
A Data Mining Approach to Strategy Prediction

Ben G. Weber and Michael Mateas

Abstract— We present a data mining approach to opponent
modeling in strategy games. Expert gameplay is learned by ap-
plying machine learning techniques to large collections of game
logs. This approach enables domain independent algorithms
to acquire domain knowledge and perform opponent modeling.
Machine learning algorithms are applied to the task of detecting
an opponent’s strategy before it is executed and predicting
when an opponent will perform strategic actions. Our approach
involves encoding game logs as a feature vector representation,
where each feature describes when a unit or building type
is first produced. We compare our representation to a state
lattice representation in perfect and imperfect information
environments and the results show that our representation has
higher predictive capabilities and is more tolerant of noise. We
also discuss how to incorporate our data mining approach into
a full game playing agent.

I. INTRODUCTION

One of the main challenges for game designers is creating

adaptive AI opponents that react to player actions. For

real-time strategy (RTS) games, an intelligent AI opponent

should be capable of responding to a player’s strategy with a

counter-strategy. For this process to occur, the AI opponent

must first identify the player’s strategy. In this paper, we

explore a data mining approach to recognizing strategies in

a RTS game with partial information.

StarCraft1 is a science fiction RTS game developed by

Blizzard EntertainmentTM with three diverse races (Protoss,

Terran and Zerg). The game provides functionality to save

replays for further review and analysis. Several international

competitions are held for StarCraft (World Cyber Games,

BlizzCon, IeSF Invitational); South Korea even has a pro-

fessional league devoted to the game. The popularity of

StarCraft, combined with the ability to save replays, has

resulted in large collections of game logs that are available

for analysis.

The unit types and buildings in RTS games are defined

by a tech tree, which is a directed graph without cycles

that models the possible paths of research a player can take

within a game [1]. A major strategic element in RTS games

is build order, which defines the order in which a player

expands their tech tree. Build orders target a specific strategy,

such as rushing or a timing attack. Rush strategies attempt

to overwhelm an opponent with inexpensive units early in

the game, while timing attacks engage opponents based on

a trigger, such as completing an upgrade. Build orders are

a knowledge rich aspect of RTS games. It is common for

players to study replays in order to improve their skills and

Ben Weber and Michael Mateas are with the Expressive Intelligence
Studio at the University of California, Santa Cruz. 1156 High Street, Santa
Cruz, CA, USA (email: bweber@soe.ucsc.edu, michaelm@soe.ucsc.edu).

1http://www.blizzard.com/us/starcraft/

understanding of the game. Professional gamers are known

to study the replays of an opponent before an important

match, much like a chess grandmaster preparing for a match.

Players select a strategy going into a match based on the map,

opposing race and predictions of the opponent’s strategy.

RTS games enforce imperfect information through a “fog

of war”, which limits visibility to portions of the map

where the player controls units. An important aspect of RTS

games is scouting opponents in order to find out which

portions of the tech tree have been expanded, enabling the

player to develop counter-strategies. It is also necessary to

determine when buildings are constructed, because different

timings can lead to different types of strategies. Players often

utilize strategies such as hiding buildings in order to confuse

an opponent or proxying production buildings in order to

produce offensive units within an opponent’s base. At the

highest levels of StarCraft gameplay, players are capable of

predicting hidden buildings due to well-known timings of

different strategies.

We present a data mining approach for learning strategies

in StarCraft. A web crawler was developed to collect a large

number of replays from professional and top-ranked amateur

players. The replays are converted from a proprietary format

into a log of game actions. Each player’s actions are encoded

as a single feature vector and labeled with a specific strategy

using a set of rules based on analysis of expert gameplay.

Several machine learning algorithms are then applied to the

task of detecting an opponent’s strategy and estimating when

an opponent will perform actions.

The remainder of this paper is structured as follows.

In Section 2 we discuss related work. Section 3 discusses

data mining replays and introduces our representation. We

then evaluate different algorithms for strategy prediction in

Section 4. Finally, we provide conclusions and future work

in Section 5.

II. RELATED WORK

There are several techniques for opponent modeling in

games. Most work has focused on either tactical or strategic

aspects of gameplay. At the tactical level, opponent modeling

has been applied to predicting opponent positioning in first-

person shooters [2] and Pong [3]. At the strategic level, plan

recognition has been applied to predicting an opponent’s

actions, while various techniques have been applied to auto-

matically learn domain knowledge.

A. Plan Recognition

Plan recognition is the process whereby an agent observes

the actions of another agent with the objective of inferring

the agent’s future actions, intentions or goals [4]. Bayesian



networks and case-based plan recognition have been applied

to plan recognition in games.

Bayesian networks are a probabilistic approach to plan

recognition. Explanations are assembled into a plan recogni-

tion Bayesian network, which is a representation of a prob-

ability distribution over the set of possible explanations [5].

Albrecht et al. apply dynamic belief networks to predict

the player’s current goal, next action and next location in a

multi-user dungeon adventure game [6]. Their representation

enables the use of incomplete and noisy data during both

training and testing, while supporting a stateful model. The

main problem with Bayesian networks is identifying the

appropriate network structure. The results of Albrecht et

al. suggest that dynamic belief networks offer a promising

approach to plan recognition in situations where the causal

structure of the network can be clearly identified [7].

Case-based plan recognition is an experience-based ap-

proach to plan recognition, where case libraries are con-

structed by observing game play. Case-based plan recog-

nition has been applied to player modeling in Space In-

vaders [4]. Each sequence of actions is assigned a support

count, which is used to identify common strategies. Action

sequences with a high support count are marked as plans,

added to the case library and used to predict a player’s next

action. While this approach is effective for Space Invaders,

it is unlikely to scale to real-time strategy games, as such

games exhibit a huge increase in the number and complexity

of possible action sequences. The possible actions must be

encoded as a state-transition table and there are several

parameters to tune, including the support count threshold and

minimum plan length. Cheng and Thawonmas investigate the

application of this approach to assisting human players with

low-level actions in a RTS game [8].

B. Learning Domain Knowledge

Two approaches have been applied to learning domain

knowledge in RTS games: systems that rely on exploration

of the game space and systems that utilize game replays to

automatically acquire domain knowledge.

Due to the vast game space of RTS games, exploratory

approaches have focused on individual aspects of gameplay.

Reinforcement learning [9] and Monte Carlo [10] methods

have shown promising results for tactical aspects in RTS

games, while genetic algorithms [11] and case-based reason-

ing [12] have been applied to strategy selection. Techniques

for strategy selection have relied on domain-specific know-

ledge representations, such as a state-lattice [13], to limit the

types of strategies that are explored.

Recent work has investigated the use of game logs to

automatically learn expert gameplay. Ontañón et al. introduce

a case-based planning system that generates a case library

from a set of game traces [14]. However, the system utilized

a small number of game traces and ran into problems when

dealing with a large collection of game traces representing

several strategies played on a variety of maps [15].

III. DATA MINING REPLAYS

Several websites are dedicated to collecting and sharing

StarCraft replays with the gaming community, a large portion

of which are from professional and high-ranked amateur

matches. Therefore, it is possible to mine these websites in

order to build a collection of replays that is a representative

set of expert play in StarCraft. Due to the large number of

replays available, it is possible to learn a variety of strategies

on several maps against different play styles. In the remainder

of this section, we describe our data mining approach to

automatically learning strategies from collections of replays

and discuss some of the challenges faced.

We developed a web crawler to collect StarCraft replays

from GosuGamers.net and TeamLiquid.net, two popular Star-

Craft websites. The Web crawler downloaded collections of

replays from professional tournaments including BlizzCon,

World Cyber Games, MBC Starleague and the StarCraft Pro-

league. The crawler also collected replays from top-ranked

players on ICCup.com, a popular StarCraft ladder ranking

system. We limited our focus to one-versus-one matches,

because it is the most common game type for professional

StarCraft matches. The resulting number of game traces for

the different races are shown in Table I.

TABLE I

REPLAYS COLLECTED

Type # Replays

Protoss vs. Protoss 542
Protoss vs. Terran 1139
Protoss vs. Zerg 1024
Terran vs. Terran 628
Terran vs. Zerg 1150
Zerg vs. Zerg 1010
Total 5493

Our goal is to build a general model of expert StarCraft

gameplay. This differs from previous work, which has fo-

cused on modeling single opponents [4] or work that has

been limited to at most a few hundred game logs [16]. By

applying data mining to a large number of game logs, we

can develop an opponent model that is not limited to a single

opponent, set of maps or style of gameplay.

A. StarCraft Replays

StarCraft replays are stored in a proprietary, binary format.

We used the LordMartin Replay Browser2 to convert the

replay files to game logs. A subset of an example log is

shown in Table II. The game logs contain only user interface

actions performed by each player. Game state is not available

in the logs, because replays are viewed by performing a

deterministic simulation based on the user interface actions.

This limits how much domain knowledge can be extracted

from replays, because information, such as the player’s

current amount of resources, is not available for analysis.

However, the production of different unit types and building

2http://lmrb.net/



TABLE II

A PARTIAL GAME LOG FROM A STARCRAFT REPLAY

Game Time
Player (minutes) Action

Player 2 0:00 Train Drone
Player 1 0:00 Train SCV
Player 2 1:18 Train Overlord
Player 1 1:22 Build Supply Depot
Player 1 2:04 Build Barracks
Player 2 2:25 Build Hatchery
Player 1 2:50 Build Barracks
Player 2 2:54 Build Spawning Pool
Player 1 3:18 Train Marine
Player 2 4:10 Train Zergling

types can be extracted, providing sufficient information to

analyze a player’s build order.

The lack of game state provides a challenge for opponent

modeling, because only the player’s user interface actions are

available for analysis. One approach to overcome this limi-

tation is the use of a state lattice to capture the sequence in

which actions are performed. State lattices have been applied

to opponent modeling in Wargus [13] and StarCraft [16]. A

state lattice is a directed graph without cycles, where each

node represents a unique expansion of the tech tree. State

lattices are built in a similar manner to constructing decision

trees (see [16] for a more detailed explanation). State lattices

are useful for predicting the next action given a sequence of

actions. However, state lattices are unable to predict when

the next action will occur.

B. Encoding Replays as Feature Vectors

The goal of our representation is to capture the timing

aspects of a player’s strategic decisions in a game, enabling

the prediction of distinct strategies and the timing of the

opponent’s actions. Our feature-vector representation con-

tains temporal features that record when the player expands

different branches of the tech tree. Each feature describes

when a unit type or building type is first produced.

For each game log, two feature vectors are constructed.

Each vector represents a single player’s actions for an entire

game. Formally, our representation is a feature vector, where

each feature f , for a player P, is defined as follows:

f(x) =

{

t : time when x is first produced by P

0 : x was not (yet) produced by P

where x is a unit type, building type or unit upgrade. Each

race has a different number of features, based on the tech

tree and upgrades. For example, our Protoss representation

contains 56 features. A subset of an example feature vector

for a Zerg player is shown in Table III. The Queen feature

has a value of 0:00, because a queen was not produced by the

player. This encoding, while not requiring information about

the game state, captures both the tech tree expansion and

timing of a player’s strategy. This representation varies from

related work which encodes single game traces as several

cases [14], [17].

TABLE III

A SUBSET OF AN EXAMPLE FEATURE VECTOR

Action Game Time
(Attribute) (Value)

Second Hatchery 2:42
Spawning Pool 3:07
Lair 5:48
Zergling 4:23
Zergling Speed 12:10
Hydralisk Den 12:52
Hydralisk 14:51
Lurker 15:39
Hydralisk Speed 16:48
Hydralisk Range 20:01
Queen 0:00

0

100

200

300

400

500

600

0 6

N
u

m
b

er
 o

f 
In

st
a
n

ce
s

Game Time (minutes)

Fig. 1. Factory timing in Terran versus Protoss games

We plotted timing distributions of several features to

determine if there are timing patterns, which can be used

to predict opponent timing. For certain features, there are

specific timings that most players follow, such as factory

timing in Terran versus Protoss games (see Figure 1). For

other features, there are a wider variety of timings due to

branches in strategies, such as spawning pool timing in Zerg

versus Terran games (see Figure 2).

C. Labeling Replays

The game logs are labeled with a strategy using rules

based on analysis of expert play. Different rule sets are used

for labeling the different races. Each rule set is designed to

capture the tier 2 strategies of a race. The rule sets label logs

with strategies based on the order in which building types are

produced. The rule set for labeling Protoss strategies is shown

in Figure 3. In the figure, tier 1 strategy refers to strategic

decisions made in the early stages of the game. The strategy

of the player is not labeled until a tier 2 strategy decision

is made, such as building a Stargate, which is labeled as a

“Fast Air” strategy. Six strategies were created for each race.

If a game does not fit any of the rules, then the strategy is

labeled as unknown.

The rule sets were designed to capture a wide variety

of strategies in StarCraft. Distributions of the builds versus

different races are shown for Protoss in Table IV. In certain



Zealot Legs 

(Fast Legs)

Archives

(Fast DT)

Support Bay

(Reaver)

Observatory

(Standard)

Nexus

(Expand)

Stargate

(Fast Air)
Robotics BayCitadel

Tier 1

Strategy

Fig. 3. Rule set for labeling Protoss strategies. The tree is traversed by selecting the first building produced in the child nodes.

0

100

200

300

400

0 4

N
u

m
b

er
 o

f 
In

st
a
n

ce
s

Game Time (minutes)

Fig. 2. Spawning Pool timing in Zerg versus Terran games

TABLE IV

STRATEGY DISTRIBUTIONS FOR PROTOSS

Versus Versus Versus
Strategy Protoss Terran Zerg

Fast Legs 1% 1% 10%
Fast DT 18% 16% 8%
Fast Air 1% 1% 20%
Expand 22% 31% 46%
Reaver 9% 12% 3%
Standard 27% 32% 1%
Unknown 22% 7% 12%

match ups, such as Protoss versus Terran, a wide variety of

strategies are commonly used. However, strategy prediction

is easier in some match ups, because a single strategy

dominates. For example, the two-hatchery mutalisk strategy

is used in over 70% of Zerg versus Zerg games.

IV. EVALUATION

We applied several machine learning algorithms to strategy

prediction and timing prediction in StarCraft. Classification

algorithms were applied to the task of strategy recognition,

while regression algorithms were applied to the task of

predicting when specific unit types or building types will

be produced. Ten-fold cross validation was performed for all

of our experiments.

A. Strategy Prediction

We represent strategy prediction as a multi-class classi-

fication problem. The following algorithms were applied to

classification:

• J48 – C4.5 decision tree [18]

• k-NN – Nearest neighbor [19]

• NNge – Non-nested generalized exemplars [20]

• LogitBoost – Additive logistic regression [21]

We used the implementations of these algorithms provided

in the Weka [22] toolkit. The LogitBoost algorithm was

configured to use 100 iterations and a shrinkage rate of 0.5.

All of the other algorithms used the default settings.

In addition to the Weka algorithms, we tested two addi-

tional classifiers. The rule set classifier predicts strategies

using the exact rules used to label the strategies. Since the

replays are labeled based on tier 2 strategies, this classifier is

not accurate until the opponent’s strategy has been executed.

We also implemented a state lattice classifier for comparison.

The algorithms were evaluated at different time steps

throughout the game. We simulated different time steps by

setting all features with a value greater than the current game

time to 0. This transformation is applied to training data as

well as the test data. The precision of the algorithms versus

game time for strategy prediction are shown in Figure 4 and

Figure 5. A comprehensive listing of the performance of the

algorithms at five and ten minutes game time is shown in

Table V.

The results show that different algorithms are better at

different stages of the game. The instance-based algorithms

(NNge and k-NN) perform well in the initial stages of the

game, but degrade in the later stages of the game, while

boosting performs poorly initially and improves in the later

stages. All of the machine learning algorithms outperformed

the state lattice classifier.

Interestingly, the machine learning algorithms had higher

precision than the exact rule set during the first 8 minutes

of the game. While the precision of the rule set classifier

eventually reaches 100%, there is a significant difference

between this classifier and the machine learning algorithms

in the early stages of the game. These results indicate that

the algorithms have “foresight” of the opponent’s strategy.

Here, we define “foresight” to be the area between the

classification algorithm and the rule set. Given this metric,

the machine learning algorithms clearly outperform the state

lattice classifier.



TABLE V

PRECISION OF STRATEGY PREDICTION FOR GAMES AT 5 MINUTES AND 10 MINUTES.

5 minutes 10 minutes

NNge J48 Boosting Lattice NNge J48 Boosting Lattice

Protoss vs. Protoss 0.49 0.43 0.47 0.39 0.80 0.81 0.86 0.56

Protoss vs. Terran 0.68 0.63 0.61 0.45 0.89 0.91 0.94 0.62

Protoss vs. Zerg 0.63 0.63 0.66 0.62 0.85 0.87 0.87 0.44

Terran vs. Protoss 0.76 0.66 0.63 0.45 0.81 0.80 0.94 0.51

Terran vs. Terran 0.82 0.75 0.77 0.57 0.85 0.81 0.92 0.56

Terran vs. Zerg 0.91 0.88 0.90 0.86 0.94 0.90 0.86 0.60

Zerg vs. Protoss 0.53 0.56 0.60 0.48 0.84 0.85 0.87 0.49

Zerg vs. Terran 0.53 0.50 0.49 0.41 0.87 0.91 0.89 0.65

Zerg vs. Zerg 0.83 0.82 0.83 0.84 0.94 0.95 0.95 0.82

Overall 0.69 0.65 0.66 0.56 0.86 0.87 0.91 0.58

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

P
re

ci
si

o
n

 o
f 

S
tr

a
te

g
y

 P
re

d
ic

ti
o
n

Game Time (minutes)

NNge

Boosting

Rule Set

State Lattice

Fig. 4. Precision of strategy prediction for Protoss versus Terran

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

P
re

ci
si

o
n

 o
f 

S
tr

a
te

g
y

 P
re

d
ic

ti
o
n

Game Time (minutes)

NNge

Boosting

Rule Set

State Lattice

Fig. 5. Precision of strategy prediction for Protoss versus Protoss



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

P
re

ci
si

o
n

 o
f 

S
tr

a
te

g
y

 P
re

d
ic

ti
o
n

Average Noise (minutes)

NNge k-NN Boosting State Lattice

Fig. 6. Precision on noisy data. Noise is applied uniformly to individual
attributes, simulating delayed opponent scouting.

B. Imperfect Information

Experiments were conducted to analyze the effects of noise

on the classification algorithms. These experiments simulate

the “fog of war” in StarCraft, which limits visibility to por-

tions of the map in which the player controls units. Delayed

scouting can be simulated by adding noise to features, while

inability to scout an opponent’s base can be simulated by

missing features.

The first experiment added a uniform distribution of noise

to individual features, which simulates delayed scouting in

StarCraft. The results for this noise transformation are shown

in Figure 6. All of the algorithms degrade in precision as

more noise is applied to the test data set. However, the

precision of the k-NN algorithm does not degrade as quickly

as the other algorithms.

The second noise experiment tests the effects of imperfect

information on the classification algorithms. Attributes were

randomly set to 0, based on a missing attribute probability.

This simulates a player that is unable to scout an oppo-

nent’s base in StarCraft. The results for the missing attribute

transformation are shown in Figure 7. The precision of the

machine learning algorithms decreased linearly with respect

to the ratio of missing attributes, while the precision of the

state lattice classifier degrades to that of a random classifier

after 20% of attributes are missing. The results of these two

experiments indicate that the machine learning algorithms

are more tolerant of noisy and missing features than the state

lattice classifier.

C. Timing Prediction

We represent timing prediction as a regression problem.

The following algorithms were applied to regression:

• ZeroR - Estimates the mean

• LinearRegression - Akaike linear regression [23]

• M5’ – Inducing model trees [24]

• AdditiveRegression - Stochastic gradient boosting [25]

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

o
n

 o
f 

S
tr

a
te

g
y

 P
re

d
ic

ti
o
n

Ratio of Missing Attributes

NNge k-NN Boosting State Lattice

Fig. 7. Precision in an imperfect information environment. The missing
attribute ratio specifies the probability that an attribute will be set to 0,
simulating inability to scout an opponent.

The additive regression algorithm was configured to use

100 iterations and a shrinkage rate of 0.5. All of the other

algorithms used the default settings.

Regression tests were performed for individual attributes.

The training and test data sets were transformed prior to

training the algorithms. Given a feature f , all other features

with a value greater than f ’s value are set to 0. This

transformation sets the feature vector to the game state before

the unit type, building type or unit upgrade, f , was produced.

A subset of the regression results for Zerg versus Terran

games is shown in Table VI. The M5’ algorithm performed

the best on almost all of the features. The algorithms perform

poorly on the Zergling Speed feature, which has a standard

deviation of 8 minutes, because it is typically upgraded in

response to an aggressive opponent rather than planned as

part of a standard build. The M5’ algorithm was able to

predict the timing of the lair and hive structures with a mean

error of less than 40 seconds. A lair enables Zerg players to

build tier 2 units and buildings, while a hive enables Zerg

players to build tier 3 units and buildings. Therefore, M5’

can predict when the player is upgrading to the next tier of

the tech tree with an average error of less than 40 seconds.

Additional regression results for Protoss versus Zerg are

shown in Figure 8. Overall M5’ predicted action timing with

the smallest error. However, linear regression performed well

on highly correlated features. For example, linear regression

is able to accurately predict observer timing, because there

is a direct correlation between constructing an observatory

and producing an observer (see Figure 9).

D. Speed

We evaluated the speed of the strategy prediction algo-

rithms. The results for the classification algorithms are shown

in Table VII. Decision tree methods were the fastest, while

instance-based algorithms were the slowest. The boosting



TABLE VI

SUBSET OF REGRESSION RESULTS FOR ZERG VERSUS TERRAN. THE

VALUES (MINUTES) SHOW THE AVERAGE DIFFERENCE BETWEEN

PREDICTED AND ACTUAL ACTION TIMINGS.

Linear Additive
Action ZeroR Regression M5’ Regression

Spawning Pool 0:28 0:17 0:04 0:06
Zergling 0:42 0:48 0:25 0:32
Zergling Speed 4:02 3:54 3:28 2:49

Second Hatchery 0:44 0:35 0:19 0:21
Hydralisk Den 2:15 1:24 0:45 0:52
Lair 1:02 0:55 0:33 0:37
Hive 4:40 0:45 0:39 0:57
Consume 4:55 0:32 0:27 0:55

0

0.5

1

1.5

2

P
y
lo

n

2
n

d
 P

y
lo

n

G
as

G
at

ew
ay

C
o

re

Z
ea

lo
t

F
o

rg
e

C
an

n
o

n

C
it

ad
el

A
rc

h
iv

es

T
em

p
la

r

R
ea

v
er

O
b

se
rv

at
o

ry

O
b

se
rv

er

C
o

rs
ai

rM
ea

n
 P

re
d

ic
ti

o
n

 E
rr

o
r 

(m
in

u
te

s)

Linear Regression M5' Additive Regression

Fig. 8. Subset of regression results for Protoss versus Zerg. The points
show the average difference between predicted and actual action timings.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

O
b

se
rv

er
 T

im
in

g
 (

m
in

u
te

s)

Observatory Timing (minutes)

Fig. 9. Observatory and observer timing in Protoss versus Zerg games

TABLE VII

TIME TAKEN TO PERFORM ONE THOUSAND CLASSIFICATIONS

Algorithm Time (ms)

NNge 1246
k-NN 4218
J48 6
LogitBoost 65

TABLE VIII

TIME TAKEN TO PERFORM ONE MILLION PREDICTIONS

Algorithm Time (ms)

ZeroR 14
Linear Regression 5679
M5’ 7937
Additive Regression 6352

algorithm is dependent on the number of iterations, rather

than the number of examples, and was much faster than

NNge and k-NN. While some of the classifiers are faster

than others, all of the classifiers can be executed once per

second, or every game cycle, with minimal impact on the

overall system.

Results for the speed of the regression algorithms are

shown in Table VIII. The speed of the linear regression

algorithm is dependent on the number of features, while

the speed of additive regression is based on the number of

iterations. Again, all algorithms can be executed once per

second with minimal impact on the system.

V. CONCLUSIONS

In this paper we have demonstrated a data mining approach

to strategy prediction in real-time strategy games. We col-

lected thousands of replay files from professional matches

and applied machine learning algorithms to acquire domain

knowledge and perform opponent modeling. By applying

data mining to a large number of game traces, we can develop

an opponent model that is not limited to a single opponent,

set of maps or style of gameplay.

Machine learning was applied to the task of recognizing

an opponent’s strategy as well as predicting when the op-

ponent will produce a specific unit type or building type.

We presented a novel representation for encoding strategic

decisions made in a game as a feature vector. Each feature

vector was labeled with a specific strategy based on analysis

of expert play.

Several algorithms from the Weka toolkit were applied

to strategy prediction and timing prediction. The algorithms

were compared against a state lattice classifier and a classifier

that used the exact rule set. The machine learning algorithms

using our representation outperformed the state lattice on

all experiments and also had higher precision than the rule

set classifier in the initial stages of a game. The machine

learning algorithms show “foresight” in that they are able to

predict a strategy with high confidence before it is executed.

For example, the NNge algorithm was able to predict an



opponent’s tier 2 strategy with 70% precision five minutes

into a game. For timing prediction, our results showed that

M5’ predicted unit and building timing with the smallest

average error on most of the features. However, the results

showed that regression worked well for only a subset of the

features.

We also explored strategy prediction in imperfect informa-

tion environments. The first experiment simulated delayed

scouting by adding noise to attributes, with the instance-

based algorithms being the most tolerant to noise. The

second experiment simulated lack of scouting by adding

missing features. The precision of the machine learning

algorithms decreased linearly as the amount of information

decreased. The state lattice classifier performed poorly on

both experiments.

VI. FUTURE WORK

There are two main directions for future work. First, future

work could focus on improving the precision of strategy and

timing prediction. Domain knowledge could be incorporated

into classification and regression algorithms in the form of

situation assessment [15] or domain specific metrics [17].

However, the main focus should be on regression, because

regression is currently accurate for only a subset of the

features. Regression could be improved by incorporating

the game mechanics into the predictions. For example, a

regression algorithm could factor in the construction times

of buildings.

Another area for future work is incorporating our results

from data mining into a full game playing agent. A candidate

framework for this research is the integrated agent architec-

ture of McCoy and Mateas [26]. The agent uses a reactive

planner to play full games of Wargus. Currently, all of the

behaviors are hard-coded by a developer. New predicates

could be introduced into the planner which specify that the

opponent is pursuing a specific strategy. These predicates

could be used as preconditions to select among behaviors. In

the current agent, the rules for deciding to progress to tier 2

are hard coded. Our results for predicting when the opponent

is going to change tiers could be used as preconditions for

this behavior.

REFERENCES

[1] S. Bakkes, P. Spronck, and J. van den Herik, “Rapid Adaptation
of Video Game AI,” in Proceedings of the IEEE Symposium on

Computational Intelligence in Games. Perth, Australia: IEEE, 2008,
pp. 79–86.

[2] S. Hladky and V. Bulitko, “An Evaluation of Models for Predicting
Opponent Positions in First-Person Shooter Video Games,” in Pro-

ceedings of the IEEE Symposium on Computational Intelligence in

Games. Perth, Australia: IEEE, 2008, pp. 39–46.
[3] A. Fink, J. Denzinger, and J. Aycock, “Extracting NPC behavior

from computer games using computer vision and machine learning
techniques,” in IEEE Symposium on Computational Intelligence and

Games. Honolulu, Hawaii: IEEE, 2007, pp. 24–31.
[4] M. Fagan and P. Cunningham, “Case-based plan recognition in com-

puter games,” Lecture notes in computer science, vol. 2689, pp. 161–
170, 2003.

[5] E. Charniak and R. P. Goldman, “A bayesian model of plan recogni-
tion,” Artificial Intelligence, vol. 64, no. 1, pp. 53–79, 1993.

[6] D. Albrecht, I. Zukerman, and A. Nicholson, “Bayesian Models for
Keyhole Plan Recognition in an Adventure Game,” User Modeling

and User-Adapted Interaction, vol. 8, no. 1, pp. 5–47, 1998.
[7] S. Carberry, “Techniques for plan recognition,” User Modeling and

User-Adapted Interaction, vol. 11, no. 1-2, pp. 31–48, 2001.
[8] D. Cheng and R. Thawonmas, “Case-based plan recognition for real-

time strategy games,” in Proceedings of the International Conference

on Computer Games: Artificial Intelligence, Design and Education

(CGAIDE 2004). Reading, UK: University of Wolverhampton, 2004,
pp. 36–40.

[9] M. Molineaux, D. W. Aha, and P. Moore, “Learning Continuous Action
Models in a Real-Time Strategy Environment,” in Proceedings of the

Florida Artificial Intelligence Research Conference. Coconut Grove,
Florida: AAAI Press, 2008, pp. 257–262.

[10] R.-K. Balla and A. Fern, “UCT for Tactical Assault Planning in
Real-Time Strategy Games,” in Proceedings of the International Joint

Conference on Artificial Intelligence. Pasadena, California: Morgan
Kaufmann, 2009, pp. 40–45.

[11] M. J. V. Ponsen, H. Muñoz-Avila, P. Spronck, and D. W. Aha,
“Automatically Acquiring Domain Knowledge For Adaptive Game AI
Using Evolutionary Learning,” in Proceedings of the AAAI Conference

on Artificial Intelligence. Pittsburgh, Pennsylvania: AAAI Press,
2005, pp. 1535–1540.

[12] D. Aha, M. Molineaux, and M. Ponsen, “Learning to Win: Case-
Based Plan Selection in a Real-Time Strategy Game,” Lecture notes

in computer science, vol. 3620, pp. 5–20, 2005.
[13] M. Ponsen, “Improving adaptive game AI with evolutionary learning,”

Master’s thesis, Delft University of Technology, Delft, the Netherlands,
2004.

[14] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Learning from
Demonstration and Case-Based Planning for Real-Time Strategy
Games,” Soft Computing Applications in Industry, pp. 293–310, 2008.

[15] K. Mishra, S. Ontañón, and A. Ram, “Situation assessment for plan
retrieval in real-time strategy games,” in Proceedings of the European

Conference on Case-Based Reasoning. Trier, Germany: Springer,
2008, pp. 355–369.

[16] J. Hsieh and C. Sun, “Building a player strategy model by analyzing
replays of real-time strategy games,” in Proceedings of the Interna-

tional Joint Conference on Neural Networks. Hong Kong, China:
IEEE, 2008, pp. 3106–3111.

[17] B. G. Weber and M. Mateas, “Conceptual Neighborhoods for Retrieval
in Case-Based Reasoning,” in Proceedings of the International Con-

ference on Case-Based Reasoning. Seattle, Washington: Springer,
2009, pp. 343–357.

[18] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo,
California: Morgan Kaufmann, 1993.

[19] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, vol. 6, no. 1, pp. 37–66, 1991.

[20] B. Martin, “Instance-based learning: nearest neighbour with gener-
alisation,” Master’s thesis, University of Waikato, Hamilton, New
Zealand, 1995.

[21] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic Regres-
sion: A Statistical View of Boosting,” Annals of Statistics, vol. 28,
no. 2, pp. 337–374, 2000.

[22] I. H. Witten and E. Frank, Data Mining: Practical machine learning

tools and techniques. San Francisco, California: Morgan Kaufmann,
2005.

[23] H. Akaike, “A new look at the statistical model identification,” IEEE

Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.
[24] Y. Wang and I. Witten, “Inducing model trees for continuous classes,”

in Poster Papers of the European Conference on Machine Learning,
Prague, Czech Republic, 1997, pp. 128–137.

[25] J. Friedman, “Stochastic gradient boosting,” Computational Statistics

and Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.
[26] J. McCoy and M. Mateas, “An Integrated Agent for Playing Real-Time

Strategy Games,” in Proceedings of the AAAI Conference on Artificial

Intelligence. Chicago, Illinois: AAAI Press, 2008, pp. 1313–1318.


