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Abstract 
We present a case-based reasoning technique for selecting 
build orders in a real-time strategy game. The case retrieval 
process generalizes features of the game state and selects 
cases using domain-specific recall methods, which perform 
exact matching on a subset of the case features. We 
demonstrate the performance of the technique by 
implementing it as a component of the integrated agent 
framework of McCoy and Mateas. Our results demonstrate 
that the technique outperforms nearest-neighbor retrieval 
when imperfect information is enforced in a real-time 
strategy game.  

Introduction    

Real-time strategy (RTS) games are becoming one of the 
most competitive genres of gaming. Several international 
competitions are held for RTS games (World Cyber 
Games, BlizzCon, IeSF Invitational) and South Korea has 
a professional league devoted to StarCraft. Competitive 
RTS play requires making strategic and tactical decisions 
under real-time constraints.  At the strategic level, players 
make high-level decisions such as which technologies to 
research and how much to invest in setting up a strong 
economy versus producing combat units. At the tactical 
level, players decide when and where to engage opponents. 
Additionally, players perform constant reconnaissance in 
order to develop counter strategies. 
 A major challenge for RTS games is developing AI 
systems capable of playing at a competitive level. Buro 
(2003) argues that RTS games offer a large variety of 
fundamental research problems, including decision making 
under uncertainty, opponent modeling and learning, and 
adversarial real-time planning. Competitive players 
overcome these challenges by studying replays of 
professional matches and developing strategies and tactics 
to employ in future matches. 
 One of the focuses of strategic play in RTS games is 
build order. A build order defines the sequence in which 
buildings are constructed, units are produced and 
technologies are researched. Build orders target a specific 
strategy, such as rushing or timing attacks. Rush strategies 
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attempt to overwhelm an opponent with inexpensive 
combat units early in the game, while timing attacks 
engage opponents based on a trigger, such as completing 
an upgrade. For a given matchup, only a subset of the 
possible build orders are viable options due to the topology 
of the map and playing style of the opponent. For example, 
a rush strategy is strong on small maps with a direct path to 
the opponent’s base, but weak on maps with a large travel 
distance between bases. 
 RTS games enforce imperfect information through a 
“fog of war”, which limits visibility to portions of the map 
where the player controls units. In order to acquire 
information about an opponent, it is necessary to actively 
scout the map to find out which buildings and units the 
opponent is producing. Scouting is vital in RTS games, 
because different strategies have different types of counter 
strategies.  
 We present a case-based reasoning system for selecting 
build orders in Wargus, a real-time strategy game. The 
system communicates with the integrated agent framework 
of McCoy and Mateas (2008) and plays complete games of 
Wargus. The performance of the system is evaluated on a 
variety of maps in perfect and imperfect information 
environments. 

Related Work 

Case-based reasoning has been applied to strategic and 
tactical aspects of RTS gameplay. Molineaux et al. (2008) 
combine case-based reasoning and reinforcement learning 
for selecting actions at the tactical level of gameplay.  
 Aha et al. (2005) use case-based reasoning for strategy 
selection. The system uses several forms of domain 
knowledge, including a building-specific state lattice 
developed by Ponsen et al. (2005). The lattice contains 
nodes which represent completed buildings and state 
transitions corresponding to constructing an additional 
building. The lattice also contains counter-strategies for 
each state. Aha et al. expand this representation by 
mapping game situations to specific strategies. The system 
performs nearest-neighbor retrieval using the Euclidian 
distance between eight features in case descriptions. Aha et 
al. demonstrate that the system is capable of defeating 
opponents randomly selected from a pool of scripted 
strategies. 



 

 

 Ontañón et al. (2007) present a case-based planning 
approach for RTS games that interleaves planning and 
execution. The system requires players to annotate game 
traces with the goals being pursued for each action in the 
trace. Cases are extracted from the traces and specify 
primitive actions to perform or additional sub-goals for the 
current behavior. The system performs nearest neighbor 
retrieval using the game state and the current goal being 
pursued by the planner. They demonstrate that the 
performance of the system improves when additional game 
traces are available. 
 Limited work has focused specifically on build order. 
Kovarsky and Buro (2006) view build order as an 
optimization problem and apply planning to two problems: 
maximizing the number of units produced in a given period 
and producing a certain number of units as fast as possible. 
The system is suitable for developing build orders in an 
offline environment. Chan et al. (2007) present an online 
planner for build order and focus on resource gathering.  
 Recent work has explored the effects of enforcing 
imperfect information in RTS games. Bakkes et al. (2007) 
use TD-learning for evaluating tactical positions in Spring, 
a real-time strategy game. Their results show that an 
evaluation based on the unit count is effective in the early 
stages of the game, while an evaluation based on tactical 
positioning is more accurate in later stages of the game.  

Case-Based Reasoning for Build Order 

In this section we describe how case-based reasoning can 
be applied to build order in Wargus, a clone of the game 
Warcraft II which was developed by Blizzard 
EntertainmentTM.  

Retrieval with Conceptual Neighborhoods 
The case-based reasoning system performs retrieval using 
conceptual neighborhoods (Weber and Mateas 2009), 
which resembles the Transform-Recall-Adapt Methods in  
 MINSTREL (Turner 1994). An overview of the process is 
shown in Figure 1. First, the transform step selects 0 to n 
generalization methods and applies them to the current 
game state, where n is the maximum number of 
generalizations allowed. Next, the recall step performs 

exact matching using a set of recall methods. Then the 
system evaluates the recalled cases by computing a 
distance metric based on the applied generalization 
methods. Next, a case is selected from the set of recalled 
cases using a weighted random selection. Finally, the 
behavior contained in the selected case is performed by the 
agent. 

Case Representation 
We define a case as a game state and behavior pair. Game 
state is encoded as six features, shown in Table 1. 
 
Feature Description 
Player tech state Bitset specifying if the agent has at least 

one of the following buildings: 
• blacksmith 
• lumber mill 
• stronghold  
• ogre mound 

Enemy tech state Bitset specifying if the opponent has at 
least one of the following buildings:  

• barracks 
• blacksmith 
• lumber mill 
•  stronghold  
• ogre mound 

Combat units Total number of the agent’s: 
• grunts 
• axe throwers 
• catapults  
• ogres 

Worker units Number of the agent’s:  
• peons 

Production buildings Number of the agent’s: 
• barracks 

Map properties • Distance to opponent 
• Open path to opponent 

Table 1- Case features 

 The map properties feature is described by two 
properties. The first property specifies if there is a direct 
land route to the opponent’s base. The second property 
specifies a qualitative distance (close, medium, far) to the 
opponent’s base. 
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Figure 1 – Retrieval with conceptual neighborhoods 



 

 

 The case representation contains only a single feature 
that refers to the opponent, which describes the tech 
buildings the opponent possesses. Tech buildings are the 
most effective objects to scout in a RTS game, because 
they are stationary and reveal the opponent’s strategy. 
Combat units and workers are mobile and therefore more 
difficult to accurately scout. Reducing the number of 
features that describe the opponent decreases noise when 
performing retrieval in an imperfect information 
environment. 
 Cases also contain a behavior, which specifies a build 
order action to execute. The build order actions used by the 
system are shown in Table 2. The left column of the table 
lists generic RTS build order actions, while the right 
column lists Wargus specific actions. 
 
Build Action Type Wargus Action 
Train worker • Build peon 
Train combat unit • Train grunt 

• Train axe thrower 
• Train catapult 
• Train ogre 

Construct production building • Build barracks 
Construct tech building • Build lumber mill 

• Build blacksmith 
• Upgrade stronghold 
• Build ogre mound 

Research upgrade • Melee attack  
• Melee armor  
• Range attack  

Table 2 - Build order actions 

Generalization Methods 
Generalization methods transform the game state by 
flagging features as generalized. Game state features that 
have been generalized are ignored when performing 
matching with recall methods. The system includes a 
generalization method for each feature in the case 
representation, excluding the player tech feature. A 
generalization method for player tech state was not 
included, in order to constrain exploration of the case 
space. 
 Each generalization method has a corresponding edit 
distance, which computes the distance between the game 
state and a recalled case for the feature generalized. The 
edit distance computes the amount of in-game resources 
required to transform a recalled case to the game state. The 
system computes edit distance based on a linear 
combination of the gold and wood resources. 
 Generalize number of workers marks the number of 
workers feature as generalized. The edit distance is the cost 
of a worker unit times the difference in number of worker 
units between the game state and a recalled case.  
 Generalize number of production buildings marks the 
number of production buildings feature as generalized and 
computes the edit distance based on the difference in 

number of production buildings times the cost of a 
production building. 
 Generalize number of combat units marks the number of 
combat units feature as generalized and computes the 
distance based on the difference in combat units between 
the game state and recalled case. Although the number of 
combat units feature is an aggregation, the distance is 
computed based on the individual unit types. Therefore, the 
distance metric distinguishes between expensive and 
inexpensive units.  
 Generalize enemy tech computes a distance metric based 
on the difference in enemy tech buildings between the 
game state and recalled case. The distance metric sums the 
cost of the buildings that are different.   
 Generalize map property causes recall methods to 
ignore map properties when retrieving cases. The distance 
metric is a constant cost and is incurred if any of the map 
properties differ between the game state and a recalled 
case.  

Recall Methods 
Recall methods perform exact matching using a subset of 
the features. Features that are marked as generalized do not 
require an exact match. Recall methods match only on 
cases with the corresponding behavior. Therefore, each 
recall method utilizes a disjoint subset of the case library. 
This enables domain knowledge to be applied to the 
retrieval process in the form of behavior specific recall 
metrics and preconditions. 
 Each recall method has a set of preconditions that 
specify if the recall method can be applied to the current 
game situation. If the preconditions in a recall method fail, 
then the recall method will not be used for case retrieval. 
Recall preconditions are used to prevent the system from 
selecting invalid cases during retrieval, such as preventing 
retrieval of a case with the behavior “Train grunt” if the 
agent does not possess a barracks. Additional domain 
knowledge can also be specified in the preconditions. For 
example, the “Construct production building” recall 
method prevents the agent from constructing more than a 
single barracks, unless the agent already has a large 
number of worker units. This precondition check captures 
the domain knowledge that a player should only construct 
additional production buildings if the player has a 
sufficient economy to utilize additional production 
buildings. 
 The system contains a recall method for each build 
action type. The subsets of features evaluated by the recall 
methods are shown in Table 3. The following features 
require an exact match between the game state and a case: 
map properties, player tech, enemy tech and number of 
production buildings. The number of workers and number 
of combat units features require that the game state 
contains at least as many units as a case.  
 We selected the feature subsets for each recall method 
based on analyzing expert replays. For example, domain 
knowledge is demonstrated by the “Research upgrade” 
recall method, which matches against only the player tech 



 

 

and number of combat units features. If the player 
possesses several combat units and the tech buildings 
required to research an upgrade, then researching the 
upgrade is a preferred action. 

 PT ET NC NW PB MP 
Train worker � � � �  � 
Train combat unit � �  � � � 
Production building � � � � � � 
Tech building � �  �  � 
Research upgrade �  �    

Table 3 - Feature subsets for recall methods. Features include 
player tech (PT), enemy tech (ET), number of combat units 
(NC), number of worker units (NW), number of production 

buildings (PB), and map properties (MP). 

  A total edit distance is computed for recalled cases. 
The distance is the summation of the edit distances of each 
generalization method applied to the game state. This 
summation includes only edit distances of features 
contained in the recall method’s feature subset. Weights 
are computed from the total distance using an inverse 
distance relation, adjusted so the value at zero is finite. 

Implementation 

Our system extends the integrated agent framework of 
McCoy and Mateas (2008). The case-based reasoning 
system communicates with the framework using the 
blackboard pattern. McCoy and Mateas’ agent was 
modified to produce buildings and units based on events 
posted to the blackboard. Reconnaissance capabilities were 
also added to the agent. 

Agent Architecture 
The agent consists of an ABL agent connected to the 
Wargus RTS engine. A behavior language (ABL) is a 
reactive planning language (Mateas and Stern 2002) and 
communicates with Wargus using a JNI interface. 
Different competencies in the agent communicate with 
each other through ABL’s working memory, which acts as 
a blackboard. An overview of the agent architecture is 
shown in Figure 2.  
  The agent is composed of distinct managers, each of 
which is responsible for performing one or more subtasks. 

The Strategy Manager is responsible for high-level 
strategic decisions and focuses on build order. The 
Production Manager is responsible for producing units and 
buildings, based on messages generated by the Strategy 
Manager. The Tactics Manager decides when and where to 
engage the opponent.  
 The Strategy Manager was modified to communicate 
with the build order selector. Rather than choose which 
units to produce, the Strategy Manager adds a build order 
request to working memory. The build order selector polls 
for requests from working memory and performs case 
retrieval when a request is present. The build order selector 
then adds the chosen solution to working memory. Finally, 
the Strategy Manager passes the unit or building to 
produce to the Production Manager. 
 The agent implements minimal scouting behavior. Once 
the number of worker units is greater than a threshold 
value, the agent assigns a worker to scout the opponent’s 
base. The scouting unit is given a single command to move 
to the starting location of the opponent’s base. If the 
scouting unit is destroyed, then a new scouting unit is sent 
out. The maximum number of scouts is limited by a 
threshold value. The agent stops sending out scouting units 
once a combat unit has been trained.  
 Several additional modifications were made to the agent. 
The Production Manager was modified to automatically 
build farms when the difference between supply and 
demand is less than or equal to one. Also, the Tactics 
Manager was modified to attack when the agent has more 
combat units than the opponent. The Tactics Manager 
violates the imperfect information constraint, because it 
peeks at how many combat units the enemy possesses. 
However, this information is not utilized by the build order 
selector. 

Build Order Selectors 
Three case-based reasoning techniques were implemented 
for the build order selector component. The conceptual 
neighborhood selector (CNS) retrieves cases using the 
conceptual neighborhood approach discussed above. The 
nearest neighbor selector (NNS) performs retrieval using 
Manhattan distance based on the unit and building counts 
of all unit types, for both of the players. The random case 
selector (Random) selects build actions randomly from the 
set of currently valid cases. 
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Figure 2 - Agent architecture 



 

 

Case Library 
A case library was generated by running several different 
scripted builds against each other on several maps. The 
scripts were selected from eight hand-coded build orders 
with specific timing attacks. The validation scripts 
discussed in the results section were not used to generate 
the case library.  
 The map pool consisted of maps with varying distances 
between bases (close, medium, far) and open and closed 
paths between bases. Four scripts were selected for each 
map and tested against the other scripts, for a total of six 
matches per map. Cases were added to the library only for 
the winning script. The case library consists of 36 game 
traces which contains over 1500 cases. The case library is 
much larger than previous work that utilizes game traces to 
build the case library (Ontañón et al. 2007; Mishra et al. 
2008). 

Empirical Study  

The agent was tested against the built-in AI of Wargus, 
two well-established scripts and a new script. The land 
attack (LA) script is the default AI for Wargus and 
produces a large variety of ground forces. The soldiers rush 
(SR) performs a heavy melee attack early in the game. The 
knights rush (KR) performs a light melee attack and then 
upgrades to a stronghold and attacks the opponent with a 
heavy melee attack. The knights rush is considered a near-
optimal Wargus strategy (Ponsen et al. 2005). The fast 
ogre (FO) script trains twelve workers and immediately 
upgrades to ogres.  

 Perfect Information Imperfect Information 
Random 31% 19% 
NNS 69% 50% 
CNS 75% 66% 

Table 4 - Win rates for build order selectors in perfect and 
imperfect information environments over 32 trials 

 The three build order selectors were tested against the 
scripted strategies. Four different maps were used for each 
matchup. The first three maps contain a direct land route to 
the opponent’s base of varying distance (close, medium, 
far). The last map (NWTR) is a variation of the map “No-
where to run, nowhere to hide”. Ontañón et al. (2007) have 
focused their work on this map. Other researchers have 
focused on variations of medium sized maps with an open 
path to the opponent’s base (Aha et al. 2005; McCoy and 
Mateas 2008; Ponsen et al. 2005). Two games were run on 
each map, resulting in a total of eight games per matchup.  

 LA SR KR FO Overall 
Random 62% 12% 0% 0% 19% 
NNS 62% 62% 38% 38% 50% 
CNS 100% 75% 50% 38% 66% 

Table 5 - Win rates versus counter strategies over 8 trials 

 Matches were run with perfect and imperfect 
information and results are shown in Table 4. The 
conceptual neighborhood selector won 66% of games in an 
imperfect information environment and outperformed 
nearest neighbor retrieval. Also, the success rate of the 
conceptual neighborhood selector decreased by only 9% 
when enforcing imperfect information, while the success 
rate of the nearest neighbor selector decreased by 19%. 
Note that the performance of the random selector is worse 
in the imperfect information environment, because worker 
units are used for scouting in addition to resource 
gathering. 

 Open 
Close 

Open 
Medium 

Open 
Far 

NWTR 

Random 25% 25% 25% 0% 
NNS 62% 12% 88% 25% 
CNS 75% 62% 75% 50% 

Table 6 – Win rates on the map pool over 8 trials 

 Win rates against the scripted builds with imperfect in-
formation enforced are shown in Table 5. The conceptual 
neighborhood selector outperformed the other selectors in 
all matchups, while the random selector performed worst 
in all matchups. The conceptual neighborhood selector 
achieved a success rate of at least 50% on every map (see 
Table 6). These results indicate that the conceptual 
neighborhood approach was better at adapting to new game 
situations. 

 
Figure 3 - Number of game traces versus win rate 

 
 The build order selectors were evaluated with different 
case library sizes. For each case library size, random 
subsets of traces were selected and each build order 
selector was tested over 20 trials. The results are shown in 
Figure 3. The nearest neighbor selector performed best 
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when the case library consisted of four or eight game 
traces, while the performance of the conceptual 
neighborhood selector continued to improve as more traces 
were added to the case library. 

 Ponsen Ontañón McCoy CNS 
LA  76% 89% - 100% 
SR 29% - 80% 75% 
KR 13% - 53% 50% 

Table 7 - Reported success rates 

 Our results are compared to reported success rates from 
the literature in Table 7. Aha et al. (2005) report an 
average success rate of over 80%, but do not specify a win 
rate against the soldiers and knights rushes. All prior work, 
to our knowledge, has reported success rates using perfect 
information, while we are reporting success rates for an 
imperfect information environment. 

Conclusion 

In this paper we have demonstrated how conceptual 
neighborhoods can be applied to case-based reasoning for 
selecting build orders in a RTS game. Our contributions 
include applying conceptual neighborhoods to feature 
vectors in case-based reasoning, enforcing imperfect 
information in a RTS game, testing against scripts on a 
wide variety of maps, and performing proper validation 
using distinct training and validation script sets. 
 Our results show two interesting properties. First, the 
conceptual neighborhood approach achieved similar 
success rates to nearest neighbor retrieval in a perfect 
information environment, while outperforming nearest 
neighbor retrieval when imperfect information is enforced. 
This leads us to conclude that the conceptual neighborhood 
approach is better at adapting to new game situations. 
Second, the performance of the conceptual neighborhood 
approach improved when more traces were available, while 
the nearest neighbor approach was most effective when a 
small number of traces were available. 
 Future work will evaluate the performance of the system 
when utilizing a large collection of game traces. 
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