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ABSTRACT 

This paper presents a novel approach to the performance analysis of optical packet switching bus-based 
networks with unslotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol.  
Because of the interdependence among bus nodes, an accurate performance analysis of such networks has 
been an open question for a long time.   We model the bus as a multiple-priority M/G/1 queuing system with 
preemptive-repeat-identical (PRI) service discipline.  To solve this model, we use a recurrent level-by-level 
analysis technique where the interference from higher levels (upstream nodes) is taken into account in terms 
of reappearance and disappearance rates for the server.  The key features of this method are as follows.  First, 
it specifically accounts for the distribution of voids seen by a node (via the number of attempts before a 
successful transmission) as a function of the node’s position and offered network load. Second, it 
approximately computes the queue-length distribution at each node, and thus provides a tool for buffer size 
selection so as to meet a loss rate criterion.  A comparison of our approximate model solution with network 
simulations indicates that our model generally offers good accuracy in assessing the performance of the 
network, including in terms of the queue-length distribution.  Occasionally, the results of our model may 
deviate from simulation results.  A discussion of the causes of such deviations, most likely to occur when 
nodes are close to saturation, offers additional insight into the properties of the bus-based network and its 
approximate solution. 

Keywords 
Asynchronous Optical Bus-based Network, Unslotted CSMA/CA, Performance Analysis, Preemptive-
Repeat-Identical Service, Recurrent Analysis. 

1. INTRODUCTION 
For many years, voice service was the main traffic in Metropolitan Area Networks (MANs).  Since 
voice service does not tolerate jitter (or delay variation), traditional MANs are based on 
synchronous circuit-switched network technologies (e.g., SONET/SDH) that guarantee very high 
quality (no jitters) for any service they transport. Recent years have witnessed a dramatic increase in 
the volume of new multimedia and data traffic, resulting in new service and bandwidth demands. 
The inefficiencies in terms of bandwidth granularity associated with traditional circuit-switched 

 



 

networks make the latter difficult to provision for these new demands. Therefore, a more efficient 
networking technology is required for modern MANs. 
In this regard, the optical packet switching (OPS) technology is clearly the leading candidate for the 
next generation MANs. It offers bandwidth-on-demand service thanks to a high granularity of 
bandwidth provisioning. Additionally, in combination with new technologies such as circuit 
emulation [1] or GMPLS, it provides cost-effective network architectures that support both 
multimedia (voice, video) and data traffic.  The bus topology appears as one of the best choices for 
next generation OPS MANs, because it inherits the reliable property of current SONET/SDH ring 
networks (viz., fast recovery from link failures). Furthermore, since bus topology allows many 
nodes to share the same transmission resource, it improves resource utilization thanks to statistical 
multiplexing of traffic flows. In order to efficiently share a transmission resource among nodes, 
OPS bus-based networks need an efficient medium access control (MAC) protocol. The Optical 
Unslotted Carrier Sense Multiple Access with Collision Avoidance (OU-CSMA/CA1) [2, 3] 
protocol appears an attractive solution.  Its simplicity makes the network installation and 
management easier. 
In spite of the above advantages, the OU-CSMA/CA protocol and the bus topology have several 
drawbacks. The bus topology may exhibit unfairness depending on the position of the nodes on the 
bus. For example, upstream nodes (i.e., the nodes closest to the beginning of the shared 
transmission resource) might monopolize the bandwidth and thus prevent downstream nodes from 
transmitting. Additionally, the asynchronous nature of the OU-CSMA/CA protocol may lead to an 
inefficient fragmentation of bandwidth, resulting in low resource utilization. Indeed, the 
asynchronous transmission of packets at upstream nodes may fragment the global bandwidth into 
small segments of bandwidth (voids) that are unusable for the transmission at downstream nodes. 
Due to this interdependence among bus nodes, an accurate performance analysis of OPS bus-based 
networks using OU-CSMA/CA protocol has been an open question for a long time. There are 
performance analysis studies of packet-switched slotted-ring networks, such as [4, 5] for Fiber 
Distributed Data Interface, [6] for PLAYTHROUGH networks, [7, 8] for Distributed Queue Dual 
Bus, and [9, 10] for probabilistic pi-persistent networks. These studies usually model a ring node as 
an M/G/1 vacation system with Bernoulli schedule [6, 9, 10] or with time-limited service discipline 
[4, 5], and obtain approximate values for the mean access delay and throughput at each node. Since 
the interdependence between nodes makes exact analysis intractable, most studies use the 
assumption of independent arrival of empty slots at a tagged node.  For the Distributed Queue Dual 
Bus protocol, an exact analysis based on Markov chain model is provided in [7], but it does not 
appear to scale well for a larger network size.  
For the CSMA with Collision Detection (CSMA/CD) protocol, a number of performance studies 
have been published for both slotted and unslotted ring. An analysis treating each node as an 
independent M/G/1 queuing system, which services fixed-length packets, is presented in [11].  This 
work takes into account the interference from other nodes in terms of the service time distribution; 
it also considers the propagation delay between two adjacent nodes.  Another approach applying 
complex analysis of the packet output process of unslotted CSMA/CD is used in [12], under the 
assumption of variable length packets. Authors of [12] derive the Laplace-Stieltjes transform (LST) 
of the packet inter-departure time and of the packet delay. 
The aforementioned studies are not easily and directly applicable to model the network studied in 
this work, mainly due to the difference in access schemes (e.g., slotted versus unslotted, collision 
detection versus collision avoidance, etc.). More recently, several authors used priority queuing 
                                                                 
1 Note that the OU-CSMA/CA discussed here is unrelated to the one that is used in wireless protocols such as 802.11 
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systems to analyze the performance of bus-based networks.  In [13, 14, 15 and 16], authors have 
presented performance analysis of OPS bus-based networks employing optical CSMA/CA protocol 
(e.g., the DBORN architecture [2]).  Using Jaiswal’s [17] and Takagi’s [18] results on M/G/1 
priority queues, the authors derive mean packet delay at each node for both slotted [13, 14, 15] and 
unslotted [14, 15, 16] modes, which support both fixed and variable length packets. In particular, 
both [15] and [16] use the same approach to derive the upper and lower bounds of the packet delay 
at downstream nodes on the unslotted bus-based network.  
The work presented in this paper focuses on the performance analysis of OPS bus-based network 
using OU-CSMA/CA protocol such as described in [2] or [3], supporting variable length packets 
(i.e., Ethernet-based network). The whole network can be modeled as a multiple-priority M/G/1 
queuing system with Preemptive-Repeat-Identical (PRI) service discipline. Our approach to the 
analysis of this model provides an insight into the correlation between local transmission at a 
downstream node and transit traffic flowing from upstream nodes through the number of service 
interruptions before a successful transmission.  In addition to the mean packet delay that was 
studied in [13, 14, 15 and 16], we are able to compute the queue length probability at each node via 
simple recurrent equations. This result may help network designers select buffer sizes so as to meet 
a loss rate criterion.  
To solve the above model, we use a recurrent level-by-level (node-by-node) analysis technique, 
where the interference from upstream nodes (which causes service preemptions at downstream 
nodes) is taken into account in terms of reappearance and disappearance rates for the server 
(bandwidth for transmission), as well as in terms of change of service time distribution for 
preempted services.  The solution for each level is based on conditional probabilities and a fixed 
point iterative method, and requires only a limited number of iterations. The advantage of this 
method, compared to classical methods for solving M/G/1 priority queue, is that it provides a 
computationally efficient approach to the evaluation of the stationary queue-length distribution.  
This paper is organized as follows.  Section 2 describes the network architecture and our analytical 
model.  Section 3 presents the outline of the recurrent solution of this model (the detailed solution is 
given in the Appendix) yielding approximate queue-length distributions, as well as an approximate 
distribution of the number of transmission attempts at each node.  Section 4 provides numerical 
results, and compares the solution of the proposed analytical model with simulation and with the 
model proposed in [13].  Finally, Section 5 is devoted to conclusions and discussion of future work. 

2. NETWORK ARCHITECTURE AND ANALYTICAL MODEL 

2.1 Network Architecture 

The network considered consists of two unidirectional buses: a transmission (upstream) bus that 
provides a shared transmission medium for carrying traffic from several access nodes to a point of 
presence (POP) node; and a reception (downstream) bus carrying traffic from the POP node to all 
access nodes (e.g., the DBORN architecture [2]). Thus, an access node always “writes” to the POP 
node employing the transmission bus and “listens” for the POP node using the reception bus. The 
traffic emitted on the transmission bus by an access node is first received by the POP node, then is 
either switched to the reception bus to reach its destination node, or is routed to other MAN or 
backbone networks. 

In this paper we only analyze access nodes performance on the transmission (upstream) bus where 
the problem of access control arises. The reception (downstream) bus is a simple broadcast or 
diffusion communication, which does not need to be deeply investigated. Therefore, we can 
describe the transmission bus under study as a unidirectional fiber connecting several nodes 
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(stations) to a POP node (Figure 1: Unidirectional OPS bus-based network). All nodes share a 
single wavelength (operating at 2.5 Gbps or 10 Gbps) to transmit local traffic to the POP node. For 
reasons of simplicity and cost-efficiency, bus nodes use passive optical technology that reduces the 
number of transceivers at each node. Specifically, there is no packet-drop operation at bus nodes; 
each node can only add/insert local traffic into the wavelength without intercepting transit traffic of 
upstream nodes.  
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Figure 1. Unidirectional OPS bus-based network 

 

Since the single wavelength is shared between many nodes, a MAC protocol is required to control 
the access of bus nodes to the wavelength.  Thus the OU-CSMA/CA protocol (Figure 1), which is 
based on void (i.e., free segment of bandwidth) detection, is used to ensure an asynchronous 
collision-free packet insertion into the transmission wavelength.  This protocol has two interesting 
characteristics: 1) It is a fully-distributed protocol that simplifies the implementation and 
management of the network; 2) Its asynchronous nature offers the capability to support data traffic 
with variable size packets in the network, without the need for complex segmentation/assembly 
process. Based on the second property, a mature technology like Ethernet is used for the data plan 
of the network. This means that the network supports variable size optical packets, each consists of 
one conventional Ethernet packet encapsulated by an optical overhead [2]. It is worth noting that the 
maximum packet length supported by the network is limited by the Maximum Transmission Unit 
(MTU) of Ethernet, which is around 1500 bytes. 

With OU-CSMA/CA protocol, a node begins transmitting a packet if and only if it detects a void on 
the transmission wavelength that is at least equal to the packet size (including an optical overhead if 
necessary).  Generally speaking, voids seen by a node are free segments of bandwidth between 
transit packets coming from upstream nodes.  Therefore, the most upstream node that begins the 
shared wavelength is always able to transmit, since it always has available bandwidth at any time 
(i.e., infinite void length). 

2.2 Network Model  

The transmission bus uses only one wavelength shared by the N access nodes. From modeling 
perspective, it is convenient to view the operation of the OU-CSMA/CA protocol as follows. A 
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node begins transmitting a local packet as soon as it detects a void. The transmission is interrupted 
when a transit packet arrives from an upstream node (i.e., the void is not large enough), and the 
packet returns to the queue waiting for the next void.  At detection of the next void, the node starts 
again transmitting the local packet whose transmission was interrupted. This process is repeated 
until the packet is successfully transmitted (i.e., a large enough void is found). Thus, for 
performance modeling purposes, a transmission of a packet in the OU-CSMA/CA protocol may be 
viewed as a number of interrupted (preempted) transmission attempts followed by one successful 
transmission.  

The behavior of the real network is very similar to that of a priority queuing system, in which a 
single server (i.e. the shared wavelength) services N queues (i.e. the N bus nodes) with Preemptive-
Repeat-Identical (PRI) priority service discipline. Each node in this system defines a separate 
priority level according to its position on the bus. Nevertheless, the queuing system with PRI 
priority discipline does not exactly match the operation of the real network under study. Indeed, in 
the queuing system with PRI discipline, a low level (a downstream node) can start transmitting if 
and only if there is no client packet at higher levels (upstream nodes). This means that the server 
(bandwidth) viewed by a low level client remains occupied until all higher level clients have been 
successfully serviced. But in the real network, the bandwidth viewed by a downstream node is 
occupied only during the successful transmission periods of client packets at any upstream node, 
and the bandwidth remains available during interrupted transmission periods of client packets at 
any upstream node (i.e. client packets at downstream nodes may be serviced even if upstream nodes 
are attempting to transmit their client packets). More precisely, when an upstream node detects a 
void and cannot use it for transmission (i.e. transmission attempt is interrupted) because the void 
length is not long enough, this void (or, in other words, the time elapsed from the moment where 
the node attempts to transmit the packet till the transmission is interrupted) may be used by a 
downstream node for transmitting smaller packets whose lengths fits this void. Thus, from queuing 
model perspective, the real network behavior corresponds to a queuing system with a special 
priority service discipline, which appears more complicated than the PRI discipline. Note, however, 
that if the network supports only fixed length packets, then the real network behavior perfectly 
matches that of the queuing system with PRI discipline, because in this case a void shorter than the 
packet length is unusable for any node.  

In this paper, we approximately represent the OPS bus-based network supporting variable length 
packets as a queuing system with the PRI discipline. The case with more complex priority discipline 
is left for future work. Starting with most upstream (and highest priority) node, we number the 
nodes 1 through N so that an upstream node i has priority over a downstream node j, 1 ≤ i < j ≤ N. 
We assume that each node has an infinite buffer, and client packets stored in the buffer are serviced 
in First-Come-First-Serve (FCFS) order.  

Since the network under consideration is supposed to be a future metro network receiving a high 
aggregation of traffic coming from high-speed access networks such as Fiber To The Home 
(FTTH), we can reasonably assume that local packets at node i arrive according to a Poisson 
process with rate iλ , and that their service times are mutually independent and have a general 
distribution with known finite mean (mi) and variance (Vari). Thus our network model is an M/G/1 
system with  priority levels and PRI FCFS service discipline.  N
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To solve this model, we propose a new approach, different from classical approaches for solving the 
M/G/1 priority queue, which allows us to approximately compute not only the mean queue length 
but also the steady-state queue length distribution at each node. In our method, we analyze bus 
nodes one by one, and we use a specific state description to represent the interference from 
upstream nodes (if any).  In the following sections, we present a model of the general service 
distribution at each node, highlighting the effect of PRI discipline on the service distribution at 
downstream nodes. 

2.2.1 Modeling of Original Service Time Distribution 

To model the service time distribution at each node, we use a Coxian distribution [19] with the 
minimum number k of exponential stages needed to match the first two moments of the service time 
distribution as shown in Figure 2 (k-stages Coxian system modeling service time distributions at 
each node).  The resulting form of the Coxian depends on the coefficient of variation Cv of the 
distribution being represented.  In the case where Cv ≥ 1, we use a two-stage Coxian distribution (k 
= 2 in Figure 2) with three parameters μ1, μ2 and p2. For )1(11 −<≤ kCk v , we use a k-stage 
hypoexponential distribution [20] (p2 = 1 in Figure 2) with two parameters μ1 and μ2. As the number 
of stages k  increases, the Cv of this distribution tends to zero, which corresponds to the case of 
fixed-length packets. The parameters of these Coxian distributions are readily derived from the first 
and second moments of the original service-time distributions as follows. 

 
Figure 2. k-stages Coxian system modeling service time distributions at each node 

 

Consider the case with Cv ≥ 1.  We use a two-stage Coxian distribution (Figure 2 with k = 2). Let 
11 /1 μ=t  and 22 /1 μ=t  be the mean service times at each stage, we have the following equations: 
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2.2.2 Modeling of Interrupted Service Time Distribution 

As stated earlier, the service at nodes i > 1 may be interrupted due to arrivals of client packets at 
upstream nodes. Thus, a node may have to attempt the transmission of a packet several times, each 
time the transmission being interrupted by transit traffic from higher priority upstream nodes until a 
long enough void comes along (no interruption). Clearly, after every interrupted transmission, the 
node reattempts the transmission of the same packet at the next void.  Somewhat paradoxically, to 
describe the fact that it is the same packet whose transmission is reattempted, we need to represent a 
potentially different packet length (and hence service time) distribution (for packets whose 
transmission got interrupted) at each consecutive attempt. 

Original service: Service completion time U1

μ α Interruption source:
(Service completion time U2)

 
a. System with original service time distribution 

when interrupted (Y)

μα α

time until
interruption (X)

time remaining

α+μ

 
b. Service time distribution on the second transmission attempt 

when interrupted (Y)

α+μ μ

μα+μ

2α+μ

time remaining

time until time remaining

θ2

α α α

α α α

θ1

θ1 ∼ α/(2α+μ), θ2 ∼ [(α+μ)/(2α+μ)][α/(α+μ)], θ1 + θ2 = 1.

interruption (X) when interrupted (Y)

time until
interruption (X)

α+μ

 
c. Service time distribution on the third transmission attempt 

Figure 3. Evolution of service time distribution following interruptions 

 

To understand what is going on, perhaps the simplest example is to examine the case where the 
original service times are exponentially distributed with parameter μ and interruptions arrive from a 
Poisson source with rate α. 
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On the first transmission attempt of any client packet, the service time distribution is the original 
exponential distribution with parameter μ (Figure 3.a: System with original service time 
distribution). This service may be interrupted by the Poisson source with rate α. Note that on the 
first attempt, we are dealing with the whole population of client packets. 

On the second attempt, we are dealing with a subset of client packets whose transmissions got 
interrupted for the first time (i.e., we exclude all client packets that have been successfully 
transmitted at the first attempt). To derive the service time distribution of this subset of client 
packets, we consider the time until the interruption (X) and the time remaining when the 
interruption occurred (Y). Consider a small interval of time ],( ttt Δ+ . The probability that a first 
service interruption will happen during this interval can be expressed as  
where .  The overall probability that a first service will be interrupted is simply the 

probability that an exponentially distributed process with parameter 

)( toeet tt Δ+Δ −− μαα
0/)(

0→Δ
→ΔΔ
t

tto

α  (the Poisson interruption 
arrivals) finishes before the exponentially distributed service process with parameter μ , which is 

readily seen to be 
μα

α
+

. Hence, the conditional density of the time to interruption given that the 

service is interrupted is , i.e., the time until interruption X is exponentially 
distributed with parameter α + μ. Because of the memoryless property of the original service time 
distribution, the remaining service time Y at the point of interruption is exponentially distributed 
with the original parameter μ. Therefore the resulting service time distribution of the subset of client 
packets after the first interruption (or, in other words, on the second transmission attempt) is the 
hypoexponential distribution shown in Figure 3.b (Service time distribution on the second 
transmission attempt).  

te )()( μαμα +−+

On the third attempt, we are dealing with a subset of client packets whose transmissions got 
interrupted for the second time (i.e., we exclude all client packets that have been successfully 
transmitted on the first and the second attempt). In other words, we are dealing with the two-stage 
hypoexponential distribution in Figure 3.b interrupted by a Poisson arrival process with rate α. This 
interruption could have taken place while the service was in the first or the second stage of the two-
stage hypoexponential. Thus, as shown in Figure 3.c (Service time distribution on the third 
transmission attempt), with probability θ1, the interruption could have taken place while the service 
was in the first stage of the two-stage hypoexponential.  This results in an exponentially distributed 
time to interruption with parameter 2α + μ, followed by an exponentially distributed residual of the 
first stage (parameter α + μ ) and the full second stage.  With probability θ2 the interruption could 
have taken place while the service was in the second stage.  Then the time before interruption 
consists of the full first stage, followed by the part of the second stage preceding the interruption 
(exponential with parameter α + μ), and the time after the interruption is the exponentially 
distributed residual with parameter μ.  An analogous process continues at subsequent interruptions. 

In a similar way we can derive and represent the distribution of service times at each interruption 
when Cv > 1  and Cv < 1. We observe that, with the obvious exception of a constant packet length 
(hence, service time), for all distributions of packet lengths, the mean increases while the coefficient 
of variations decreases on each subsequent transmission attempt. In our exponential service 
example, after the first interruption the mean nearly doubles when α is small. We also observe that 

 8



 

both the increase in the mean and the decrease in the coefficient of variation slow down at each 
subsequent attempt. This makes perfect physical sense: as transmissions are attempted, shorter 
packets are more likely to be successfully transmitted and longer packets need more attempts. The 
elimination of shorter packets accounts for both the increase in the mean and the decrease in 
variability of the packet length of the subsets of client packets.  In the limit, we expect the packet 
length to tend to the maximum packet length (MTU) at subsequent attempts at the given node with 
variance tending to zero. 

Figure 4 (Mean and square coefficient of variation of the service time as a function of the number of 
transmission attempts) illustrates the evolution of the mean and the squared coefficient of variation 
of the service time at each transmission attempt for an initial distribution with an initial squared 
coefficient of variation of 3.3. For the example considered, at the second attempt the mean service 
time is close to 4 times the initial average while the squared coefficient of variation is less than half 
the initial value. At the third attempt, the mean is over 7 times the original value while the squared 
coefficient of variation drops to less than 20% of the original. 

 
Figure 4. Mean and square coefficient of variation of the service time as a function of the number of 

transmission attempts 
 

3. OUTLINE OF MODEL SOLUTION 

In order to obtain a tractable approximate solution to our model in the steady state, we analyze the 
bus nodes one by one, starting with node 1 for which there is no upstream transit traffic.  We focus 
on node i (i = 1 … N), and, to simplify our notation, we omit the node subscript i whenever this 
does not create confusion.  

3.1 Solution for Node 1 

Balance equations derivation 

Since node 1 always “sees” the bus bandwidth free, we simply describe the equilibrium behavior of 
this node by the joint steady-state probability p(n,l), where n (n ≥ 1) is the number of packets at this 
node and l refers to the stage of service of the Coxian service time distribution shown in Figure 2.  
We denote by p(n) the marginal distribution for the number of packets at the node, and by p(l|n) the 
corresponding conditional probability for l given n.  Using the fact that p(n,l) = p(n)p(l|n), we are 
able to readily obtain the equations for p(l|n) and p(n).  
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Fixed-point iteration method for solution of the balance equations 
We detail in the Appendix A a simple recurrent solution using fixed point iteration method for these 
equations.  This solution is based on the general notion of state equivalence [21], and its specific 
application to M/G/1-like queues [22].  This solution allows us to compute the conditional rate at 
which packets are served (i.e., effectively transmitted) given n, which we denote by u(n), and, 
hence, p(n).   
The computation scheme can be described by the following pseudo code: 

 factor = sum = 1.0; 

 mean_occupancy = 0.0; 

 for (n=1; n < n_max; n++) { 

  Solve equations for conditional probabilities p(l|n); 

  Compute u(n); 

  factor *= λ / u(n); 

  sum += factor; 

 mean_occupancy += n*factor; 

 if ( ε<−− )1()( nunu )  break; 

} 

 Complete computation of “infinite part” of sum and mean_occupancy; 

 sum = 1.0/sum; 

 mean_occupancy = sum;  /* normalize */ 

 prob_node_idle = sum;  

 Compute server reappearance rate for node 2, i.e. 2β ; 

In our computation, we used  for the test of convergence of u(n)  to its limiting value.  
The computation of the infinite part of the normalizing constant, as well as the mean node 
occupancy, is straightforward given the geometric-series form of the tail of the node occupancy 
distribution [22]. 

1010−=ε

3.2 Solution for Node i > 1  

Balance equations derivation 

As stated earlier, in our PRI model, a node i > 1 may find the server (bandwidth) available or 
occupied. In our model, the server is available if and only if there are no client packets at all nodes 1 
… i-1, and is occupied otherwise. When the server is available, it serves client packets with a 
constant rate R which is the wavelength bit rate. Thus, viewed from node i > 1, an available server 
becomes occupied whenever a client packet arrives at an upstream node j < i, hence interrupting the 
service at node i; and an occupied server becomes available whenever the last client packet at the 
upstream nodes i-1 has been successfully transmitted (recall that, in our model, client packets at 
node i-1 are serviced if and only if all upstream node queues are empty).  
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Let αi and βi respectively be the disappearance and reappearance rates of the server viewed by node 
i > 1. Since the arrivals to each node come from a Poisson source, the disappearance rate αi of the 
server is exactly given by . The reappearance rate βi  can be expressed in terms of the 

conditional transmission rate u(n). As an example, for node 2 we have

∑
<ij

jλ

)]0(1/[)1()1( 1112 ppu −≈β  
(see Appendix D for more details). 
Since the service distribution changes at consecutive transmission attempts in our model, to 
represent the Preemptive-Repeat-Identical discipline at node i > 1, we choose a state description 
that explicitly accounts for possible service interruptions and retrials at the node.  The parameters of 
the service time distribution change with each transmission attempt as discussed above. We denote 
by kj the number of exponential stages required to represent the service time distribution at the j-th 
transmission attempt (j = 1,2…).  We describe the state of node i by the triple (n, j, l) where n is the 
current number of packets at the node, j is the transmission attempt, and l is equal to the current 
number of the service stage at this attempt (1,…, kj) or 0 if the server (bandwidth) is unavailable.  
Recall that, in our model, the server becomes unavailable with rate αi , and available again with rate 
βi. 
Fixed point iteration method for solution of the balance equations 
Using the fact that p(n,j,l) = p(n)p(j,l|n), we are able to transform the balance equations for p(n,j,l) 
into equations for the conditional probability p(j,l|n).  We then derive a recurrent solution using a 
fixed-point iteration method for increasing values of n ≥ 1.  To limit the size of the state space for 
each n, we explicitly compute the parameters of the service time distributions at transmission 
attempts up to a certain value j*, and we use “catch all” average values for the parameters of the 
service time distribution at transmission attempts above j*. As stated above, the mean value of the 
service time distribution increases and its coefficient of variation decreases as the number of 
transmission attempts increases. Theoretically, for a Coxian distribution this mean value might 
increase to infinity. But, in our real network, this mean value is naturally limited by the service time 
of the maximum transmission unit (MTU) of the transmission protocol used. Thus, if j* is chosen 
large enough, all service time distributions at transmission attempts above j* may be replaced by a 
constant service which is the service time of the maximum length packet MTU. We also limit the 
number of stages in the Coxian distribution to k* (so that the minimum value of Cv in our model is 

*/1 k ). 
From the conditional probability p(j,l|n) computed using the above recurrent solution, we readily 
obtain the conditional rate of transmission completions u(n), and, hence, the marginal probability of 
the number of packets at the node p(n), as well as an approximate value for βi+1, the rate at which 
the server becomes idle, i.e. available for downstream nodes.  We give in the Appendices B and C 
additional details of our solution, and in Appendix D an outline of the estimation of the value of 
βi+1. 

The computation scheme can be described by the following pseudo code: 

Compute rate of server disappearance for this node, i.e. iα ; 

Compute ]/[)0|0( λβαα ++== iiilp ; 

factor = sum = 1.0; 

mean_occupancy = 0.0; 
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for (n=1; n < n_max; n++) { 

  Solve equations for conditional probabilities ; )|,( nljp

  {  

  let  and )|1,0( nljpx === )(nuy = ; 

    For all , Express   1,...,1 * −= jj )|,( nljp

   as ; ybxanljp ljlj ,,)|,( +

  Use 

   [ ] 1
1 0

,, =+∑∑
≥ =j

k

l
ljlj

j

ybxa

  [ ] )1(
1 0

,,
j

l
j

l
j

k

l
ljlj qybxay

j

−+=∑∑
≥ =

μ  

  to determine )|1,0( nljp ==  and  )(nu ;

  }  

  factor *= )(/ nuλ ; 

  sum += factor; 

  mean_occupancy += n*factor; 

  if ( ε<−− )1()( nunu )  break; 

} 

Complete computation of “infinite part” of sum and mean_occupancy; 

sum = 1.0/sum; 

mean_occupancy = sum;  /* normalize */ 

prob_node_idle = sum;  

Compute server reappearance rate for next node (if applicable); 

In the next section, we present numerical results obtained from our model, and compare them with 
results obtained from a detailed network simulation, as well as from another analytical model [13]. 

4. RESULTS 

4.1 Model Accuracy 

In our approach to the solution of a model of an optical bus, outlined in the preceding section, we 
are able to approximately analyze each node one by one. At node , the presence of upstream 
nodes is represented as the server (bandwidth) becoming busy with rate 

1>i
iα  and then available with 
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rate iβ . Since we are only able to compute the rate iβ  approximately, this is one potential source of 
inaccuracy of the model.  

Another potentially important point is the fact that we match only the first two moments of the 
distribution in our representation of the service times.  For the M/G/1 Preemptive Resume, as well 
as for Head-of-Line Non-Preemptive priority queue, it is well known (e.g. [23]) that the expected 
number of customers of each class in the system depends on the service time distribution only 
through its first two moments.  To assess the effect of higher moments in our Preemptive-Repeat-
Identical model, we focus on the simple case of the first two nodes.  
 

Table 1. Influence of high moments of service time distribution in PRI model  
Packet rate 

(λ1 = λ2) 
Model 

Mean packets number at node 2 
(Distribution I) 

Mean packets number at node 2 
(Distribution II) 

0.06733 Full two-node model 0.1073±  0.0002 0.1058  0.0002 ±

 Model of node 2 alone 0.1043 ±  0.0003 0.1023  0.0003 ±

0.13466 Full two-node model 0.4179 ±  0.0091 0.4292  0.0123 ±

 Model of node 2 alone 0.4009 ±  0.0026 0.4038  0.0038 ±

0.20199 Full two-node model 2.5726 ±  0.3549   1.6053  0.0750 ±

 Model of node 2 alone 2.6417 ±  0.4280 1.4507  0.1157 ±

 
We consider a full two-class PRI queuing model, as well as a model of node 2 with the approximate 
server reappearance rate 2β  computed from the recurrent solution of node 1. In this way, in 
addition to the potential influence of higher moments, we are able to study the effect of the 
approximate computation of the rate with which the server becomes available (by comparing the 
results for node 2 in both models). We use discrete-event simulations of both models for two 
different random two-stage Coxian distributions with the same mean and variance.  The parameters 
of these distributions are given as follows. The parameters for Distribution I are μ1 = 1.9606, μ2 = 
0.4915, p2 = 0.328. For Distribution II the corresponding parameters are μ1 = 9.8573, μ2 = 0.6316, 
p2 = 0.5802.  Both distributions have a mean of 1.0201 and a variance of 2.0755, but Distribution I 
has a third moment of 17.4364 (and hence a skewness of 3.3521), while Distribution II has a third 
moment of 14.787 for a skewness of 2.4594. Table 1 (Influence of high moments of service time 
distribution in PRI model) illustrates the results for the expected number of packets at node 2 
obtained as the rate of packet arrivals to both nodes increases.  All simulation results in Table 1 
include confidence interval estimated at 95% confidence level using 7 independent replications of 
800,000 successful packet transmissions each.  
We observe that the inaccuracy caused by the approximate server reappearance rate 2β  seems to be 
quite limited (on the order of a few percent, and, in several cases, the confidence intervals for both 
models overlap).  As the packet arrival rate increases, the shape of the distribution of service times 
beyond the first two moments appears to have a much greater influence: over 25% relative 
difference in the expected number of packets at node 2 for the example considered. 
 

Table 2. Two random different packet length distributions with the same mean and variance 
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Distribution Mean (μs)  Cv
2 Packet length distribution 

III 2.56 0.4375 
63.64% packets of 400 bytes 

36.36% packets of 1500 bytes 

IV 2.56 0.4375 
36.36% packets of 100 bytes 

63.64% packets of 1200 bytes 

 
Table 3. Influence of higher moments of service time distribution in real network 

Mean packet arrival rate 
(packets/μs) 

Mean response time (μs) at node 4 
Distribution III Distribution IV 

0.058 20.04 ±  0.1316 19.50 ±  0.0849 

0.068 51.39 ±  0.6901 47.78 ±  0.3457 

0.078 1633.00 ±  204.2 965.80 ±  90.43 

 

Interestingly, we have also observed the effect of higher moments of service time (packet length) 
distribution in the real network environment. For example, we simulate the network with 4 nodes 
transmitting on one wavelength at 2.5Gbps, and all nodes are subjected to the same packet arrival 
process. We consider two different random packet length distributions with the same mean and 
variance as shown in Table 2 (Two different packet length distributions with the same mean and 
variance). Table 3 (Influence of higher moments of service time distribution in real network) shows 
the mean response time observed at the last node (node 4) as the packet arrival rates at all nodes 
increase. Clearly, in the real network, the shape of the packet length distribution (or service time 
distribution) beyond the first two moments also has a significant impact on the mean response time 
at bus nodes when the packet arrival rate increases (hence, the network load increases). In this 
example, the relative difference in mean response time at node 4 is about 40%. 

There are also some potential sources of inaccuracy of the model related to numerical computation. 
The use of a “catch all” average service time distribution for transmission attempts  is one 
potential source. This one is more likely to have an effect when a larger number of interruptions can 
be expected (e.g. low priority node, heavier bandwidth utilization, service time distributions with 
higher variability …). Our limitation on the maximum number of stages  in the Coxian 
representation of the service time at a given transmission attempt may also introduce some 
inaccuracies, notably when  becomes very small (e.g.  < 

*jj >

*k

vC vC */1 k ).   

4.2 Performance Evaluation 

We now attempt to analyze the accuracy of our PRI model in evaluating the performance of the 
OPS unslotted bus-based network discussed earlier.  We use discrete-event network simulator tool 
(NS 2.1b8 [24]) to simulate the network with 8 nodes transmitting on one wavelength at 2.5 Gbps.  
The simulation results are then compared to the results obtained from our PRI model, and from the 
model proposed in [13] using Jaiswal’s results on priority queues (we refer to it as the C-H model).  
All mean values in our simulation results are estimated with confidence intervals of no more than a 
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few percent wide around the midpoint at 95% confidence level using Batch Means method [25] 
(i.e., each mean response time value is computed by collecting at least 7 batches of 800,000 
successful packet transmissions each).  In the first set of results, illustrated in Figures 5 and 6, we 
assume that all nodes share the same rate of packet arrivals and service time distribution (uniform 
traffic profile at all bus nodes).  

 
Table 4. Original service time distributions used for performance study 

Distribution Mean (μs) Cv
2 Packet length distribution 

1 2.13 0.125 67% packets of 500 bytes 
33% packets of 1000 bytes 

2 0.8418 0.7295 53% packets of 50 bytes 
47% packets of 500 bytes 

3 1.434 1.182 45% packets of 50 bytes 
40% packets of 500 bytes 
15% packets of 1500 bytes 

4 1.02 1.994 64% packets of 50 bytes 
26% packets of 500 bytes 
10% packets of 1500 bytes 

5 1.23 2.524 77% packets of 50 bytes 
23% packets of 1500 bytes 

 
Table 4 (Original service time distributions used for performance study) describes service time 
distributions (packet size mixes) used in this study.  The square coefficients of variation of these 
distributions vary from close to zero to higher than 1, implying the use of both two-stage Coxian 
and hypoexponential distributions to model the service time distribution in our PRI model.  
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Figure 5. Mean response time at each node as a function of offered network load for service time 

distribution 4 
 
Notice that distribution 4 is closest to the “real life” service time distribution of Internet traffic (e.g. 
[26]).  Figure 5 (Mean response time at each node as a function of offered network load for service 
time distribution 4) shows the mean response time of the system at each bus node for packet length 
distribution 4 as the offered network load increases.  The offered network load is defined as the 
ratio of the sum of traffic volume offered to all nodes to the network transmission capacity. The 
mean response time at a node is defined as the expected time elapsed from the moment when a 
client packet arrives at the queue of the node until it is successfully transmitted on the bus.  For this 
experiment, we first observe that both simulation and our analytic model capture the expected 
behavior of mean response time in OPS bus-based networks: the mean response time is likely to 
increase rapidly as the node’s priority decreases.  Moreover, the mean response time tends to 
“explode” at the lowest priority nodes as the offered network load increases.  For instance, for 
packet size mix distribution 4, simulation results show that the mean response time at node 8 is 
about 13.7 μs with offered network load of 0.45, and some 640 μs with offered network load of 
0.60.  An explanation for these results is that the transmission at low priority nodes may be delayed 
(in our model, interrupted) by the arrivals of packets from higher priority nodes, thus a successful 
transmission at low priority nodes takes on average a longer time than at higher priority nodes. The 
number of service interruptions becomes more and more important as the offered network load 
increases, leading to excessive response time at the lowest priority nodes.  
Additionally, we observe in this experiment that when the offered network load is low, the results 
obtained with our analytical model are very close to those obtained with simulation. For instance, 
the difference between analytical and simulation results is on the order of only a few percent for all 
offered network loads below 0.55. But this difference becomes more significant at the last bus 
nodes as the network load increases (e.g. some 28% relative difference in the mean response time at 
node 8 when the offered network load is 0.55). We also notice that in comparison with simulation 
results, our model provides remarkably better results than those obtained with C-H mode at most 
downstream nodes (node 5 to 8). On the contrary, the C-H model provides results lightly closer to 
simulation results than our model at first upstream nodes (node 1 to 4). 
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Note that, with the network load at 0.6, the precise shape of the service time distribution (in terms 
of moments higher than the first two) starts playing an important role at the most downstream node 
where the bandwidth (server) is close to saturation. While the network simulation indicates a mean 
response time of some 640 μs at node 8, both analytical models peg the node as unstable. 
Interestingly, a direct simulation of the PRI system with the same service time distribution as in the 
analytical model (i.e., matching only the first two moments of the service time distribution in the 
network model) also shows that the node 8 becomes overloaded.  
It is worth noting that the saturation at the most downstream node is not due to the lack of physical 
bandwidth (server) capacity, because the bus is actually loaded at merely 60% of its transmission 
capacity. As stated at the beginning of the paper, this saturation is mostly due to the fact that the 
physical bandwidth has been fragmented into small segments of bandwidth (voids) between 
asynchronous transmissions of packets at upstream nodes. Those voids are unusable for most 
downstream nodes to insert big client packets (i.e., in our model, this is equivalent to a large 
number of interruptions during the service of big client packets), leading to the “head-of-the-line” 
(HOL) blocking phenomenon. Clearly, the effect of this phenomenon on most downstream nodes 
depends not only on the network load, but also on the shape of the packet length distribution. We 
now specifically study the impact of packet length distribution (or, equivalently, service time 
distribution) on the network performance. 

To assess the behavior of our PRI model with respect to the service time distribution, we focus on 
the analysis of the mean response time obtained with the same offered network load but with 
different service time distributions.  Figure 6 (Mean response time at each node as a function of 
service time distribution for offered network load of 0.55) illustrates the mean response time at each 
node with the offered network load of 0.55 as a function of service time distribution.  In this study, 
we set the offered network load at 0.55 because, as shown by the results of our preceding 
experiment, beyond this load level the stability condition might not be satisfied for some nodes.  As 
before, the workload is uniform, i.e., statistically identical for all nodes. 

 
Figure 6. Mean response time at each node as a function of service time distribution for offered 

network load of 0.55 
 

We observe for the uniform workload considered that the first few nodes on the bus experience little 
queuing time and few interruptions (for nodes other than the first one). This means that the server 
viewed by the first few upstream nodes is highly available, servicing clients at those nodes rapidly. 
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Therefore, the mean response time (which is the sum of mean queuing time and mean service time) 
at these nodes depends mostly on the mean of the service time (and not higher moments).  Indeed, 
in Figure 6, we notice that for the first upstream nodes (up to node 4), distribution 1 with highest 
mean of service time (but lowest variance) provides highest mean response time, followed by 
distribution 3, 4 and 2. For lower priority nodes, the mean response time becomes clearly more 
sensitive to higher moments of the service time distribution. In particular, when the variance of the 
service time distribution is high, we observe very high response time at the lowest priority nodes 
compared to the response time of higher priority nodes. For example, in Figure 6, for distribution 5 
with highest Cv

2 of 2.524 (but not highest mean), the simulation shows that the mean response time 
at node 8 is the highest compared to other distributions, and is some five times higher than the mean 
response time at node 7, and nearly 120 times higher than the response time at node 1. 
The above effect of service time distribution with high variability on the mean response time at 
most downstream nodes is readily explained by the bandwidth fragmentation phenomenon. The 
high variability of service time distributions in our experiments means that there is an important 
percentage of small/medium packets (e.g. 50/500 bytes) and a smaller percentage of big packets 
(e.g. 1500 bytes) in the offered traffic (see Table 4).  From physical perspective, this translates into 
the fact that the available and usable bandwidth for low priority nodes is strongly reduced because it 
becomes considerably fragmented into small voids due to the asynchronous insertion of 
small/medium packets at higher priority nodes.  In reality, when an upstream node detects a void, it 
may insert a packet at the beginning, at the middle or at the end of this void depending on whether a 
packet is available in the queue at that moment. The insertion of a small/medium packet into a big 
void will break the void into two small voids, which may be unusable for the transmission of bigger 
packets at lower priority nodes. Thus the high variability of service time distribution leads to high 
probability of the HOL blocking phenomenon at the most downstream node, resulting in excessive 
mean response time at that node. Notice that HOL blocking may not occur if downstream nodes 
have small packets only. 
As far as the accuracy of our model is concerned, we observe in Figure 6 that the difference 
between our model and simulation results is limited to a few percent when the service time is not 
highly variable (e.g. distribution 1 and 2), but it becomes larger as the service time becomes more 
variable (e.g. 11% and 28% relative difference for distribution 3 and 4 respectively). However, our 
model still provides significantly better result than the C-H model for highly variable service times. 
For instance, the relative difference between the C-H model and simulation results is about 26% and 
50% for distribution 3 and 4 respectively. As mentioned earlier, part of reason for the behavior of 
these analytical models (which only match the first two moments of the service time distribution) 
may be due to the influence of moments higher than the first two. 
In the numerical results shown in Figure 7 (Mean response time at each node as a function of traffic 
patterns at offered network load of 0.55), we study the effect of varying patterns of the offered 
traffic on the network performance.  We consider the “real life” service time distribution 4, and we 
set the offered network load to 0.55.   In addition to the uniform traffic considered before, we 
include the case where the traffic increases uniformly as we move downstream on the bus, the case 
where traffic decreases uniformly as the node priority decreases, the case where the highest priority 
node carries 70% of the traffic the remaining nodes sharing uniformly the remaining 30% of the 
load, and, finally, the case where node 4 carries 70% of the traffic while other network nodes share 
the remaining 30%.  We show the mean response time estimated from the network simulation, 
obtained from our approximate PRI model, as well as from the C-H model. 
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Figure 7. Mean response time at each node as a function of traffic patterns at offered network load 

of 0.55 
 
We observe that uniformly decreasing traffic (lower priority nodes carry less traffic) and the 
uniform traffic pattern appear most penalizing in terms of mean response time at the lowest priority 
nodes.  Interestingly, uniformly increasing traffic and the case where the middle node (node 4) 
dominates the network seem to fare best.  We also observe that, with the possible exception of the 
last node, the results of our model tend to closely track simulation results, and are in most cases 
closer to simulation than those of the C-H model (in this experiment, the C-H model provides 
results closer to simulation results than our model only in the case where the first node dominates 
the network). 

          
 

a. Uniform 

        
 

b. Increasing uniformly 
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c. Decreasing uniformly 

          
 

d. Node 1: 0,7; Others: Uniform 

      
 

e. Node 4: 0,7; Others: Uniform 
Figure 8. Queue length distribution at the three lowest priority nodes for different traffic patterns at 

offered network load of 0.55. 
 
One of the advantages of our approach is that it produces the approximate marginal distribution for 
the number of packets at each node in the simple product form akin to that of an M/M/1-like queue 
with a state-dependent service time.  Such a distribution can then be used to dimension buffers at 
each node, as well as to assess packet loss ratios.  In our approach, we analyze nodes one by one, 
representing upstream nodes through rates at which the server vanishes and reappears.  Clearly, one 
might be concerned that for lower priority nodes, accumulated approximations might excessively 
distort the queue-length distribution.  In Figures 8.a to 8.e (Queue length distribution at the three 
lowest priority nodes for different traffic patterns at offered network load of 0.55), we compare the 
distribution of the number of packets at the three lowest priority nodes for the different traffic 
patterns considered in Figure 7.  We observe that, even for the lowest priority node, our model 
produces results remarkably close to those obtained from network simulation.  
Overall, we think that our model correctly captures the performance characteristics of an OPS bus-
based network, including the shape of the stationary distribution of the number of packets at each 
node.  The results of our model may on occasion deviate from simulation results (typically, close to 
node saturation).  As discussed earlier in this section, possible reasons for the observed differences 
include approximation errors, as well as sensitivity to higher moments of the service time 
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distribution.  It is well known that near saturation in an open queue, even a small difference in 
service times can amount to a large relative difference in mean response times. 

5. CONCLUSION 

We have presented an approach to the performance analysis of optical packet switching bus-based 
networks employing the OU-CSMA/CA protocol and supporting variable length packets. For 
modeling purposes, we approximately view the bus as a multiple-priority M/G/1 queuing system 
with preemptive-repeat-identical (PRI) service discipline. We have proposed an approximate 
solution for this model, in which we apply a recurrent level-by-level analysis. Each level 
corresponds to a single bus node, and the bandwidth usage by upstream nodes is represented 
through server disappearance and reappearance rates. To model the PRI discipline, we use different 
service time distributions at consecutive transmission attempts. The solution to each level is based 
on conditional probabilities and a fixed point iteration method, which tends to require only a small 
number of iterations. As a result, we are able to compute not only the mean response time but also 
the steady-state queue length distribution at each level. 

We have used our model to study the expected response time at the nodes of such a bus-based 
network for several packet length mixes, as well as for several patterns of offered traffic. Our results 
indicate that a uniform or uniformly decreasing traffic pattern appears more taxing on the network 
in terms of mean response time at lower priority nodes, while a pattern where the middle node 
dominates the network traffic seems to fare significantly better. Additionally, for higher traffic 
levels, the network performance at lower priority nodes is sensitive to the form of the service time 
distribution as represented by moments higher than the first two. 

Comparisons with network simulation results indicate that our model correctly captures the 
performance characteristics of an OPS unslotted bus (i.e., unfairness property and bandwidth 
fragmentation phenomenon causing low bandwidth usage and low performance at downstream 
nodes). In addition, our model is able to provide the shape of the steady-state distribution of the 
number of packets at each node that closely tracks simulation results, even for the lowest priority 
node. Compared with other models proposed in the literature such as the C-H model [13], our 
model in most cases provides better results (i.e., closer to simulation results) than those obtained 
with the C-H model. 

Occasionally, the results of our model may deviate from simulation results. This appears most likely 
close to node saturation when the service time distribution is highly variable. We have identified 
approximation errors, as well as sensitivity to higher moments of the service time distribution as 
possible causes for the observed differences. 

In our model, we assume that packets arrivals come from a Poisson source, each node has unlimited 
buffer space, and we match only the first two moments of the service time distribution.  Future work 
includes an improved matching of the distribution of packet lengths, as well as a possible extension 
of our approach to different packet arrival patterns and finite buffer sizes. 

 

APPENDIX A. Recurrent Solution for Node 1 

Balance equations derivation 
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With the service time distribution represented by the Coxian distribution of Figure 2, the 
conditional rate of packet transmissions given the number of packets at node 1 can be expressed as 

 knkppnpnu μμ )|()1()|1()( 21 +−= , (Eq.A.1) 

where  is the total number of exponential stages in the Coxian distribution,  is the 

conditional probability for the current service stage given , for 
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It is not difficult to show that the steady-state probability distribution for  can be expressed as  
(where G  is a normalizing constant): 
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We show the proof of (Eq.A.2) in Appendix C. Using (Eq.A.2) and the fact that 
 in the balance equations for , we obtain the following equations for 
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where  is readily determined from the normalizing condition  that must hold 
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for .  kl ,...,3=

Fixed-point iteration method for solution of the balance equations 

Starting with the known solution for 1=n , together with the normalizing condition , 

we can solve (Eq.A.4) as recurrence for increasing values of 
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.  In theory, since there is no 
upper limit to the values of , there would be an infinite number of equations to solve. In practice, 
for the service time distributions considered, the conditional probabilities  and the 
conditional rate of packet transmissions quickly reach limiting values as  increases.  In the 
examples explored, convergence was typically achieved for values of  on the order of a few tens. 
Clearly, knowing  we can use (Eq.A.2) to compute  and any performance measures 
derived from it.   
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APPENDIX B. Recurrent Solution for Nodes i > 1 

Balance equations derivation 

We describe the state of a downstream node by the triple  where n  is the current number of 
client packets at the node,  is the transmission attempt, and  is equal to the current number of the 
service stage at this attempt ( ), or equal to if the server (bandwidth) is unavailable. Let

),,( ljn
lj

jk,...,1 0 α  
be the rate with which the server becomes unavailable, and β  be the rate with which the server 
returns from unavailability.  The balance equations for  are readily derived. ),,( ljnp
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In the above equations, we denote by  the parameter of stage l  of the Coxian representation of 

the service time at transmission attempt 

j
lμ

j , and by j
lq  the corresponding probability that stage l  

will be followed by another service stage, where jkl ,...,1= .  For the “catch all” value , we use 

“average” service parameters values set up so as to maintain the proper average number of 
transmission attempts. 

*j

For , the first balance equation becomes 1=n
 λβλ )0,0(])[0,1,1( ===+=== lnpljnp , 

where  is the probability that there are no packets at the node and the server is 
unavailable.  In the remaining equations for 

)0,0( == lnp
1=n , the term involving 1−n  is simply absent. 

The conditional rate of packet transmissions given the number of packets at the node can be 
expressed as: 
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As for node 1, the steady-state probability distribution for  can be expressed as (  is a 
normalizing constant): 
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For , the first equation becomes: 1=n

 )1()0|0(])[1|0,1( ulpnljp ==+=== βλ ,  

where  is the conditional probability that the server is unavailable given that there are 
no packets to be transmitted at the node.  Note that we must have   
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 , (Eq.B.3) ∑∑
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for all values of  . 1≥n

For , the only possible states correspond to the availability of the server, and we easily get for 
the probability that the server is unavailable 

0=n

 ][)0|0( λβαα ++==lp . (Eq.B.4) 

Fixed-point iteration method for solution of the balance equations 

Armed with the known value of )0|0( =lp
n

, we consider the above equations for  for 
increasing values of   For each ,  we express all  in terms of 

)|,( nljp
1,0( lj,...2,1=n )|,( nljp )| np ==

)(nu

 
and . Then, these two unknowns are determined from the normalizing condition (Eq.B.3) and 
from the definition of  in (Eq.B.1).  As was the case for node 1, although in theory there is an 
infinite number of values of  (and hence an infinite number of equation sets to solve), in practice, 
the conditional probabilities  and the conditional rate of packet transmissions quickly 
reach limiting values as  increases. 
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n
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Knowing  we readily obtain  from (Eq.B.2).  The steady-state probability distribution for 
the number of transmission attempts at node  can then be expressed as  

)(nu )(np
i

 )1()|,()(1)( j
l

n l

j
l qnljpnp

H
jr −= ∑ ∑ μ , 

where H is a normalizing constant. 

The expected number of packets at the node is given by ∑ , and the expected number of 

interruptions per transmission (due to void too small, in actual network) at node other than the first 
one is approximately ∑ ∑ . 
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APPENDIX C. Proof of Product-Form for Coxian Distribution 
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Figure 9. General Coxian distribution 

 

Consider the general Coxian system in Figure 9 (General Coxian distribution). We describe the 
equilibrium behavior of this system by the joint steady state probability , where   
is the number of packets in the system and l  = 1…k refers to the stage of service of the Coxian 
distribution. The balance equations for  are readily derived as follows: 
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Using the definition of conditional probability )|()(),( nlpnplnp =  in (Eq.C.1) and (Eq.C.2), 
and then summing equations (Eq.C.1) and (Eq.C.2) for all l = 1,…, k while taking into account the 

normalizing condition  for all n = 1, 2, …, we obtain: ∑
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Simplifying the above equation, we have: 
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Set  for n = 1, 2, …, (Eq.C.3) becomes: ∑
=

=
k

l
llqnlpnu

1
)|()( μ

 )1()1()1()]()[( +++−=+ nunpnpnunp λλ . (Eq.C.4) 

We observe that equation (Eq.C.4) is identical to the steady state balance equation of an M/M/1 
queuing system with arrival rate λ  and service rate u(n). Thus, we are able to readily obtain the 

product-form for the general Coxian system: ∏
=

=
n

i

iu
G

np
1

)(1)( λ , where G is a normalizing 

constant: . ∑∏
≥ =

+=
1 1

)(/1
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Note that this result is obviously applicable for the k-stage Coxian distribution shown in Figure 2 
since it is a special case of the general Coxian distribution. 

APPENDIX D. Computation of Server Disappearance Rate ( β ) at a Nodes i > 1 

As stated earlier, the disappearance rate iβ  of the server viewed by a downstream node i is 
computed approximately in our solution. For the node 2, this rate can be expressed in terms of 
conditional probabilities as follows: 

 , (Eq.D.1) ∑
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where ni is the current number of packets at node i, Ui (Ai respectively) indicates the server at node i 
is unavailable (available respectively), and ll qlk ,,, μ  are the parameters of the service time 
distribution as shown in Figure 9. Using the fact that )0(1)1()( 112 =−=≥= npnpUp  and 

, equation (Eq.D.1) can be approximately computed based on known 

parameters (i.e. parameters computed from the solution of the preceding node) as follows: 
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Regarding nodes i > 2, the exact expression of 1+iβ  is: 

  (Eq.D.3) 
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We notice in the right hand side of this expression that in addition to the first term similar to the one 
in Eq.D.1, we introduce the second term that represents the case where the server at the preceding 
node i has been occupied and its queue was empty. This case does not exist for node 2 because the 
node 1 (which is the preceding node of node 2) always finds server available. Similar to the case for 
node 2, we can compute the value of 1+iβ  approximately:  
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Here, the probability that the server is unavailable at node i+1 (i > 1) is computed as follows:  

 )0()0(1),0(1)( 1 ==−==−=+ iiiiii npnApAnpUp . 

Using the fact that )0(1)0( =−== nUpnAp  with )0( =nUp  computed from (Eq.B.4iiii ii ), we 

re able to determine the value of 1+iβa  from (Eq.D.4): 
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