strategy game. Our results show that the system outperforms nearest
neighbor retrieval when enforcing imperfect information in a real-time
strategy game.

1 Introduction

One of the main challenges in case-based reasoning is constructing effective case
representations and retrieval techniques. A common retrieval strategy involves
using feature vectors for case descriptions and applying similarity functions for
retrieval. The advantage of this approach is that techniques from the machine
learning literature can be applied to case-based reasoning. However, the draw-
backs of this approach are that it requires a comprehensive example set in order
to achieve good results and is sensitive to noise [1].

Case retrieval can be improved by applying domain knowledge to case rep-
resentation and retrieval. This can be achieved through the use of structural
representations or deep features. Using symbolic representations enables case-
based reasoning to integrate with other symbolic systems, such as planning. The
main advantage of this approach is that a richer case representation enables do-
main specific retrieval and adaptation methods. The drawbacks of this approach
are that it is computationally expensive and often requires annotated examples.
Additionally, it can be difficult to encode spatial and temporal domain knowl-
edge structurally.

We present a case-based reasoning technique that maps examples to concep-
tual neighborhoods of cases. The system uses a basic feature vector representa-
tion, but applies domain specific retrieval and adaptation methods. This enables

domain knowledge to be described symbolically, rather than solely through fea-
ture vector weighting. This approach is suitable for knowledge rich domains that
are difficult to represent structurally.

We apply conceptual neighborhoods to build-order selection in a real-time
strategy (RTS) game. Build-order selection is a knowledge rich aspect of RTS
games that incorporates temporal reasoning. Cases for build order can be ex-
tracted directly from game traces. The case-based reasoning system is integrated
with the reactive planning agent of McCoy and Mateas [2]. Retrieval using con-
ceptual neighborhoods is compared with variations of nearest neighbor while
enforcing imperfect information in a RTS game.

The remainder of this paper is structured as follows: in the next section we
discuss retrieval strategies for case-based reasoning. Section 3 introduces our
approach to case retrieval using conceptual neighborhoods. We then apply con-
ceptual neighborhoods to an RTS game in Section 4. Section 5 provides an
overview of the system implementation and Section 6 reports our results. We
compare our approach to previous work on case-based reasoning in RTS games
in Section 7. Finally, we provide conclusions and future work in Section 8.

2 Retrieval in Case-Based Reasoning

Case retrieval selects cases based on a similarity metric. Nearest neighbor re-
trieval evaluates similarity by projecting cases in feature space and computing a
distance between points. Structural approaches evaluate similarity by computing
the number of transformations needed to translate cases to match a given query.

2.1 Nearest Neighbor Retrieval

Nearest neighbor is a form of instance-based learning [3] that has has been
applied to classification problems and case retrieval in case-based reasoning sys-
tems. Nearest neighbor utilizes cases with a feature vector representation. Given
a query, nearest neighbor retrieves the nearest case within the feature space.
Similarity between cases is computed using a distance function.

The general form for computing the distance between a query, q, and a case,
c, is defined by the Lp norm:

d(q, c) =

 n∑
j=1

|qj − cj |p
1/p

where qj and cj are features and n is the number features in the case description.
This family of distance functions is also known as the Minkowski distance [4].
Common Lp norms are L1, Manhattan distance, and L2, Euclidean distance. Do-
main specific similarity functions can also be used for nearest neighbor retrieval.
For example, edit distance, which computes the number of modifications needed
to translate a case into the query, can be augmented with specific knowledge
about data to produce knowledge-based similarity measures [5].

Nearest neighbor is sensitive to irrelevant and noisy features [1]. Variations of
nearest neighbor have been developed to reduce these issues. Wettschereck and
Aha [1] introduce a framework for automating the process of weighting features,
which assigns low weights to irrelevant features. Bergmann and Vollrath show
that a case can cover a region rather than a point in feature space [6]. They
explore the use of generalized cases and present similarity functions for this
representation. Another variation of nearest neighbor is neighborhood counting
[7]. Wang defines neighborhoods as regions in feature space. To measure the
distance between two data points, the similarity function computes the number
of neighborhoods that cover a case and the query.

2.2 Structural Retrieval

Structural cases provide richer representations for case-based reasoning. Cases
are commonly encoded as graphs, where the concepts of the problem domain are
represented as nodes and relations between concepts are represented as edges.
Edges can represent spatial, temporal, or causal relationships between nodes.
Bunke and Messmer [8] introduce a similarity measure based on a weighted
graph edit distance.

Structural representations enable case-based reasoning systems to perform
problem solving, rather than just classification. For example, MINSTREL is an
author-modeling story generator [9] that uses symbolic case-based reasoning.
The system has a knowledge base of King Arthur stories and general knowledge
about characters in this domain. MINSTREL’s case representation enables the
system to invent new stories that satisfy character and story goals.

Problem solving in MINSTREL uses knowledge representations known as
Transform-Recall-Adapt Methods (TRAM). TRAMs are bundled knowledge rep-
resentations that know how to transform a problem into a related problem, recall
a solution to the new problem and adapt the solution back to the original prob-
lem. An example TRAM is Cross-Domain-Solution, which ontologically maps a
problem into a new domain, solves the problem in that domain and adapts the
solution by reversing the mapping. MINSTREL also uses TRAMs recursively.
When performing recursive problem solving, MINSTREL transforms the origi-
nal problem with multiple TRAMs, recalls a solution to the new problem and
applies the adaptation step of the TRAMs to the recalled solution.

3 Conceptual Neighborhoods

We present a case-based reasoning system based on conceptual neighborhoods.
The system is a hybrid approach between nearest neighbor retrieval and symbolic
case-based reasoning. It shares with nearest neighbor methods the use of feature
vector representations, while sharing with symbolic case-based reasoning the use
of domain specific transform and recall rules.

Conceptual neighborhoods provide a way to organize cases using deep fea-
tures. Representations based on conceptual neighborhoods have been shown to

allow for reasoning on imprecise knowledge [10]. Conceptual neighborhoods have
been applied to case-based reasoning in the legal domain. Hypo [11] uses claim
lattices to represent conceptual neighborhoods of cases and exploit connections
among cases relevant to the current problem. Conceptual neighborhoods can also
be applied to case-based reasoning systems that use a feature vector representa-
tion by mapping surface features to deep features. Generalizing a deep feature
in this representation enables exploration of a neighborhood of cases.

Our approach maps features to concepts and projects cases in concept space.
Concepts can be composed of several features, resulting in a dimensionality
reduction. This process is similar to systems that map surface features to deep
or knowledge-intensive features [12]. The goals of this mapping are to reduce the
effects of noise and enable generalization for case retrieval.

3.1 Case Retrieval

Case-based reasoning with conceptual neighborhoods resembles problem solving
using TRAMs [9]. However, our approach differs from MINSTREL in that our
system does not bound transformations to specific recall methods. An overview of
the process is shown in Figure 1. First, the transform step selects 0 to n generalize
methods and applies them to the query, where n is the maximum number of
generalizations allowed. Next, the recall step performs matching using a set
of recall methods. Then the system evaluates the recalled cases by computing
a distance metric based on the applied generalize methods. Finally, a case is
selected from the set of recalled cases.

Recall methods perform exact matching using a subset of the concepts. Con-
cepts that are marked as generalized do not require an exact match, but incur
a cost based on a distance metric. The subset of concepts to select is domain
specific and is derived from domain knowledge. Matching functions can test for
equivalence, greater-than or less-than relations or a domain specific matching
function. Recall methods match only on cases with the corresponding class or
behavior. Therefore, each recall method matches against a disjoint subset of the
case library. Recall methods contain preconditions, which verify that retrieved

Recall Past
Solutions

Generalize
Problem

Evaluate
Solutions

Solution

Generalize
 Methods

Case Library

Active Generalize
Methods

Query

Recall
 Methods

Fig. 1. Retrieval with conceptual neighborhoods

cases are valid given the query. Preconditions for recall methods can specify
additional domain knowledge to improve recall performance. The use of recall
methods enables the system to evaluate feature subsets based on possible solu-
tions, which differs from previous work [12] that selects feature subsets based on
the problem.

Generalize methods transform the query by flagging an individual concept in
the query as generalized. There is a generalize method for each concept in the
query that can be generalized. Generalize methods enable the system to search
the problem space and solution space [9].

The evaluation step computes a distance metric for a case by summing the
distance metrics of each generalize method applied to the case. Generalize meth-
ods compute an edit distance [8] for the generalized concept between the query
and recalled case. The edit distance can be based on individual features mapped
to the concept. The distance is zero if the generalized concept is not contained
in the subset of concepts used by the recall method that selected the case. The
evaluation step then selects a case using a selection strategy, such as highest
similarity or weighted random selection.

3.2 Retrieval in Concept Space

The conceptual neighborhood approach maps features to concepts and retrieves
cases in concept space. An example query is shown in Figure 2. The first graph
(a) shows the query, s, and three cases. The second graph (b) demonstrates
retrieval using nearest neighbor. The distance for retrieving c1 using nearest
neighbor is computed as follows:

d =
√

(c1A − sA)2 + (c1B − sB)2

The remaining graphs demonstrate retrieval using conceptual neighborhoods.
The steps to retrieve c1 in the third graph (c) are the following:

1. Recall fails at r1, because c1A 6= sA

2. Generalize method gA generalizes concept A
3. Recall fails at r2, because c1B 6= sB

4. Generalize method gB generalizes concept B
5. Recall succeeds at r3
6. d = distance(sA, c1A) + distance(sB , c1B)

where distance(sj , cj) is a domain specific edit distance. The steps to retrieve
c2 in the fourth graph (d) are the following:

1. Recall fails at r1, because c2A 6= sA

2. Generalize method gA generalizes concept A
3. Recall succeeds at r2, because the recall method for c2 does not consider

concept B
4. d = distance(sA, c2A)

Note that different recall methods were used to retrieve c1 and c2. The re-
call method used to retrieve c1 matched against both concepts, while the recall
method used to retrieve c2 matched against only concept A.

Concept A
C

on
ce

pt
 B

s

c1

c2

c3

Concept A

C
on

ce
pt

 B

s

c1

c2

c3

(a) (b)

Concept A

C
on

ce
pt

 B

s

c1

c2

c3

Concept A
C

on
ce

pt
 B

s

c1

c2

c3

(c) (d)

gA
gB

r1 r2

r3

gA
r1 r2

d

Fig. 2. Retrieval in concept space (a) The game state, s, and three cases (b) Retriev-
ing c1 using nearest neighbor (c) Retrieving c1 using conceptual neighborhoods (d)
Retrieving c2 using conceptual neighborhoods

3.3 Applying Conceptual Neighborhoods

Conceptual neighborhoods can be applied to case-based reasoning systems that
use a feature vector representation. The first step is to select a set of concepts and
map the original features to concepts. The next step is to create a recall method
for each class or behavior in the domain. The third step is to select concept
subsets for each recall method. The final step is to select which concepts can be
generalized and to determine edit distances for these concepts. This process is
demonstrated in the next section.

4 Conceptual Neighborhoods in RTS Games

In this section we describe how conceptual neighborhoods can be applied to
build order in Wargus1, a clone of the game Warcraft II which was developed by
Blizzard EntertainmentTM. The purpose of the case-based reasoner is to select
the next unit or building to produce based on the current game state.

RTS games present a variety of research problems, including decision making
under uncertainty, opponent modeling and adversarial planning [13]. RTS games
enforce imperfect information through a “fog of war”, which limits visibility

1 http://wargus.sourceforge.net

to portions of the map where the player controls units. In order to acquire
information about an opponent, it is necessary to actively scout the map to find
out which buildings and units the opponent is producing. Scouting is vital in RTS
games, because different strategies have different types of counter strategies.

One of the focuses of strategic play in RTS games is build order. A build
order defines the sequence in which buildings are constructed, units are produced
and technologies are researched. Build order is a knowledge-rich aspect of RTS
gameplay and players can improve their skills by studying replays of professional
matches and learning which build orders work best against counter strategies on
a variety maps.

4.1 Case Representation

We define a case as a behavior and game state pair. Behaviors are discussed in
more detail in the following section. Game state includes the following concepts:
player technological state (player tech), enemy technological state (enemy tech),
number of combat units, number of workers, number of production buildings
and map properties. The mapping of features to concepts is shown in Table 1.

4.2 Recall Methods

The build order behaviors in Wargus can be classified by the following actions:
train worker unit, train combat unit, build tech building, build production build-
ing and research upgrade. The system contains a recall method for each behavior
type. The subsets of concepts evaluated by the recall methods are shown in Table
2. The following concepts require an exact match between the query and a case:
map properties, player tech, enemy tech and number of production buildings.
The number of workers and number of combat units concepts require that the
query contains at least as many units as a case.

We selected the concept subsets for each recall method based on analyzing
expert replays. Domain knowledge is demonstrated by the research-upgrade re-
call method, which matches against only the player tech and number of combat
unit concepts. If the player possesses several combat units and the tech build-
ings required to research an upgrade, then researching the upgrade is a preferred
action.

Table 1. Game state features mapped to concepts

Concept Features

Player Tech Lumber Mill, Blacksmith, Stronghold, Mound
Enemy Tech Enemy Barracks, Lumber Mill, Blacksmith, Stronghold, Mound
Prod. Buildings Barracks
Workers Units Peons
Combat Units Grunts, Axe throwers, Catapults, Ogres
Map Properties Distance to opponent base, Open path to opponent base

Table 2. Concept subsets for recall methods

Map Player Enemy Worker Combat Production
properties tech tech units units buildings

Train worker X X X X X
Train combat unit X X X X X
Tech building X X X X
Production building X X X X X X
Research upgrade X X

4.3 Generalize Methods

The system includes a generalize method for each concept in the case represen-
tation, excluding the player tech concept. Generalize methods mark a concept
as not requiring an exact match at the cost of an edit distance. The edit dis-
tance computes the distance between the query and recalled cases based on the
amount of in-game resources required to translate the query to a recalled case for
a particular concept, by computing a linear combination of the gold and wood
resources.

Generalize number of workers marks the number of workers concept as gen-
eralized. The edit distance is the cost of a worker unit times the difference
in number of worker units between the query and a recalled case.

Generalize number of production buildings marks the number of produc-
tion buildings concept as generalized and computes the edit distance based
on the difference in number of production buildings times the cost of a pro-
duction building.

Generalize number of combat units marks the number of combat units con-
cept as generalized and computes the distance based on the difference in
combat units between the query and recalled case. Although the number
of combat units concept is an aggregation, the distance is computed based
on the individual unit types. Therefore, the distance metric distinguishes
between expensive and inexpensive units.

Generalize enemy tech computes a distance metric based on the difference
in enemy tech buildings between the query and recalled case. The distance
metric sums the cost of the buildings that are different.

Generalize map property causes recall methods to ignore map properties
when retrieving cases. The distance metric is a constant cost and is incurred
if any of the map properties differ between the query and a recalled case.

4.4 Case Selection

A case is selected from the set of retrieved cases using weighted random selection.
Weights are computed using an inverse distance relation:

weight =
1

δ +
n∑

j=1

distancej(qj , cj)

where qj is a concept of the query, cj is a concept of a case, distancej is the edit
distance for concept j, n is the number of concepts and δ is a constant to adjust
so the value is finite if the edit distance is zero.

A randomized selection is used to enable constrained exploration of the case
library. This leads to small variations in build order. Also, always picking the
best case can cause problems in an imperfect information environment, because
noise can cause the similarity function to be inaccurate. The system uses an
inverse distance relation, but other approaches could be used, such as exponential
weighting.

4.5 Retrieval Example

An example query with three cases is shown in Figure 3. The cases correspond to
training a peon (c1), building a blacksmith (c2) and building a barracks (c3). In
Wargus, the cost of a worker unit is 400 gold and the cost of a first-tier combat
unit is 600 gold. Retrieving c1 consists of the following steps:

1. Recall fails at r1, because c1w 6= sw

2. gw generalizes the number of worker units
3. Recall fails at r2, because c1c 6= sc

4. gc generalizes the number of combat units
5. Recall succeeds at r3
6. dc1 = distance(sw, c1w) + distance(sc, c1c) = 1 ∗ 400 + 2 ∗ 600 = 1600

Retrieving c2 consists of the following steps:

1. Recall fails at r1, because c2w 6= sw

2. gw generalizes the number of worker units
3. Recall succeeds at r2
4. dc2 = distance(sw, c2w) = 2 ∗ 400 = 800

Retrieving c3 consists of the following steps:

1. Recall fails at r1, because c3w 6= sw

2. gw generalizes the number of worker units
3. Recall succeeds at r2
4. dc3 = distance(sw, c3w) = 3 ∗ 400 = 1200

Weights are computed based on these distances. Setting δ = 400 results in
the following weights: wc1 = 0.0005, wc2 = 0.00083 and wc3 = 0.00063. These
weights are used to perform a weighted random selection.

5 Implementation

Our system uses the integrated agent framework of McCoy and Mateas [2].
The case-based reasoning system communicates with the framework using the
blackboard pattern. McCoy and Mateas’ agent was modified to produce buildings
and units based on events posted to the blackboard. Reconnaissance capabilities
were also added to the agent. Six case retrieval strategies were implemented to
evaluate the performance of conceptual neighborhoods.

Worker units (w)

C
om

ba
t u

ni
ts

 (
c)

s

(a)

Worker units (w)

C
om

ba
t u

ni
ts

 (
c)

Worker units (w)

C
om

ba
t u

ni
ts

 (
c)

(b) (c)

c1

c2

c3
r1 r2

r3

gw

gc

s

c1

c2

c3
r1 r2

gw s

c1

c2

c3
r1 r2

gw

Fig. 3. An example query. The cases correspond to training a peon (a), building a
blacksmith (b) and building a barracks (c).

5.1 Architecture

The game-playing agent consists of an ABL agent connected to the Wargus
RTS engine. A behavior language (ABL) is a reactive planning language [14]
and communicates with Wargus using JNI. Different competencies in the agent
communicate with each other through ABL’s working memory. ABL’s working
memory serves as a blackboard and enables communication through the black-
board pattern. An overview of the agent architecture is shown in Figure 4.

Working
Memory

Scouting
Manager

Income
Manager

Tactics
Manager

Strategy
Manager

Production
Manager

Build Order
Selector

Wargus

ABL

Agent

Fig. 4. Agent architecture

The agent is composed of distinct managers, each of which is responsible for
performing one or more subtasks. The strategy manager is responsible for high-
level strategic decisions and focuses on build order. The production manager is
responsible for producing units and buildings, based on messages generated by
the strategy manager. The tactics manager decides when and where to engage
the opponent. The scouting manager is responsible for assigning worker units to
scout the opponent base.

5.2 Build Order Selectors

Six retrieval strategies were implemented for the build order selector. The goal
of implementing several retrieval strategies was to determine if retrieval with
conceptual neighborhoods outperforms nearest neighbor and to evaluate if both
generalize and recall methods are necessary for the conceptual neighborhood
approach to be effective.

Random build order selector (Rand) picks cases randomly from the set of
valid cases.

Nearest neighbor selector (NNS) performs case retrieval using Manhattan
distance. The case description contains a feature for each unit type, for both
players.

Case feature selector (CFS) performs case retrieval using the concepts and
edit distances discussed in the previous section, but does not use generalize
or recall methods.

Generalize methods only selector (GMS) performs exact matching using
generalize methods. This approach does not use concept subsets for recall.

Recall methods only selector (RMS) performs partial matching using re-
call methods and concept subsets.

Conceptual neighborhood selector (CNS) uses both generalize and recall
methods to perform case retrieval.

5.3 Case Generation

A case library was generated by running several different scripted builds against
each other on several different maps. The scripts were selected from eight hand-
coded build orders with specific timing attacks. The validation scripts, discussed
in the results section, were not used for case generation. The map pool consisted
of maps with varying distances between bases (close, medium, far) and open and
closed paths between bases. Four scripts were selected for each map and tested
against the other scripts, for a total of six games per map. Cases were added
to the library only for the winning script. The case library contains 36 games
traces and over 1500 cases. The case library is much larger than previous work
utilizing game traces [15, 16].

6 Results

The agent was evaluated against the built-in AI of Wargus, two well-established
scripts and a new script. Four different maps were used, where the first three
maps contain a direct land route to the opponent’s base of varying distance
(close, medium, far) and the last map (NWTR) is a variation of the map
“Nowhere to run, nowhere to hide”. The agent was tested in perfect and im-
perfect information environments. In games with perfect information, the game
state is fully observable. In games with imperfect information, the “fog of war” is
enforced, limiting the visibility of the agent to areas where units are controlled.

Table 3. Win rates for perfect and imperfect information environments over 32 trials

Perfect Imperfect
Information Information

Rand 31% 19%
NNS 69% 50%
CFS 56% 44%
GMS 44% 41%
RMS 50% 47%
CNS 75% 66%

Games were run with perfect and imperfection information and results are
shown in Table 3. The conceptual neighborhood selector won 66% of games in
an imperfect information environment. Also, the success rate of the conceptual
neighborhood selector decreased by only 9% when enforcing imperfect informa-
tion, while the success rate of the nearest neighbor selector decreased by 19%.

Table 4. Win rates versus scripted builds over 8 trials

Land Soldier’s Knight’s Fast
Attack Rush Rush Ogre Overall

Rand 62% 12% 0% 0% 19%
NNS 62% 62% 38% 38% 50%
CFS 100% 50% 12% 12% 44%
GMS 75% 50% 25% 12% 41%
RMS 88% 62% 25% 12% 47%
CNS 100% 75% 50% 38% 66%

Win rates against the scripted builds with imperfect information enforced
are shown in Table 4. The conceptual neighborhood selector outperformed all of
the other selectors. All of the retrieval strategies outperformed random selection,
but the case feature, generalize methods only, and recall methods only selectors
performed worse than nearest neighbor retrieval. The conceptual neighborhood
selector achieved a success rate of at least 50% on every map (see Table 5).
These results indicate that the conceptual neighborhood approach was better at
adapting to new game situations.

7 Related Work

Case-based reasoning has been applied to several aspects of RTS play, including
strategic [17] and tactical [18] levels of gameplay. There are two approaches that
have been applied to case-based reasoning in RTS games: bootstrap learning
systems that rely on exploration of the state space and systems that utilize
game traces to automatically acquire knowledge about RTS gameplay.

Table 5. Win rates on the map pool over 8 trials

Open Open Open
Close Medium Far NWTR

Rand 25% 25% 25% 0%
NNS 62% 12% 88% 25%
CFS 38% 50% 50% 38%
GMS 50% 12% 62% 38%
RMS 50% 50% 62% 25%
CNS 75% 62% 75% 50%

Aha et al. [17] use case-based reasoning to defeat strategies randomly selected
from a pool of fixed strategies. The system uses the building-specific state lattice
developed by Ponsen et al. [19], which abstracts Wargus game states into a state
lattice and specifies a set of counter strategies for each state. This knowledge is
used to explore the state space and build a case library of counter strategies. Our
system differs in that a state lattice is not used to constrain the set of possible
strategies.

Molineaux et al. [18] apply case-based reasoning to tactical situations in
RTS games. They claim that tactical gameplay in RTS games is knowledge poor
and therefore a state-space taxonomy is insufficient to encompass all relevant
tactical decisions. They combine case-based reasoning and reinforcement learning
in order to explore the state space. Our system varies from this approach, because
our system makes use of domain knowledge.

Game traces have been used by case-based reasoning systems to play full
RTS games. Ontañón et al. [15] present a case-based planning approach that
uses game traces to interleave planning and execution, and play at the same
action granularity as a human player. The system uses expert-annotated game
traces to automatically acquire domain knowledge from expert players. Cases
are extracted from traces and specify primitive actions or additional subgoals
for the current behavior to pursue. Our approach differs in that we define a clear
division between planning and case-based reasoning and case-based reasoning is
applied only to build order.

Mishra et al. [12] extend the case-based planner by introducing situation
assessment for improved case retrieval. They noticed that the performance of
previous systems [15, 16] suffers when the case library stores numerous plans
representing several strategies played over maps of different sizes. Mishra et al.
introduce the concept of a situation and use situation assessment to aid in case
retrieval. A situation is defined by a high-level representation of the game state
including map properties and current goals of the player. Situations are then
used to select relevant features for case retrieval. The main difference between
this approach are our system is that Mishra et al. select feature subsets based
on the current game state, while the conceptual neighborhood approach selects
feature subsets based on the type of case being recalled. Additionally, previous
work [15, 16, 12] has investigated smaller numbers of game traces, which also
required annotation.

Table 6. Reported win rates versus the conceptual neighborhood selector with perfect
information (PI) and imperfect information (II).

Ponsen Ontañón McCoy& CNS CNS
et al. et al. Mateas PI II

Land Attack 76% 89% — 100% 100%
Soldier’s Rush 29% — 80% 75% 75%
Knight’s Rush 13% — 53% 50% 50%

Our results are compared to reported success rates from the literature in Ta-
ble 6. All prior work, to our knowledge, has used perfect information. We report
results for the performance of the system in perfect and imperfect information
environments, which achieved the same win rates against the standard scripts.
Aha et al. [17] report an average success rate of over 80%, but do not specify
win rates against the soldier’s and knight’s rushes.

8 Conclusion

In this paper we have demonstrated how conceptual neighborhoods can be ap-
plied to retrieval in case-based reasoning. Our contributions include the applica-
tion of conceptual neighborhoods to retrieval, which enables additional domain
knowledge to be applied to case retrieval, and evaluation of conceptual neigh-
borhoods versus other retrieval strategies. We validated our approach by apply-
ing conceptual neighborhoods to build order in a RTS game. The results indi-
cate that retrieval using conceptual neighborhoods outperforms nearest neighbor
when enforcing imperfect information.

Our results show two interesting properties. First, the conceptual neighbor-
hood approach achieved similar success rates to nearest neighbor retrieval in a
perfect information environment, while outperforming nearest neighbor retrieval
when imperfect information is enforced. This leads us to conclude that the con-
ceptual neighborhood approach is better at adapting to new game situations.
Second, the approaches that did not use both generalize and recall methods
performed worse than nearest neighbor retrieval. If the generalize methods only
selector had outperformed nearest neighbor, then the success of the system could
be attributed to the use of domain specific distance metrics. However, our results
show that the use of concept subsets was necessary to improve retrieval. This
indicates that the interaction between generalize and recall methods is necessary
to capture domain knowledge for retrieval with conceptual neighborhoods.

Future work will explore different types of transformations and the applica-
tion of conceptual neighborhoods to additional aspects of case-based reasoning,
including case adaptation and on-line learning.

References

1. Wettschereck, D., Aha, D.: Weighting features. Lecture notes in computer science
1010 (1995) 347–358

2. McCoy, J., Mateas, M.: An Integrated Agent for Playing Real-Time Strategy
Games. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intel-
ligence, Chicago, Illinois, AAAI Press (2008) 1313–1318

3. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine
Learning 6(1) (1991) 37–66

4. Bagherjeiran, A., Eick, C.F.: Distance function learning for supervised similarity
assessment. In: Case-Based Reasoning on Images and Signals. Springer (2008)
91–126

5. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
IEEE Transactions on Knowledge and Data Engineering (Forthcoming)

6. Bergmann, R., Vollrath, I.: Generalized Cases: Representation and Steps Towards
Efficient Similarity Assessment. Lecture notes in computer science 1701 (1999)
195–206

7. Wang, H.: Nearest Neighbors by Neighborhood Counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence 28(6) (2006) 942–953

8. Bunke, H., Messmer, B.: Similarity Measures for Structured Representations. Lec-
ture notes in computer science 837 (1993) 106–118

9. Turner, S.R.: The Creative Process: A Computer Model of Storytelling and Cre-
ativity. Lawrence Erlbaum Associates (1994)

10. Freksa, C.: Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence
54(1) (1992) 199–227

11. Ashley, K., Rissland, E.: A case-based approach to modeling legal expertise. IEEE
Expert: Intelligent Systems and Their Applications 3(3) (1988) 70–77

12. Mishra, K., Ontañón, S., Ram, A.: Situation assessment for plan retrieval in real-
time strategy games. In: Proceedings of the Ninth European Conference on Case-
Based Reasoning, Trier, Germany, Springer (2008) 355–369

13. Buro, M.: Real-Time Strategy Games: A New AI Research Challenge. In: Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, Morgan Kaufmann (2003) 1534–1535

14. Mateas, M., Stern, A.: A Behavior Language for Story-Based Believable Agents.
IEEE Intelligent Systems 17(4) (2002) 39–47

15. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-Based Planning and Ex-
ecution for Real-Time Strategy Games. Lecture notes in computer science 4626
(2007) 164–178

16. Sugandh, N., Ontañón, S., Ram, A.: On-Line Case-Based Plan Adaptation for
Real-Time Strategy Games. In: Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, Chicago, Illinois, AAAI Press (2008) 702–707

17. Aha, D., Molineaux, M., Ponsen, M.: Learning to Win: Case-Based Plan Selection
in a Real-Time Strategy Game. Lecture notes in computer science 3620 (2005)
5–20

18. Molineaux, M., Aha, D.W., Moore, P.: Learning Continuous Action Models in
a Real-Time Strategy Environment. In: Proceedings of the Twenty-First Florida
Artificial Intelligence Research Conference, Coconut Grove, Florida, AAAI Press
(2008) 257–262

19. Ponsen, M.J.V., Muñoz-Avila, H., Spronck, P., Aha, D.W.: Automatically Ac-
quiring Domain Knowledge For Adaptive Game AI Using Evolutionary Learning.
In: Proceedings of the Twentieth National Conference on Artificial Intelligence,
Pittsburgh, Pennsylvania, AAAI Press (2005) 1535–1540

