

Case-Based Reasoning for Build Order in Real-Time Strategy Games

Ben G. Weber and Michael Mateas
Expressive Intelligence Studio

University of California, Santa Cruz
{bweber, michaelm}@soe.ucsc.edu

Abstract
We present a case-based reasoning technique for selecting
build orders in a real-time strategy game. The case retrieval
process generalizes features of the game state and selects
cases using domain-specific recall methods, which perform
exact matching on a subset of the case features. We
demonstrate the performance of the technique by
implementing it as a component of the integrated agent
framework of McCoy and Mateas. Our results demonstrate
that the technique outperforms nearest-neighbor retrieval
when imperfect information is enforced in a real-time
strategy game.

Introduction

Real-time strategy (RTS) games are becoming one of the
most competitive genres of gaming. Several international
competitions are held for RTS games (World Cyber
Games, BlizzCon, IeSF Invitational) and South Korea has
a professional league devoted to StarCraft. Competitive
RTS play requires making strategic and tactical decisions
under real-time constraints. At the strategic level, players
make high-level decisions such as which technologies to
research and how much to invest in setting up a strong
economy versus producing combat units. At the tactical
level, players decide when and where to engage opponents.
Additionally, players perform constant reconnaissance in
order to develop counter strategies.
 A major challenge for RTS games is developing AI
systems capable of playing at a competitive level. Buro
(2003) argues that RTS games offer a large variety of
fundamental research problems, including decision making
under uncertainty, opponent modeling and learning, and
adversarial real-time planning. Competitive players
overcome these challenges by studying replays of
professional matches and developing strategies and tactics
to employ in future matches.
 One of the focuses of strategic play in RTS games is
build order. A build order defines the sequence in which
buildings are constructed, units are produced and
technologies are researched. Build orders target a specific
strategy, such as rushing or timing attacks. Rush strategies

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

attempt to overwhelm an opponent with inexpensive
combat units early in the game, while timing attacks
engage opponents based on a trigger, such as completing
an upgrade. For a given matchup, only a subset of the
possible build orders are viable options due to the topology
of the map and playing style of the opponent. For example,
a rush strategy is strong on small maps with a direct path to
the opponent’s base, but weak on maps with a large travel
distance between bases.
 RTS games enforce imperfect information through a
“fog of war”, which limits visibility to portions of the map
where the player controls units. In order to acquire
information about an opponent, it is necessary to actively
scout the map to find out which buildings and units the
opponent is producing. Scouting is vital in RTS games,
because different strategies have different types of counter
strategies.
 We present a case-based reasoning system for selecting
build orders in Wargus, a real-time strategy game. The
system communicates with the integrated agent framework
of McCoy and Mateas (2008) and plays complete games of
Wargus. The performance of the system is evaluated on a
variety of maps in perfect and imperfect information
environments.

Related Work

Case-based reasoning has been applied to strategic and
tactical aspects of RTS gameplay. Molineaux et al. (2008)
combine case-based reasoning and reinforcement learning
for selecting actions at the tactical level of gameplay.
 Aha et al. (2005) use case-based reasoning for strategy
selection. The system uses several forms of domain
knowledge, including a building-specific state lattice
developed by Ponsen et al. (2005). The lattice contains
nodes which represent completed buildings and state
transitions corresponding to constructing an additional
building. The lattice also contains counter-strategies for
each state. Aha et al. expand this representation by
mapping game situations to specific strategies. The system
performs nearest-neighbor retrieval using the Euclidian
distance between eight features in case descriptions. Aha et
al. demonstrate that the system is capable of defeating
opponents randomly selected from a pool of scripted
strategies.

 Ontañón et al. (2007) present a case-based planning
approach for RTS games that interleaves planning and
execution. The system requires players to annotate game
traces with the goals being pursued for each action in the
trace. Cases are extracted from the traces and specify
primitive actions to perform or additional sub-goals for the
current behavior. The system performs nearest neighbor
retrieval using the game state and the current goal being
pursued by the planner. They demonstrate that the
performance of the system improves when additional game
traces are available.
 Limited work has focused specifically on build order.
Kovarsky and Buro (2006) view build order as an
optimization problem and apply planning to two problems:
maximizing the number of units produced in a given period
and producing a certain number of units as fast as possible.
The system is suitable for developing build orders in an
offline environment. Chan et al. (2007) present an online
planner for build order and focus on resource gathering.
 Recent work has explored the effects of enforcing
imperfect information in RTS games. Bakkes et al. (2007)
use TD-learning for evaluating tactical positions in Spring,
a real-time strategy game. Their results show that an
evaluation based on the unit count is effective in the early
stages of the game, while an evaluation based on tactical
positioning is more accurate in later stages of the game.

Case-Based Reasoning for Build Order

In this section we describe how case-based reasoning can
be applied to build order in Wargus, a clone of the game
Warcraft II which was developed by Blizzard
EntertainmentTM.

Retrieval with Conceptual Neighborhoods
The case-based reasoning system performs retrieval using
conceptual neighborhoods (Weber and Mateas 2009),
which resembles the Transform-Recall-Adapt Methods in
 MINSTREL (Turner 1994). An overview of the process is
shown in Figure 1. First, the transform step selects 0 to n
generalization methods and applies them to the current
game state, where n is the maximum number of
generalizations allowed. Next, the recall step performs

exact matching using a set of recall methods. Then the
system evaluates the recalled cases by computing a
distance metric based on the applied generalization
methods. Next, a case is selected from the set of recalled
cases using a weighted random selection. Finally, the
behavior contained in the selected case is performed by the
agent.

Case Representation
We define a case as a game state and behavior pair. Game
state is encoded as six features, shown in Table 1.

Feature Description
Player tech state Bitset specifying if the agent has at least

one of the following buildings:
• blacksmith
• lumber mill
• stronghold
• ogre mound

Enemy tech state Bitset specifying if the opponent has at
least one of the following buildings:

• barracks
• blacksmith
• lumber mill
• stronghold
• ogre mound

Combat units Total number of the agent’s:
• grunts
• axe throwers
• catapults
• ogres

Worker units Number of the agent’s:
• peons

Production buildings Number of the agent’s:
• barracks

Map properties • Distance to opponent
• Open path to opponent

Table 1- Case features

 The map properties feature is described by two
properties. The first property specifies if there is a direct
land route to the opponent’s base. The second property
specifies a qualitative distance (close, medium, far) to the
opponent’s base.

Recall Past
Solutions

Evaluate
Solutions

Generalize
State

Game
State

Solution

Active Generalization Methods

Case Library

Generalization
Methods

Figure 1 – Retrieval with conceptual neighborhoods

 The case representation contains only a single feature
that refers to the opponent, which describes the tech
buildings the opponent possesses. Tech buildings are the
most effective objects to scout in a RTS game, because
they are stationary and reveal the opponent’s strategy.
Combat units and workers are mobile and therefore more
difficult to accurately scout. Reducing the number of
features that describe the opponent decreases noise when
performing retrieval in an imperfect information
environment.
 Cases also contain a behavior, which specifies a build
order action to execute. The build order actions used by the
system are shown in Table 2. The left column of the table
lists generic RTS build order actions, while the right
column lists Wargus specific actions.

Build Action Type Wargus Action
Train worker • Build peon
Train combat unit • Train grunt

• Train axe thrower
• Train catapult
• Train ogre

Construct production building • Build barracks
Construct tech building • Build lumber mill

• Build blacksmith
• Upgrade stronghold
• Build ogre mound

Research upgrade • Melee attack
• Melee armor
• Range attack

Table 2 - Build order actions

Generalization Methods
Generalization methods transform the game state by
flagging features as generalized. Game state features that
have been generalized are ignored when performing
matching with recall methods. The system includes a
generalization method for each feature in the case
representation, excluding the player tech feature. A
generalization method for player tech state was not
included, in order to constrain exploration of the case
space.
 Each generalization method has a corresponding edit
distance, which computes the distance between the game
state and a recalled case for the feature generalized. The
edit distance computes the amount of in-game resources
required to transform a recalled case to the game state. The
system computes edit distance based on a linear
combination of the gold and wood resources.
 Generalize number of workers marks the number of
workers feature as generalized. The edit distance is the cost
of a worker unit times the difference in number of worker
units between the game state and a recalled case.
 Generalize number of production buildings marks the
number of production buildings feature as generalized and
computes the edit distance based on the difference in

number of production buildings times the cost of a
production building.
 Generalize number of combat units marks the number of
combat units feature as generalized and computes the
distance based on the difference in combat units between
the game state and recalled case. Although the number of
combat units feature is an aggregation, the distance is
computed based on the individual unit types. Therefore, the
distance metric distinguishes between expensive and
inexpensive units.
 Generalize enemy tech computes a distance metric based
on the difference in enemy tech buildings between the
game state and recalled case. The distance metric sums the
cost of the buildings that are different.
 Generalize map property causes recall methods to
ignore map properties when retrieving cases. The distance
metric is a constant cost and is incurred if any of the map
properties differ between the game state and a recalled
case.

Recall Methods
Recall methods perform exact matching using a subset of
the features. Features that are marked as generalized do not
require an exact match. Recall methods match only on
cases with the corresponding behavior. Therefore, each
recall method utilizes a disjoint subset of the case library.
This enables domain knowledge to be applied to the
retrieval process in the form of behavior specific recall
metrics and preconditions.
 Each recall method has a set of preconditions that
specify if the recall method can be applied to the current
game situation. If the preconditions in a recall method fail,
then the recall method will not be used for case retrieval.
Recall preconditions are used to prevent the system from
selecting invalid cases during retrieval, such as preventing
retrieval of a case with the behavior “Train grunt” if the
agent does not possess a barracks. Additional domain
knowledge can also be specified in the preconditions. For
example, the “Construct production building” recall
method prevents the agent from constructing more than a
single barracks, unless the agent already has a large
number of worker units. This precondition check captures
the domain knowledge that a player should only construct
additional production buildings if the player has a
sufficient economy to utilize additional production
buildings.
 The system contains a recall method for each build
action type. The subsets of features evaluated by the recall
methods are shown in Table 3. The following features
require an exact match between the game state and a case:
map properties, player tech, enemy tech and number of
production buildings. The number of workers and number
of combat units features require that the game state
contains at least as many units as a case.
 We selected the feature subsets for each recall method
based on analyzing expert replays. For example, domain
knowledge is demonstrated by the “Research upgrade”
recall method, which matches against only the player tech

and number of combat units features. If the player
possesses several combat units and the tech buildings
required to research an upgrade, then researching the
upgrade is a preferred action.

 PT ET NC NW PB MP
Train worker � � � � �
Train combat unit � � � � �
Production building � � � � � �
Tech building � � � �
Research upgrade � �

Table 3 - Feature subsets for recall methods. Features include
player tech (PT), enemy tech (ET), number of combat units
(NC), number of worker units (NW), number of production

buildings (PB), and map properties (MP).

 A total edit distance is computed for recalled cases.
The distance is the summation of the edit distances of each
generalization method applied to the game state. This
summation includes only edit distances of features
contained in the recall method’s feature subset. Weights
are computed from the total distance using an inverse
distance relation, adjusted so the value at zero is finite.

Implementation

Our system extends the integrated agent framework of
McCoy and Mateas (2008). The case-based reasoning
system communicates with the framework using the
blackboard pattern. McCoy and Mateas’ agent was
modified to produce buildings and units based on events
posted to the blackboard. Reconnaissance capabilities were
also added to the agent.

Agent Architecture
The agent consists of an ABL agent connected to the
Wargus RTS engine. A behavior language (ABL) is a
reactive planning language (Mateas and Stern 2002) and
communicates with Wargus using a JNI interface.
Different competencies in the agent communicate with
each other through ABL’s working memory, which acts as
a blackboard. An overview of the agent architecture is
shown in Figure 2.
 The agent is composed of distinct managers, each of
which is responsible for performing one or more subtasks.

The Strategy Manager is responsible for high-level
strategic decisions and focuses on build order. The
Production Manager is responsible for producing units and
buildings, based on messages generated by the Strategy
Manager. The Tactics Manager decides when and where to
engage the opponent.
 The Strategy Manager was modified to communicate
with the build order selector. Rather than choose which
units to produce, the Strategy Manager adds a build order
request to working memory. The build order selector polls
for requests from working memory and performs case
retrieval when a request is present. The build order selector
then adds the chosen solution to working memory. Finally,
the Strategy Manager passes the unit or building to
produce to the Production Manager.
 The agent implements minimal scouting behavior. Once
the number of worker units is greater than a threshold
value, the agent assigns a worker to scout the opponent’s
base. The scouting unit is given a single command to move
to the starting location of the opponent’s base. If the
scouting unit is destroyed, then a new scouting unit is sent
out. The maximum number of scouts is limited by a
threshold value. The agent stops sending out scouting units
once a combat unit has been trained.
 Several additional modifications were made to the agent.
The Production Manager was modified to automatically
build farms when the difference between supply and
demand is less than or equal to one. Also, the Tactics
Manager was modified to attack when the agent has more
combat units than the opponent. The Tactics Manager
violates the imperfect information constraint, because it
peeks at how many combat units the enemy possesses.
However, this information is not utilized by the build order
selector.

Build Order Selectors
Three case-based reasoning techniques were implemented
for the build order selector component. The conceptual
neighborhood selector (CNS) retrieves cases using the
conceptual neighborhood approach discussed above. The
nearest neighbor selector (NNS) performs retrieval using
Manhattan distance based on the unit and building counts
of all unit types, for both of the players. The random case
selector (Random) selects build actions randomly from the
set of currently valid cases.

Working
Memory

Scouting
Manager

Income
Manager

Tactics
Manager

Strategy
Manager

Production
Manager

Build Order
Selector

Wargus

ABL

Agent

Figure 2 - Agent architecture

Case Library
A case library was generated by running several different
scripted builds against each other on several maps. The
scripts were selected from eight hand-coded build orders
with specific timing attacks. The validation scripts
discussed in the results section were not used to generate
the case library.
 The map pool consisted of maps with varying distances
between bases (close, medium, far) and open and closed
paths between bases. Four scripts were selected for each
map and tested against the other scripts, for a total of six
matches per map. Cases were added to the library only for
the winning script. The case library consists of 36 game
traces which contains over 1500 cases. The case library is
much larger than previous work that utilizes game traces to
build the case library (Ontañón et al. 2007; Mishra et al.
2008).

Empirical Study

The agent was tested against the built-in AI of Wargus,
two well-established scripts and a new script. The land
attack (LA) script is the default AI for Wargus and
produces a large variety of ground forces. The soldiers rush
(SR) performs a heavy melee attack early in the game. The
knights rush (KR) performs a light melee attack and then
upgrades to a stronghold and attacks the opponent with a
heavy melee attack. The knights rush is considered a near-
optimal Wargus strategy (Ponsen et al. 2005). The fast
ogre (FO) script trains twelve workers and immediately
upgrades to ogres.

 Perfect Information Imperfect Information
Random 31% 19%
NNS 69% 50%
CNS 75% 66%

Table 4 - Win rates for build order selectors in perfect and
imperfect information environments over 32 trials

 The three build order selectors were tested against the
scripted strategies. Four different maps were used for each
matchup. The first three maps contain a direct land route to
the opponent’s base of varying distance (close, medium,
far). The last map (NWTR) is a variation of the map “No-
where to run, nowhere to hide”. Ontañón et al. (2007) have
focused their work on this map. Other researchers have
focused on variations of medium sized maps with an open
path to the opponent’s base (Aha et al. 2005; McCoy and
Mateas 2008; Ponsen et al. 2005). Two games were run on
each map, resulting in a total of eight games per matchup.

 LA SR KR FO Overall
Random 62% 12% 0% 0% 19%
NNS 62% 62% 38% 38% 50%
CNS 100% 75% 50% 38% 66%

Table 5 - Win rates versus counter strategies over 8 trials

 Matches were run with perfect and imperfect
information and results are shown in Table 4. The
conceptual neighborhood selector won 66% of games in an
imperfect information environment and outperformed
nearest neighbor retrieval. Also, the success rate of the
conceptual neighborhood selector decreased by only 9%
when enforcing imperfect information, while the success
rate of the nearest neighbor selector decreased by 19%.
Note that the performance of the random selector is worse
in the imperfect information environment, because worker
units are used for scouting in addition to resource
gathering.

 Open
Close

Open
Medium

Open
Far

NWTR

Random 25% 25% 25% 0%
NNS 62% 12% 88% 25%
CNS 75% 62% 75% 50%

Table 6 – Win rates on the map pool over 8 trials

 Win rates against the scripted builds with imperfect in-
formation enforced are shown in Table 5. The conceptual
neighborhood selector outperformed the other selectors in
all matchups, while the random selector performed worst
in all matchups. The conceptual neighborhood selector
achieved a success rate of at least 50% on every map (see
Table 6). These results indicate that the conceptual
neighborhood approach was better at adapting to new game
situations.

Figure 3 - Number of game traces versus win rate

 The build order selectors were evaluated with different
case library sizes. For each case library size, random
subsets of traces were selected and each build order
selector was tested over 20 trials. The results are shown in
Figure 3. The nearest neighbor selector performed best

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32

W
in

 R
at

e

Number of Game Traces

Random NNS CNS

when the case library consisted of four or eight game
traces, while the performance of the conceptual
neighborhood selector continued to improve as more traces
were added to the case library.

 Ponsen Ontañón McCoy CNS
LA 76% 89% - 100%
SR 29% - 80% 75%
KR 13% - 53% 50%

Table 7 - Reported success rates

 Our results are compared to reported success rates from
the literature in Table 7. Aha et al. (2005) report an
average success rate of over 80%, but do not specify a win
rate against the soldiers and knights rushes. All prior work,
to our knowledge, has reported success rates using perfect
information, while we are reporting success rates for an
imperfect information environment.

Conclusion

In this paper we have demonstrated how conceptual
neighborhoods can be applied to case-based reasoning for
selecting build orders in a RTS game. Our contributions
include applying conceptual neighborhoods to feature
vectors in case-based reasoning, enforcing imperfect
information in a RTS game, testing against scripts on a
wide variety of maps, and performing proper validation
using distinct training and validation script sets.
 Our results show two interesting properties. First, the
conceptual neighborhood approach achieved similar
success rates to nearest neighbor retrieval in a perfect
information environment, while outperforming nearest
neighbor retrieval when imperfect information is enforced.
This leads us to conclude that the conceptual neighborhood
approach is better at adapting to new game situations.
Second, the performance of the conceptual neighborhood
approach improved when more traces were available, while
the nearest neighbor approach was most effective when a
small number of traces were available.
 Future work will evaluate the performance of the system
when utilizing a large collection of game traces.

References

Aha, D. W.; Molineaux, M.; and Ponsen, M. 2005.
Learning to Win: Case-Based Plan Selection in a Real-
Time Strategy Game. In Proceedings of the
International Conference on Case-Based Reasoning
(ICCBR), 5–20.

Bakkes, S.; Spronck, P.; van den Herik, J.; and Kerbusch,
P. 2007. Predicting Success in an Imperfect-
Information Game. In Proceedings of the Computer
Games Workshop (CGW), 219–230.

Buro, M. 2003. Real-time strategy games: A new AI
research challenge. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI),
1534–1535.

Chan, H.; Fern, A.; Ray, S; Wilson, N.; and Ventura, C.
2007. Online Planning for Resource Production in
Real-Time Strategy Games. In Proceedings of the
International Conference on Automated Planning and
Scheduling (ICAPS), 65–72.

Kovarsky, A., and Buro, M. 2006. A First Look at Build-
Order Optimization in Real-Time Strategy Games. In
Proceedings of the GameOn Conference, 18–22.

Mateas, M., and Stern, A. 2002. A Behavior Language for
Story-Based Believable Agents. IEEE Intelligent
Systems, 17(4), 39–47.

McCoy, J., and Mateas, M. 2008. An Integrated Agent for
Playing Real-Time Strategy Games. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI),
1313–1318.

Mishra, K.; Ontañón, S.; and Ram, A. 2008. Situation
Assessment for Plan Retrieval in Real-Time Strategy
Games. In Proceedings of the European Conference on
Case-Based Reasoning (ECCBR), 355–369.

Molineaux, M.; Aha, D. W.; and Moore. P. 2008. Learning
Continuous Action Models in a Real-Time Strategy
Environment. In Proceedings of the International
Florida Artificial Intelligence Research Society
Conference (FLAIRS), 257–262.

Ontañón, S.; Mishra, K; Sugandh, N.; and Ram, A. 2007.
Case-Based Planning and Execution for Real-Time
Strategy Games. In Proceedings of the International
Conference on Case-Based Reasoning (ICCBR), 164–
178.

Ponsen, M.; Muñoz-Avila, H; Spronck, P.; and Aha, D. W.
2005. Automatically Acquiring Domain Knowledge for
Adaptive Game AI Using Evolutionary Learning. In
Proceedings of the Innovative Applications of Artificial
Intelligence Conference (IAAI), 1535–1540.

Turner, S. 1994. The Creative Process: A Computer Model
of Storytelling and Creativity. Hillsdale, N.J.: Lawrence
Erlbaum Associates.

Weber, B. G. and Mateas, M. 2009. Conceptual
Neighborhoods for Retrieval in Case-Based Reasoning.
In Proceedings of the International Conference on
Case-Based Reasoning (ICCBR), 343–357.

