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Abstract

We present a case-based reasoning technique fmtisgl
build orders in a real-time strategy game. The caseval
process generalizes features of the game stateseladts
cases using domain-specific recall methods, whimtiopm
exact matching on a subset of the case features. We
demonstrate the performance of the technique by
implementing it as a component of the integratednag
framework of McCoy and Mateas. Our results demauestr
that the technique outperforms nearest-neighbaievel
when imperfect information is enforced in a reaidi
strategy game.

Introduction

Real-time strategy (RTS) games are becoming ontbeof
most competitive genres of gaming. Several intéonat
competitions are held for RTS games (World Cyber
Games, BlizzCon, leSF Invitational) and South Kohea
a professional league devoted to StarCraft. Conipeti
RTS play requires making strategic and tacticalisiees
under real-time constraints. At the strategic leptayers
make high-level decisions such as which technotogie
research and how much to invest in setting up engtr
economy versus producing combat units. At the datti
level, players decide when and where to engageraps.
Additionally, players perform constant reconnaissaim
order to develop counter strategies.

A major challenge for RTS games is developing Al
systems capable of playing at a competitive leeiro
(2003) argues that RTS games offer a large varidty
fundamental research problems, including decisiakiny
under uncertainty, opponent modeling and learnany]
adversarial real-time planning. Competitive players
overcome these challenges by studying replays of
professional matches and developing strategiegamniits
to employ in future matches.

One of the focuses of strategic play in RTS gaimes
build order. A build order defines the sequencevhich
buildings are constructed, units are produced and
technologies are researched. Build orders targgteaific
strategy, such as rushing or timing attacks. Ruigttegies
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attempt to overwhelm an opponent with inexpensive
combat units early in the game, while timing attack
engage opponents based on a trigger, such as dogple
an upgrade. For a given matchup, only a subsehef t
possible build orders are viable options due tatdpelogy

of the map and playing style of the opponent. Kamnaple,

a rush strategy is strong on small maps with actipath to
the opponent’s base, but weak on maps with a laeyel
distance between bases.

RTS games enforce imperfect information through a
“fog of war”, which limits visibility to portions bthe map
where the player controls units. In order to aaguir
information about an opponent, it is necessaryctively
scout the map to find out which buildings and urtfie
opponent is producing. Scouting is vital in RTS gam
because different strategies have different tygesonter
strategies.

We present a case-based reasoning system fotisglec
build orders in Wargus, a real-time strategy gaiiee
system communicates with the integrated agent frarie
of McCoy and Mateas (2008) and plays complete garhes
Wargus. The performance of the system is evaluated
variety of maps in perfect and imperfect informatio
environments.

Related Work

Case-based reasoning has been applied to straaegdic
tactical aspects of RTS gameplay. Molineaux e{2008)
combine case-based reasoning and reinforcememtingar
for selecting actions at the tactical level of gatag.

Aha et al. (2005) use case-based reasoning fategly
selection. The system uses several forms of domain
knowledge, including a building-specific state itat
developed by Ponsen et al. (2005). The lattice aiosit
nodes which represent completed buildings and state
transitions corresponding to constructing an addl
building. The lattice also contains counter-stregegfor
each state. Aha et al. expand this representatipn b
mapping game situations to specific strategies. Siistem
performs nearest-neighbor retrieval using the MHisohi
distance between eight features in case descriptima et
al. demonstrate that the system is capable of tiefea
opponents randomly selected from a pool of scripted
strategies.
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Figure 1 — Retrieval with conceptual neighborhoods

Ontafion et al. (2007) present a case-based plnnin exact matching using a set of recall methods. Titen
approach for RTS games that interleaves plannind) an system evaluates the recalled cases by computing a

execution. The system requires players to annaatee distance metric based on the applied generalization
traces with the goals being pursued for each adtiche methods. Next, a case is selected from the setaalled
trace. Cases are extracted from the traces andfyspec cases using a weighted random selection. Finallg, t
primitive actions to perform or additional sub-go&r the behavior contained in the selected case is perfbiyehe

current behavior. The system performs nearest heigh  agent.
retrieval using the game state and the current geadg
pursued by the planner. They demonstrate that the Case Representation
performance of the system improves when additigaate
traces are available.

Limited work has focused specifically on build erd
Kovarsky and Buro (2006) view build order as an

We define a case as a game state and behavioiGzaire
state is encoded as six features, shown in Table 1.

optimization problem and apply planning to two geshs: Feature Description
maximizing the number of units produced in a gipeniod Player tech state Bitset specifying if the agerst taleast
and producing a certain number of units as fagtoasible. one of the following buildings:
The system is suitable for developing build ordiersan *  blacksmith
offline environment. Chan et al. (2007) presentoatine * lumber mil
planner for build order and focus on resource gathe *  stronghold
Recent work has explored the effects of enforcing _+_ogre mound
imperfect information in RTS games. Bakkes et 200() Enemy tech state Bitset specifying if the opportexs at
use TD-learning for evaluating tactical positionsSipring, least one of the following buildings:
a real-time strategy game. Their results show that *  barracks
evaluation based on the unit count is effectivéhim early *  blacksmith
stages of the game, while an evaluation based diitaa * lumber mill
positioning is more accurate in later stages ofjdi@e. *+  stronghold
e ogre mound
Combat units Total number of the agent’s:
Case-Based Reasoning for Build Order * grunts
* axe throwers
In this section we describe how case-based reagaain + catapults
be applied to buiI(_j order in Wargus, a clone of gqene «  ogres
Warcraft 1l which was developed by Blizzard [\worker units Number of the agent’s:
Entertainmenrit”. .« peons
Production buildings | Number of the agent’s:
Retrieval with Conceptual Neighborhoods +  barracks
The case-based reasoning system performs retniesuad Map properties + Distance to opponent
conceptual neighborhoods (Weber and Mateas 2009) *_ Open path to opponent

which resembles the Transform-Recall-Adapt Methiads

MINSTREL (Turner 1994). An overview of the procéss

shown in Figure 1. First, the transform step sel€cton The map properties feature is described by two

generalization methods and applies them to theenurr ~ properties. The first property specifies if theseai direct

game state, wheren is the maximum number of land route to the opponent's base. The second pyope

generalizations allowed. Next, the recall step quenb specifies a qualitative distance (close, medium), tia the
opponent’s base.

Table 1- Case features



The case representation contains only a singlaurea
that refers to the opponent, which describes theh te
buildings the opponent possesses. Tech buildingsthar
most effective objects to scout in a RTS game, leza
they are stationary and reveal the opponent’s egyat
Combat units and workers are mobile and therefoseem
difficult to accurately scout. Reducing the numbsr
features that describe the opponent decreases wbise
performing retrieval in an imperfect information
environment.

Cases also contain a behavior, which specifiesiild b
order action to execute. The build order actiorexdusy the
system are shown in Table 2. The left column ofttide
lists generic RTS build order actions, while thghti
column lists Wargus specific actions.

Build Action Type Wargus Action

Train worker » Build peon

Train combat unit e Train grunt

» Train axe thrower
e Train catapult

e Train ogre

Construct production building | « Build barracks

Construct tech building  Build lumber mill
 Build blacksmith

* Upgrade stronghold
» Build ogre mound

Research upgrade * Melee attack
* Melee armor
* Range attack

Table 2 - Build order actions

Generalization Methods

number of production buildings times the cost of a
production building.

Generalize number of combat units marks the number of
combat units feature as generalized and computes th
distance based on the difference in combat uniteeen
the game state and recalled case. Although the euofb
combat units feature is an aggregation, the distaisc
computed based on the individual unit types. Theesfthe
distance metric distinguishes between expensive and
inexpensive units.

Generalize enemy tech computes a distance metric based
on the difference in enemy tech buildings betwelka t
game state and recalled case. The distance metris the
cost of the buildings that are different.

Generalize map property causes recall methods to
ignore map properties when retrieving cases. Thaudte
metric is a constant cost and is incurred if anyhef map
properties differ between the game state and alledca
case.

Recall Methods

Recall methods perform exact matching using a subfse
the features. Features that are marked as geregta not
require an exact match. Recall methods match only o
cases with the corresponding behavior. Therefoaeh e
recall method utilizes a disjoint subset of theechisrary.
This enables domain knowledge to be applied to the
retrieval process in the form of behavior specificall
metrics and preconditions.

Each recall method has a set of preconditions that
specify if the recall method can be applied to ¢herent
game situation. If the preconditions in a recalthod fail,
then the recall method will not be used for casgeneal.
Recall preconditions are used to prevent the system

Generalization methods transform the game state by selecting invalid cases during retrieval, such @vgnting

flagging features as generalized. Game state festiinat
have been generalized are ignored when performing
matching with recall methods. The system includes a
generalization method for each feature in the case
representation, excluding the player tech featuke.
generalization method for player tech state was not
included, in order to constrain exploration of thase
space.

Each generalization method has a corresponding edi
distance, which computes the distance between dngeg
state and a recalled case for the feature genedalizhe
edit distance computes the amount of in-game ressur
required to transform a recalled case to the gaate.sThe

retrieval of a case with the behavior “Train gruiftthe
agent does not possess a barracks. Additional somai
knowledge can also be specified in the preconditi¢ior
example, the “Construct production building” recall
method prevents the agent from constructing moae th
single barracks, unless the agent already has ge lar
number of worker units. This precondition checktosgs
the domain knowledge that a player should only trans

additional production buildings if the player has a
sufficient economy to utilize additional production
buildings.

The system contains a recall method for each build
action type. The subsets of features evaluatedhéyecall

system computes edit distance based on a linear methods are shown in Table 3. The following feaure

combination of the gold and wood resources.

Generalize number of workers marks the number of
workers feature as generalized. The edit distastigei cost
of a worker unit times the difference in numbemafrker
units between the game state and a recalled case.

Generalize number of production buildings marks the
number of production buildings feature as genegdliand
computes the edit distance based on the differénce

require an exact match between the game state aadea
map properties, player tech, enemy tech and nurber
production buildings. The number of workers and ham
of combat units features require that the gamee stat
contains at least as many units as a case.

We selected the feature subsets for each recaloue
based on analyzing expert replays. For example,adom
knowledge is demonstrated by the “Research upgrade”
recall method, which matches against only the plageh



and number of combat units features. If the player The Strategy Manager is responsible for high-level
possesses several combat units and the tech kgsidin strategic decisions and focuses on build order. The
required to research an upgrade, then researchiiag t Production Manager is responsible for producingsuand
upgrade is a preferred action. buildings, based on messages generated by thee@trat
Manager. The Tactics Manager decides when and where

PT | ET | NC | NW | PB | MP engage the opponent.
Train worker v v v v v The Strategy Manager was modified to communicate
Train combat unit v v v v | v with the build order selector. Rather than choodgciv
Production building v v v v v v units to produce, the Strategy Manager adds a louder
Tech building v v v v request to working memory. The build order selepilis
Research upgrade v v for requests from working memory and performs case
retrieval when a request is present. The build rosd&ctor
Table 3 - Feature subsets for recall methods. Feats include then adds the chosen solution to working memonyalli,
player tech (PT), enemy tech (ET), number of combatnits the Strategy Manager passes the unit or building to
(NC), number of worker units (NW), number of production produce to the Production Manager.
buildings (PB), and map properties (MP). The agent implements minimal scouting behaviorceéOn
A total edit distance is computed for recalledesa the number of worker units is greater than a thoksh
The distance is the summation of the edit distaoéesch value, the agent assigns a worker to scout the repyts

generalization method applied to the game statds Th bPase. The scouting unit is given a single commarndave
summation includes only edit distances of features t0 the starting location of the opponent's base.thi

contained in the recall method’s feature subsetigiiie scouting unit is destroyed, then a new scouting isrsent
are computed from the total distance using an seer ©Out. The maximum number of scouts is limited by a
distance relation, adjusted so the value at zefinits. threshold value. The agent stops sending out suputiits

once a combat unit has been trained.
Imol tati Several additional modifications were made toabent.
mplementation The Production Manager was modified to automatycall

Our system extends the integrated agent framewérk o build farms when the difference between supply and
McCoy and Mateas (2008). The case-based reasoningdemand is less than or equal to one. Also, theidsmct
system communicates with the framework using the Manager was modified to attack when the agent harem
blackboard pattern. McCoy and Mateas’ agent was combat units than the opponent. The Tactics Manager
modified to produce buildings and units based oenes/ violates the imperfect information constraint, hesm it

posted to the blackboard. Reconnaissance capedbilitere peeks at how many combat units the enemy possesses.

also added to the agent. However, this information is not utilized by theilduorder
selector.

Agent Architecture

The agent consists of an ABL agent connected to the Build Order Selectors ) ) )

Wargus RTS engine. A behavior language (ABL) is a Three case-based reasoning techniques were implechen
reactive planning language (Mateas and Stern 2@68) for_ the build order selector component. The conn_mpt
communicates with Wargus using a JNI interface. Neighborhood selector (CNS) retrieves cases usineg t
Different competencies in the agent communicatehwit conceptual neighborhood approach discussed abdwe. T
each other through ABL's working memory, which aats ~ Nnearest neighbor selector (NNS) performs retriaisng

a blackboard. An overview of the agent architectiwe  Manhattan distance based on the unit and buildngis

shown in Figure 2. of all unit types, for both of the players. The dam case
which is responsible for performing one or moretasks. set of currently valid cases.
Agent

ABL .

! — :
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Figure 2 - Agent architecture



Case Library

A case library was generated by running severdémint
scripted builds against each other on several maps.
scripts were selected from eight hand-coded buitters
with specific timing attacks. The validation scspt
discussed in the results section were not usecchergte
the case library.

The map pool consisted of maps with varying distsn
between bases (close, medium, far) and open arsgclo
paths between bases. Four scripts were selectedaftr
map and tested against the other scripts, fora tdtsix
matches per map. Cases were added to the librdyyfam
the winning script. The case library consists of ggne
traces which contains over 1500 cases. The caselis
much larger than previous work that utilizes garaeds to
build the case library (Ontafion et al. 2007; Mishktaal.
2008).

Empirical Study

The agent was tested against the built-in Al of guvar
two well-established scripts and a new script. Tdred
attack (LA) script is the default Al for Wargus and
produces a large variety of ground forces. Theismdush
(SR) performs a heavy melee attack early in theggdrhe
knights rush (KR) performs a light melee attack #meh
upgrades to a stronghold and attacks the opponightaw
heavy melee attack. The knights rush is considaredar-
optimal Wargus strategy (Ponsen et al. 2005). Tdwt f
ogre (FO) script trains twelve workers and immesliat
upgrades to ogres.

Perfect Information | Imperfect Information
Random 31% 19%
NNS 69% 50%
CNS 75% 66%

Table 4 - Win rates for build order selectors in pefect and
imperfect information environments over 32 trials

The three build order selectors were tested agd#es
scripted strategies. Four different maps were tisedach
matchup. The first three maps contain a direct lande to
the opponent’s base of varying distance (close,iungd
far). The last map (NWTR) is a variation of the niajo-
where to run, nowhere to hide”. Ontafion et al. @0tave
focused their work on this map. Other researchenge h
focused on variations of medium sized maps witlopen
path to the opponent’s base (Aha et al. 2005; Mcauy
Mateas 2008; Ponsen et al. 2005). Two games wereru
each map, resulting in a total of eight games patichup.

LA SR KR FO Overall
Random | 62% 12% 0% 0% 19%
NNS 62% 62% 38% 38% 50%
CNS 100% 75% 50% 38% 66%

Table 5 - Win rates versus counter strategies ove trials

Matches were run with perfect and imperfect
information and results are shown in Table 4. The
conceptual neighborhood selector won 66% of gamesi
imperfect information environment and outperformed
nearest neighbor retrieval. Also, the success ohtéhe
conceptual neighborhood selector decreased by @y
when enforcing imperfect information, while the sess
rate of the nearest neighbor selector decreasedi9bf.
Note that the performance of the random selectaroise
in the imperfect information environment, becausekar
units are used for scouting in addition to resource
gathering.

Open Open Open | NWTR
Close Medium Far
Random 25% 25% 25% 0%
NNS 62% 12% 88% 25%
CNS 75% 62% 75% 50%

Table 6 — Win rates on the map pool over 8 trials

Win rates against the scripted builds with impetrfia-
formation enforced are shown in Table 5. The conadp
neighborhood selector outperformed the other saigdh
all matchups, while the random selector performextstv
in all matchups. The conceptual neighborhood select
achieved a success rate of at least 50% on evepy(sea
Table 6). These results indicate that the concéptua
neighborhood approach was better at adapting togzeme
situations.
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Figure 3 - Number of game traces versus win rate

The build order selectors were evaluated withedéiht
case library sizes. For each case library sizedaan
subsets of traces were selected and each buildr orde
selector was tested over 20 trials. The resultshosvn in
Figure 3. The nearest neighbor selector performest b



when the case library consisted of four or eighinga Joint Conference on Artificial Intelligence (1JCAI),
traces, while the performance of the conceptual 1534-1535.
neighborhood selector continued to improve as rraces Chan, H.; Fern, A.; Ray, S; Wilson, N.; and Ventua

were added to the case library. 2007. Online Planning for Resource Production in
Real-Time Strategy Games. IRroceedings of the

Ponser | Ontafién | McCoy | CNS International Conference on Automated Planning and
LA 76% 89% - 100% Scheduling (ICAPS), 65-72.
0, - 0, 0,
SR 29% 80% 75% Kovarsky, A., and Buro, M. 2006. A First Look at iBl4
KR 13% - 53% 50% R . .
Order Optimization in Real-Time Strategy Games. In
Table 7 - Reported success rates Proceedings of the GameOn Conference, 18—22.

Our results are compared to reported success frates Mateas, M., and Stern, A. 2002. A Behavior Language
the literature in Table 7. Aha et al. (2005) repart Story-Based Believable AgentsIEEE Intelligent
average success rate of over 80%, but do not speaifin Systems, 17(4), 39-47.
rate against the soldiers and knights rushes. vdr pvork, McCoy, J., and Mateas, M. 2008. An Integrated Adent
to our knowledge, has reported success rates psirfgct Playing Real-Time Strategy Games.Rnoceedings of
information, while we are reporting success ratas an the AAAI Conference on Artificial Intelligence (AAAI),
imperfect information environment. 1313-1318.

Mishra, K.; Ontafién, S.; and Ram, A. 2008. Situatio
Conclusion Assessment for Plan Retrieval in Real-Time Strategy

Games. IrProceedings of the European Conference on
In this paper we have demonstrated how conceptual Case-Based Reasoning (ECCBR), 355-369.

neighborhoods can be applied to case-based reastorin Molineaux, M.; Aha, D. W.; and Moore. P. 2008. Ligag
selecting build orders in a RTS game. Our contidmst Continuous Action Models in a Real-Time Strategy

include applying conceptual neighborhoods to featur Environment. In Proceedings of the International
vectors in case-based reasoning, enforcing imperfec  Fiorida  Artificial  Intelligence Research  Society
information in a RTS game, testing against scripgtsa Conference (FLAIRS), 257-262.
wide variety of maps, and performing proper valmat L .
using distinct training and validation script sets. Ontanion, S.; Mishra, K; Sugandh, N.; and Ram, A1720
Our results show two interesting properties. Fitse Case-Based Planning and Execution for Real-Time
conceptual neighborhood approach achieved similar ~ Strategy Games. liProceedings of the International
success rates to nearest neighbor retrieval in réeqte Conference on Case-Based Reasoning (ICCBR), 164—
information environment, while outperforming nedres 178.
neighbor retrieval when imperfect information idaned. Ponsen, M.; Mufioz-Avila, H; Spronck, P.; and Aha VD
This leads us to conclude that the conceptual bheidtood 2005. Automatically Acquiring Domain Knowledge for
approach is better at adapting to new game sitstio Adaptive Game Al Using Evolutionary Learning. In
Second, the performance of the conceptual neigloloarh Proceedings of the Innovative Applications of Artificial
approach improved when more traces were availathige Intelligence Conference (1AAl), 1535-1540.

the nearest neighbor approach was most effectivenveh Turner, S. 1994The Creative Process. A Computer Model

small number of traces were available. of Sorytelling and Creativity. Hillsdale, N.J.: Lawrence
Future work will evaluate the performance of tiistem Erlbaum Associates

when utilizing a large collection of game traces.
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