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ABSTRACT. This paper presents a queueing model of a muluprogrammed computer system with virtual
memory Two system organizations are considered (1) alf the processes present in the system share primary
storage, (11) processes which have generated a file request (slow I/O) lose their memory space until the 1/O 1s
completed Our model assumes balanced memory allocation among processes, and accounts for the memory
sharing effect through the use of lifetime functions The model exphcitly takes mto account the fact that, 1if a
wrtten-onto page 1s to be replaced at the moment of a page fault, 1t first has to be saved in the secondary
memory. An approximmate closed form solution 1s obtamned by using an equivalence and decomposition
approach A procedure for evaluating the accuracy of the approximation is presented The numerical examples
dlustrate the influence of the system and program behavior parameters taken mto account n our model
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Introduction

Relatively general results on queueing networks [13, 12, 3] exist, and they have been
successfully applied to the study of the performance of computer systems [16, 15, 9].
The queueing networks for which an exact analytical solution is known have in common
the fact that the service rate for a service station may depend only on local congestion,
i.e. on the number of customers at the service station. Their analytical solutions share the
product form; i.e. they have the form of a product in which each factor corresponds to
the state of one service station.

These results, however, do not allow taking into account some important dependen-
cies encountered in computer systems, and this motivates the search for new, possibly
approximate, solutions of complex queueing networks {2, 10, 11, 6]. Our approach in
this paper will be of the latter type. We consider a model of a batch virtual memory
system in which the random variable representing unimterrupted computation time at the
CPU and the routing probabilities for a process depend on program behavior characteris-
tics such as input-output rate, total compute time, or page fault rate. We also take into
account the fact that, at the moment of a page fault, 1t can happen that there is no
overwritable place free in real memory to contain the page to be brought in, and so the
contents of some memory page must first be saved in the secondary storage. We use our
model to examine the effect of memory sharing between processes on system through-
put. Therefore we assume (according to experimental evidence [4]) that the page fault
rate of a process depends on the amount of memory allocated to the process, i.e. in the
case of balanced memory allocation we consider in this paper, on the degree of
multiprogramming. The latter 1s defined to be the number of processes sharing real
wmemory.
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Throughout this paper, the random variables representing the different service times
considered are all assumed to be independent, exponentially distributed, and stationary.
System overhead is not taken into consideration in our model. (The effect of overhead in
a similar system is studied in [7].)

We study two different system orgamizations: In the first one (henceforth called fixed
multiprogramming), all the processes present 1n the system share real core; in the second
(floating multiprogramming), processes which have issued a file request lose their
memory space until the requested I/O is performed. This type of organization has been
adopted, for instance, in the ESOPE system {5].

Our model leads to a queueing network which is not a particular case of Jackson’s
networks [13], and this is why we apply an equivalence and decomposition approach [6].
We show that our network is equivalent, in a given sense, to a simple system whose
formal analytical solution is well known. This solution contains an unknown parameter,
and we compute an approximate explicit expression for it by analyzing a subnetwork of
our queueing model. Having thus obtained an approximate solution for our model, we
evaluate its accuracy.

1. The Model

The multiprogrammed, paged, virtual memory computer system we deal with in this
paper consists of a CPU, a secondary memory device (SM), and a filing disk (FD) (see
Figure 1(a)). A queue of requests is associated with each device; the order in which these
requests are serviced is not taken into consideration.

Denote by N the total number of processes (users) executing in the system and by #,,
n,, and n, the current numbers of processes queued and 1n service at the CPU, the SM,
and the FD, respectively. At any tume we have
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N=no+n,+n,=n+n,, 1)

n being the total current number of processes at the CPU and the SM, i.e.n =n, + n,.

All the processes are assumed to be statistically identical and independent. In the
model their behavior is characterized by a compute time followed by a page fault, in
which case the process enters the SM queue; an I/O (file request), in which case the
process joins the FD queue; or a program termination, in which case the process leaves
the system.

It is assumed that the system operates under sufficient load conditions, and thus the
feedback loop around the CPU and its queue represents processes which depart from the
system but are immediately replaced by a new process, maintaining a constant number of
users. Processes which terminate their service at the SM or the FD return into the CPU
queue (see Figure 1(a)).

Let ¢ and r be the mean total compute time for a process and the mean compute time
between two successive file requests, respectively. Experimental evidence [4] indicates
that the mean compute time between page faults ¢ for a program executing in memory
space m (called the lifetime function) can be approximated by a function of the form

q = ym*. )]

vy depends on the processing speed and on program characteristics while £ depends on
program locality as well as on the memory management strategy. According to Belady
and Kuehner [4], k is in the range 1.5 = k = 2.5.

Note that the degree of multiprogramming 1s equal to N (the total number of
processes) in the case of “fixed”” multiprogramming and to »n (the current number of
processes at the CPU and the SM) in the case of “floating” multiprogramming. We
assume that total primary memory available is of size M and that it is equally shared
among the processes (balanced allocation), i.e.m = M/N in the first case, andm = M/n
1n the second case. Denote by g(n) the mean execution time between two successive page
faults for a process when there are n processes at the CPU and the SM. We have

q(n) = y(M/n)* 3)

with “floating multiprogramming” organization, and

q(n) = y(M/N)*

with “fixed multiprogramming.” In the latter case, the mean compute time between page
faults is actually independent of n, but we write uniformly q(n) for both system organiza-
tions. Letv, = 1/c, vi(n) = 1/q(n), n =1, ... ,N,andy, = 1/r.

We assume that the random variable representing uninterrupted computation time at
the CPU is exponentially distributed and that the service rate of the CPU 1s

uon) = vg + vi(n) + v,

when a total of n processes are at the CPU and the SM.

In order to take into account the fact that not all memory pages are directly overwrit-
able, we assume that at the moment of a page fault a preliminary transfer of a memory
page into the SM is or is not required with probability 8 or a = 1 — B, respectively.

It seems reasonable to think that probabilities « and 8 depend not only on program
characteristics and system memory management strategy, but also on the degree of
multiprogramming: Most replacement algorithms choose first a page which is directly
overwritable in order to avoid increasing the SM service time, and when the number of
processes sharing real core 1s small there should be a greater chance that a program
termination will occur before all such pages have been used than with a high degree of
multiprogramming. Therefore we write a(n) and B(z).

We also assume that the service times at the SM and the FD are independently and
exponentially distributed with expected value 1/u, for the FD. We shall consider that
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there are two types of SM service: types 1 and 2 corresponding to the case where there is
enough space in main memory to contain the page to be brought 1n and the case where a
page must first be saved, respectively. The mean service time of the SM 1s 1/, in the
first case and 1/u, (we assume 1/u, = 2/u,) 1n the second case.

We use the throughput of the system, defined as the average number of programs
processed by the system per unit time in the long run, as a measure of system perform-
ance. Denote by A the CPU utilization, i.e. the probability of a nonempty CPU at steady
state. System throughout 6 is easily shown to be 8 = A/c, where ¢ is the mean total
compute time of a process. Thus it 1s sufficient to obtain the CPU utilization.

The behavior of the system at any time ¢ 1s completely characterized by the joint
probability distribution p(n,, 14, Ry, i, t) of the number of processes in the three queues
(ne, 11, ny) and the type of SM service in progress (; = 1, 2) at time ¢; note that forn, = 0
the variable 1 is meaningless. As we are not going to solve the system equations directly,
we shall not write them down at this stage. The state vector (ny, 1y, 1, i) Will be used,
however, later on.

Let us note that our model 1s not a particular case of Gordon and Newell’s networks
[12] (at least because of the presence of two types of service at the SM), and 1ts solution
cannot be obtained by direct application of their result.

In Section 2 we obtain an approximate solution for our model.

2. Equivalence and Decomposition

Letp(n), n =0, ..., N, be the stationary probability distribution of the total number of
processes at the CPU and the SM (n = n, + n,), and let Ayn) be the stationary
conditional probability that the CPU is busy given n, i.e.

Ay(n) = Prob{CPU busy|n processes at the CPU and the SM}
The CPU utilization A may be expressed as

A= n2=l p(n)Ayn). 4

Hence we see that, in order to compute our performance measure for the system, it
suffices to obtain p(n) and Ay(n). We do so by applying an equivalence and decomposi-
tion approach.

Let us start by defining what we mean by equivalence.

Definition 2.1. Two queueing systems are equivalent from the point of view of a
given state description (a vector of variables) if the probability distributions of the chosen
state vector are identical in both systems.

We now define a particular simple queueing network.

Definition 2.2. System 1 is a cyclic queueing network consisting of two exponential
servers labeled 1 and 2 (see Figure 1(b). n and n, denote the current numbers of
customers, all statistically identical and independent, at servers 1 and 2, respectively; we
haven + n, = N, the constant total number of customers circulating in the system. The
service rates are u(n) = Agn)vy, n =1, ..., N for server 1 and u,, n, = 1, ... , N for
server 2.

We have

THEOREM 2.1. The queueing model described in Section 1 1s equivalent from the
point of view of the varwable n, at the stationary state, to System 1.

The proof of this theorem is similar to equivalence proofs of [6] and will be omitted.

Using Theorem 2.1 we easily obtain an expression for the stationary probability of n =
ne + 1y

p(n)=(1/1-1)(u§‘/]li[1 u(j)), n=0,1,...,N, (5
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where H is a normalization constant. Equation (5) may be rewritten as

n N n
pio) = /) (6 /Tladp)on = 0,1, o Ni = 3 /TIAop), 0
a well-known and computationally efficient solution form. Equation (6), however,
contains an unknown parameter (which we need also if we want to apply (4)): the
conditional probability A¢(n). Therefore we seek a means for computing, at least
approximately, Aq(n).

Suppose that the rates of transitions due to paging (v,(n), w1, p2) are much greater than
the rates of transitions due to file requests (vz, u;). Then it is intuitively clear that the
subnetwork composed of the CPU and the SM reaches, on the average, its steady state
relatively rapidly between two successive changes in the total number of users in it 7.
Hence Ay(n) is not much different from the CPU utilization in a closed cyclic two-server
network consisting of the CPU and the SM, obtained by settingv, = 0 andu, = 0, with a
total of n processes (this system will be referred to as System 2). Denoting by A§ the CPU
utilization in System 2 with n users, we have

Aqn) = A2 (7
More generally, the joint probability distributionp(re, n1y, i) (i = 1, 2 indicates the type
of SM service in progress) in System 2 is approximately equal to the conditional
probability of having (n,, n,, i} given n in the model of Section 1, p(ny, ny, i | n):
p(ng, ny, i { 1) = p(ne, ny, 1).

Now it is obvious that the rates of transitions due to file requests may not be much
smaller than those due to paging, so (7) may seem inapplicable. Nevertheless, we apply
it, and in Section 4 we analyze the accuracy of the approximation resulting from this
decomposition. As we shall see, the accuracy turns out to be excellent, and its analysis
provides more insight into the decomposability of our model.

Section 3 is devoted to the computation of Af, i.e. to the study of System 2, which is
mteresting per se because it takes into account the paging behavior of virtual memory.

3. Two-Server System

3.1 System Equartions. Consider System 2 with a total of # processes executing in
it. p(ny, ny, i) is the stationary probability that there are n, andn, = n — n, processes at
the CPU and the SM, respectively, and that the current service type of the SMis¢; let

%=phg,ny, 1), ne=20,...,n—1;
gro=py,n,2), n,=0,...,n—-1;

i = am)pn, =n,n, = 0);
gr=P@)pn, =n,n, = 0).

Using the fact that under equilibrium, for any n,, the rate of arrivals of processes to the
CPU equals the rate of departures of processes from the CPU, and that the ratio of type
1 over type 2 SM service requests generated is ofr)/ f(n), we obtain the following set of
equations:

—pf? + vi()f1 = 05
— 8% + vi(1)gi = 0; (8)
Bfi = e(1)gi
forn = 1, and
—mfy +vidmfy = 0; 9
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— ugn + vi(n)gh = 0; (10)
—mfio— g+ vt + gt ]=0, ne=1,...,n—-1; (11)
Br)[—(pa + vi(m)) fio + vi(m) frot'] = adn)[—(pe + vi(n))gno + vi(m)gio*'],
ng=1,...,n—-1; (12)
Bn)fr = a(n)gh, (13)
forn =2,3, ...

Note that this set of equations can also be easily obtained from the system balance
equations and that condition (13) 1s necessary because of the notation f2 and g2.

The solution of eqs. (8) 1s straightforward, so we shall now turn to the solution of
system equations for n = 2. The latter may be viewed as simultaneous homogeneous
linear difference equations with two unknown functions f» and gro, where (11) and (12)
are the general equations and (9), (10), and (13) the boundary equations.

Denote by E the operator of displacement, 1.e. Ef(x) = f(x + 1). Equations (11) and
(12) can be rewritten in a symbolic form:

Sn)fp + ¥(n)gp =0, Pn)fp+ ¥in)gh =0, (14
where
Pn) = —w, + vi(W)E, ¥@n)=—u +vi(nE;

y(n) = B)[—~( + vi(m)) + vi()E], Wiln) = om)[pe + vi(n) — vi(W)E].

Using a difference equations technique (see [14, p. 601], we eliminate one of the
unknown functions (e.g. f%¢) from (14), thus obtaining

[@:1(n)¥(n) — ®(n) ¥ (n)]ghe = O,
ie.
[Vl(”)]zg:")r2 + Vl(n)[y'l + ope t+ Vl(’l)]g;‘zﬂﬂ

+ [ pe + vi(m)(aln) py + Bn) puo)lgho = 0. (15)

Equation (15) is a simple linear homogeneous equation with constant coefficients. Its
solution can be written (see [14]) as

gh = Ci{)iri(n)J + Com)ro(n)fe, ne =1, ... ,n, (16)
where
riam) = {uy + po + v, (n)
= VIV + (e ~ p)(2vin)(aln) — Bn)) + o — p)l}/2v4(n)
are the two roots of the characteristic equation
i@Fr + vimlu, + e + vi@)]7 + wope + vila@)pw, + B)us] = 0,

and C,(n) and Cy(n) are “‘arbitrary constants” (to be determined from boundary and
probability conditions).
It follows from (14) that

fio = &E@E)C@)[r(m)]' + &) G, no=1,...,n, 17

where
f}(n) = - W(”)E=r,(n)/q>(n)5=r,(n) = _[vl(n)ri(n) - ”‘2]/[1"1(”)’1(”) - /"“l], =1 2. (18)
Ci(n) and C,(n) are then easily determined by using the boundary equations (9), (10),
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and (13) and the condition that the obtained solution must be a probability distribution,
1.e.

n
El [fio + gl = 1.

We have
C(n) = 1/[A,(n) + As(n)B(n)], C,y(n) = B(n)Cy(n), (19)
where
Ayn) = (1 + @) = [EF /A = r@e) + vilr@léen)/ w + Ve, j=1,2,
B(n) = [n(m)[BR)éi(n) — alm)l/lrn)]aln) — Bl)&x(n)].

Thus, finally, f% and g% (n = 2) are given, forn, = 1, ... , n, by (17) and (16) with
(18) and (19); for n, = 0 we have

fA=vi)fi/m, gh= vi(n)gh/ ts.
A%, the CPU utilization in System 2, is obtained as

A =1-[f2+gl
and there is no computational difficulty in evaluating this expression. Forn = 1, we have
f1=vi)/(1:Gy), g1 = vi()B)/ (D)2 Gh);
fi=1/G,, gt = B1)/(a()Gy);
Ab=1- (2 +8%;
G, =1+vi(1)/py + B + vi(1)/ =)/ (D).

In Section 3.2 we present some numerical results illustrating the behavior of System 2.

3.2 NuMericaL REesuLTs witH THE Two-SERVER MoODEL. Numerical results ob-
tained from the two-server model with lifetime function (3) are reported in Figure 2,
which shows the effect of the degree of multiprogramming on CPU utilization (and hence
on throughput). The probability that at the moment of a page fault there is no overwrit-
able page free, B(n), is assumed in this example to vary hnearly withn: g(n) =a + bn;a
and b are set toa = —0.5/9 and b = 0.5/9 so that B(n) rises from zero for one process in
memory to 0.5 when the degree of multiprogramming equals 10. This is an arbitrary
assumption used in the numerical example to show what happens if B(n) varies in this
way; note that no assumption on the form of B(rn) has been made in the solution of
System 2.

The curves labeled 1, 2, 3, and 4 correspond to the following sets of model parame-
ters: 1: M = 128 pages, 1/u; = Smsec, k = 1.5; 2: M = 256 pages, 1/u; = Smsec, k =
1.5;3: M = 128 pages, 1/u; = 5 msec, k = 2.0; 4: M = 128 pages, 1/u, = 10 msec,
k =2.0.yin (3)is set to 0.01.

We see the important effect of the primary memory size and of the mean service time
of the paging SM device (g = 1/u,) on system performance. We also see that an im-
provement in program behavior (increasing the locality exponent k from 1.5 to 2.0) can
produce a considerable improvement of the throughput as well as an increase n the opti-
mal (i.e. which maximizes system throughput) degree of multiprogramming.

Section 3.3 is devoted to the problem of determining analytically the optimum degree
of multiprogramming in the case where the existence of pages not directly overwritable is
neglected.

3.3 OptiMaL DEGREE OF MULTIPROGRAMMING IN A REsSTRICTED Case. We now
consider System 2 assuming that B(n) = O for all n, and we examine the problem of
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determining analytically an expression for the degree of multiprogramming N, which
maximizes system throughput. This seems to be a difficult problem in a general case, and
even for the restricted case we are considering, we are only able to obtain an approxi-
mate value.

The assumption B(n) = 0 reduces System 2 to a simple finite source M/M/1 model.
CPU utilization is obtained (see [9]) as A} = 1/(1 +y), wherey = 21 — 2)/(1 ~ z") and
z = n*/(yu,M¥).

M is the primary memory size, k and vy are the parameters of the Belady lifetime
function ((3)), and 1/u, is used to denote the now unique mean service time of the SM.

For convenience letd = 1/{yu,M*). Clearly maximizing A} is equivalent to minimizing
y. Consider the case 1/u, < yM¥%/n* where the mean compute time between two
successive page faults of a process is much larger than the mean service time of the SM
device We then have z << 1, and therefore y =~ y, = z*. Considering n as a continuous
variable and taking dy,/dn = 0, we see that y, is minimized by

N, = (1/d)""/e, (20)

where e is the basis of the natural logarithms.

In various numerical examples (Figures 3-6), we see that N, is a good estimate of N,
the “optimum’ degree of multiprogramming. Note that even when (20) is not well
satisfied, N, still seems close to N,, probably because (1 — z) is relatively “flat” as
compared to z*/(1 — z%).

Let us note that the applicability of Formula (20) can be extended to include the case
where the probability B(n) has some constant value, say By, for all n, if, instead of
considering explicitly two types of service at the SM, we assume an exponentially
distributed SM service time of mean

V=0 = B/ + Bo/pz

It is worth mentioning that this approach yields, as regards system throughput,
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numerical results very close (the CPU utilization seems slightly greater near the optimum
degree of multiprogramming and practically identical for other values of the multipro-
gramming degree) to those obtained with the explicit consideration of two types of
exponential SM service times. This may be regarded as a sign of a relative *“‘robustness”
of our model vis-a-vis distributional assumptions.

Having obtained and studied in this section the CPU utilization n System 2, A§, we
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address the problem of the accuracy of the approximation which is introduced if we use
A% for Ay(n) in (6). This will be done in Section 4.

4. Accuracy of the Approximation

First of all, note that the only approximation in the method proposed in Section 2 for
computing p(n) stems from the decomposition, i.e. from (7). Therefore our goal will be
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primarily to determine how different is A} from the conditional probability Ayr).

Recall that the behavior of the model of Section 1 is completely characterized by the
joint probability distribution p(r,, 1, 74, 1), where i indicates the type of the SM service
in progress. Let (remember (1))

falng) = Prob{(ny, ny, Din}, ne=0,...,n—1; (21)
gn(no) = PrOb{(nO’ ny, 2)'”}: Ry = 0’ PETSPN (B 17 (22)
fan) = aln) Prob{n, = n|n}; (23)
gx(n) = B(n) Prob{n, = n|n}. (24)

We have
Aon) = 1~ [£u(0) + g4 (0)].
Using the fact that
p(ne, 1y, 0o, i) = p(n) Prob{(ny, ny, i)|n},

the formal solution for p(n) (eq. (6)), and (21)-(24) n the balance equations for our
model, we easily obtain a set of equations for the conditional probabilities fy(r0), ga(ft0),
and Aq(n). These equations are given in Appendix 1.

When applying the decomposition, we use probabilities fio and ghe in System 2 for
fa(no) and g,(ny), 1.¢. we use the probabilities of having (n4, {) in System 2 with a total ofn
processes 1o lieu of the conditional probabilities of having (n, i) given # in our model.
Denote by €,(n,) and 7,(n,) the corresponding errors. We have

fano) = fro + €4(no), galno) = gho + Malnte), 1o =0, ..., n; (25)

Ag(n) = A} — € (0) — 1,(0). (26)

Since both f(n,), galne) and fls, gl are probability distributions, i.e. normalized
with respect to unity, we also have

n

[ex(rt) + Mu(n)] =0, forn=1,..,N. 27
0

Substituting (25) and (26) into the equations of Appendix 1 and neglecting higher
order error terms (i.e. products of two or more errors), we obtain the following set of
equations:

AP [=( + u2)en(0) + vi(n)en(1)] + useni(1) + tafil€11(0) + Moyt (0)] = OF,  (28)

A= (2 + umal0) + vi)a(D] + iy (D) + uogil€n41(0) + 1244(0)] = 02 (29)
forn=1,..., N — 1, where

O = us(ATH 1 — fren), Qe = us(AF 85 — 8o, (30)
A=) + gy + Ve + uslen(no) + a)pi€nlnng — 1) + at)panalne — 1)
+ vin)en(ng + 1) + voAf €0y(to — 1) — vofiti€u(0) + n,(0)]}
+ [€n+1(0) + Nnr(O)[(z + vao)fie — v ARy ] + ta€pi(ne + 1) = Qg (31)

forn=2,...,N~1, ng=1, ...,n — 1, and an analogous equation for», (n,), where
Ot = up(AFH o — fRo)) + v AP (f o — AT A5,

O = u(A§+igho — glet) + voATH(gh — AT, (32

—i&x(0) + v(Nex(1) = 0, (33)

— pany(0) + vi(N)ma(1) = 0, (34

—[vilN) + pq + volening) + a(N) pen(rg — 1) + a(N) uanplng — 1) (35)

+ vilN)ex(ng + 1) + voAfen_i(ng — 1) — voffiey* [ex(0) + (0] = anﬁa
—[ViN) +pp + v Inn(ng + BN uiening —~ 1) + B(N)pamylng — 1),
+ vilN)nnlne + 1) + veAfmy-1(no — 1) — vogii'len(0) + mpu(0)] = Q3f (36)
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forn = Nandny=1, ..., N — 1, where
Q1% = vl fio — AYfR'], Qo= vilghe — A¥gie']. (37)

In order to evaluate the errors e,(ng) and m,(ny), we have to solve this system of
equations subject to condition (27) and

Bn)en(n) = aln)na(n), (38)

which follows from (23) and (24). Before indicating how this can be done in an efficient
way, we formulate a few remarks.

The coefficients of the system of equations are all known since they are either the
parameters of our model or state probabilities of System 2. Equations (28), (29), and
(31) and its analogue are obtained by neglecting higher order terms introduced by
expressions of the form

[Aﬁ - en(O) - 'fln(O)][ﬂ'u“ + fn(”o)]-

Hence, mn order to validate the solution, it sufficies to verify a posteriori that it satisfies
the condition

A} > |e,(0) + 0. (39)

Owing to condition (27), the unique solution of our system! would be €,(11) = 1,(no) =
0 for all # and n, if the Q}3 and Q%3 were all zeros. Thus the Q%, Q% reflect the error
introduced by the decomposition; the smaller these terms, the smaller the error. An
mspection of (30), (32), and (37) reveals the very interesting form of the Q%, i =1,2:a
sum of products of two terms, one corresponding to the rates of transitions which change
n (v,, uy), and the second depending only on the internal properties of System 2. It then
becomes obvious that there are two entirely distinct reasons for which our system may be
decomposable. The first is when v, and u, are small—this corresponds to the case of
intuitive decomposability presented in Section 1. The second is when

[fro— Agfrs'| and [gp — Ajghey| (40)

are small. Note that (40) reflect the departure of our model from a queueing network
with a product form solution [9, 13, 12], since these terms would be zero if our model
had such a solution. This would be the case, for instance, if u, = u, with “fixed
multiprogramming’ organization for any nontrivial values of v, and u, (see Appendix 2).
Incidentally it is this second reason of decomposability that explams zero error results
when the equivalence and decomposition method is applied to central server networks
[9] and, also, for our model when N = 1.

Let us now tackle the problem of finding an efficient solution procedure for the system
of eqs. (28)-(36), together with (27) and (38). This system can be written in a matrix
form as

TE = Q, (41)
where E is the vector of the errors, Q is the vector of the Q¥ and Q%3, and T is the matrix
of coefficients. Note that neglecting in eqs. (28)-(36) the terms which involven + 1, we
obtain N sets of simple recurrence relations which can easily be solved separately for
eachn = 1, ... , N (owing to the independent normalization conditions (27)) if we start
fromn = 1. This suggests the following 1terative procedure. Denote by T’ the matrix of
coefficients obtained by neglecting the terms in»n + 1. In order to compute E,, a first
approximation to E, we solve at the first iteration

T'Ey = Q (42)
Then consecutive residual terms for E are computed by solving, at iteration &,
TE,=(T'"-TE;_, fork=1,2,.... (43

! The equations are of full rank
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Note that (42) and (43) are sets of simple linear recurrence relations solved separately
for eachn = 1, ... , N. Assuming this procedure converges, we have

E = 2 Ek'
k=0

This last statement is easy to prove. Indeed let

M

E= 2 E, (44)

k=0

Summing (43) overk = 1, ... , we obtain

TI

s

Ee=(T'~T) X E,
k k=0
i.e. using (44), T'E, = TE, which, given (42), yields
TE = Q. (45)

Since the linear system (41) has exactly one solution (conditions (27) and (38) are taken
into account in T, T’, and Q), 1t follows from (45) that £ = E.

Let us now consider briefly the convergence of our iterative procedure. The solution of
(43) at iteration k is essentially equivalent to the solution of

Se = T HT' = T)(Sk-, + Eo), (46)

where S, = Y., E.. It is well known from the theory of iterative methods in numerical
analysis that (46) converges if and only if

"Sk+1 - Sk " =L "Sk - Sk——l ", with L < 1.

1

In our case,
ISksa = Skl = IT"HT" ~ TSk = S| < JT"KT" — D)) ISk — izl 5
SO
YT - Dl=m<1

is a sufficient condition for the convergence of our procedure. Quite intuitively then, our
procedure will converge if the coefficients of the terms involving n + 1 (directly
proportional to v,, u,) are not too large as compared to the coefficients of T taken into
account in 7”. An upper bound for L may be obtained by considering the Jacobi matrix
for the function T'-YT’ — T). Hence sufficient (but not necessary) convergence condi-
tions may be derived for our iterative procedure.

The interested reader will find in [8] more details on this procedure and on its
convergence. Let us say here only that, for the values of system parameters explored in
this paper, the method converges very rapidly (one or two iterations in most instances,
and no more than six iterations in any case for an accuracy greater than 107%). In
Appendix 3 we give the recurrence relations corresponding to (42) and (43).

Note that we have been able to evaluate not only the difference between Ay(n) and A},
which was our goal, but also more generally the error introduced when we use the
probabilities f3o, g2 in lieu of the conditional probabilities f,(n,), g.(n,). Note also that
our approach yields the errors with their signs (and not just a bound for the absolute
value), thus indicating whether the corresponding probability is under- or overestimated.

In Section 5 we present the numerical results obtained from our model of Section 1.

5. Numerical Results of the Model

Before discussing the numerical results of the complete model described in Section 1, we
recall the approach used to solve it. First we have obtained, using the equivalence



A Queueing Model of Multiprogrammed Computer Systems 235

Theorem 2.1, an expression for the probability of having a total of n processes at the
CPU and the SM. Then, using the decomposition, we have obtained A} as an approxima-
tion for Ay(n), which was the unknown parameter of (6), and which we needed to
compute the CPU utilization A by (4). Note that the equivalence and decomposition
approach in fact yields more. Knowing f% and g% from the analysis of System 2, we
know an approximate solution for the detailed state of our model:

p(nO’ nly n27 1) =~ p(n)ﬂ°9 p(”o; nla n2’ 2) = P(”) ggo:

so performance measures other than A (like mean queue lengths) can also be computed.

Figures 7-13 show the numerical results obtained from our model: The CPU utiliza-
tion A is plotted versus the total number of processes N. Throughout the examples, y of
(2) is kept constant at 0.01. As in Figure 2, in Figures 7-12 B(xn) is assumed to vary
linearly with the degrees of multiprogramming, from 0 for one process in memory up to
0.5 for ten processes sharing primary memory.

The influence of the primary memory size M 1s illustrated in Figures 7 and 8, in which
a set of system parameters with M = 128 pages and M = 256 pages, respectively, 1s used.
We note a marked increase of the CPU utilization and of the optimal total number of
processes (which is also the degree of multiprogramming in the case of ‘‘fixed multipro-
gramming’’) for both system organizations considered. In Figures 8-10 we examine the
effect of varying the parameter k of the lifetime function (2) (corresponding, to some
extent, to program locality). As for System 2, this appears to be an important parameter:
An improvement in program locality (increasing k from 1.5 to 2.5) can result in a
considerable increase of the optimal degree of multiprogramming and of the system
throughout. The fact that the mean service time of the paging device (fsy = 1/p,) can
also importantly affect system performance 1s illustrated in Figures 11 and 9 (g = 10
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msec and fgy = 5 msec, respectively). Figures 8 and 12 show the influence of the mean
service time of the filing disk (tgp = 1/u,). For the values of model parameters used in
Figure 12, the system is clearly ‘“input/output bound.”

We observe, as in [7], that increasing the primary memory size or the program locality
or decreasing the mean service time of the paging device reduces the sensitivity of system
throughput to the number of users.

Finally, in Figure 13 we study the influence of the probability B(n) in the case of
“fixed multiprogramming’’ system organization. Curves labeled I, II, and III correspond
to a set of system parameters with I: 8 = 0, N =1, ..., 10; II: 8 = 0.5N/9 — 0.5/9;
m:g=05N=1,..,10.

We observe that the presence of pages which are not directly overwritable and, more
generally, the form of the function B(n) may have a considerable effect on system
throughput and on the optimal degree of multiprogramming. Therefore it is interesting
to obtain measurement results showing the form of B(n).

If we compare the figures obtained for the two system organizations considered, we
note that “floating multiprogramming” results in significantly higher thrashing threshold
and also in higher CPU utilization than “fixed multiprogramming.” The results obtained,
however, should be regarded as an optimistic estimate of the performance of the
“floating multiprogramming” system organization, since our model does not account for
the mechanism by which a process that has completed a file operation acquires memory
phges.

Using the iterative procedure developed in Section 4, we have evaluated the accuracy
of our results. Condition (39) turns out to be well satisfied; in most instances the |¢,(0) +
7.(0)| are much smaller than 10 percent of the corresponding A§. As expected, the
accuracy is slightly better in the case of “fixed multiprogramming” (the only departure
from a product,form solution is then due to two types of service at the SM). The relative
error on A (the CPU utilization) is negligible, less than 1 percent in all cases. In
Appendix 4 we give the evaluated errors in one of the worst instances.
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6. Conclusion

We have presented a queueing network model of a virtual memory multiprogramming
system.

We have been able to obtain an approximate, computationally efficient, closed form
solution by using equivalence and decomposition methods. We have also been able to
evaluate the accuracy of the approximation and to determine that there are two totally
distinet reasons for which the decomposition can be used in the queueing network
representing our model. The first can be invoked if the rates of transitions between the
subnetwork obtained by decomposition and the remainder of the system are smalil (this
corresponds to the often used intuitive argument of the subnetwork having the time to
reach its steady state between two interactions with the remainder of the system). The
second depends only on internal properties of the subnetwork and reflects, to some
extent, the departure of our model from a queueing system with a product form solution.

The approach used to determine the accuracy can be applied to other models solved by
the equivalence and decomposition method.

Models of time-sharing systems, for which our network can represent the processing
part, may be analyzed in a similar way.

Appendix 1
The equations for the conditional probabilities f,(n,), g.(r,) are as follows:

Aon + D—(pg + p2)fa(0) + vi@)fo(1)] + usfnia(1) = 0,
Aoln + DI (2 + p2)gn(0) + vi()gu(D)] + 42841:(1) = 0
forn=1,... ,N - 1;
Aon + I{-[viln) + p + vo + wlfulng) + ) ufalne — 1) + aln) pagulne — 1)
+ vy falne + 1) + v Agn)fua(ng ~ D} + Usfars(ng + 1) =0,
Aon + D{-[vi(n) + i + vy + uy]ga(ng) + B pufalne — 1) + B()pagalng — 1)
+ vi)gnlre + 1) + v Agn)gn 1o — D} + tagnia(ne + 1) = 0,
forne=1,...,n~-1,n=2 ..., N—-1;
= f0) + vi(NI (D) = 0, —pagw(0) + v,(N)ga(1) = 0;
=[viN) + vo + uilfulne) + oAN) i fyng — 1) + oAN) pogn(ne — 1) + vi(N)falny + 1)
+ Von(N)fN—l(no -1)=0,
—[viN) + v, + pelgn(no) + BIN) pafulno — 1) + BIN) pagn(ng — 1) + vi(N)gn(no + 1)
+ vy Ag(N)gy(n, ~ 1) = 0
forng=1,... ,N —1;
Bn)fun) = odn)ga(n) forn=1,..,N;

S [fung + gngl =1 forn=1,...,N.

ng=0

Appendix 2

We now give formulas (40) in the case of “*fixed multiprogramming’ with u;, = u; = .
Our model becomes a central server network with two peripheral servers, SM and FD.

We have

f2o = ap™/G(n) and gh = Bp™/G(n),
where p = /v, (recall that p, = py, = p, BIN) = B, vi(n) = v;) and G(n) = Y} o p™.

We also have
Al = pGn — 1)/G@n) .

Hence
v — ARt = of p/ G(n) — [pGln — 1)/Gm)]p™™"/Gn ~ 1)}
= o{p™/G(n) — p™/G(n)} = 0,

and similarly for gpe.
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Thus, though the quantities that appear in (40) pertain to System 2, they reflect the
departure of our model (of Figure 1(a)) from a queueing network with a product form
solution. This is because System 2 is a subsystem of our model and the form of the overall
solution depends on the characteristics of the subsystem.

Appendix 3
Recurrence relations of the iterative procedure as are follows:

—(m + uek(0) + vi(n)ek(1) = Q5u(0), —(me + ux)ni(0) + vl(n)n’,i(l) 050,
forn = N, k=0,1,..;

where

o fO/AT, k=0,

20 = {~u2{e:::§<1) T FOekTi0) + mEHO)D/AL, k>0,

L OMJART, k=0,

20 = {"uz{‘nn+1(1)+ eET0) + mERNO) /AL, k> 0;

o) + i + vy + udek(ng) + ofn) puek(ng — 1) + o) o — 1) + vy(n)ek(ng + 1)

vy Abek_y(ny — 1) — v f ek (0) + 150)] = Oilno),

=[vin) + e + vy + ummling) + B(n)men(no = 1) + Bn) penii(ng — 1) + vy()nk(re + 1)

+ Vonnn—x(no - 1) - Vzg 1[Gk(o) + Ny (0)] = Qm(no)

forng=1,...,n—-1,n=2,... N—-1,

where

Qn /An+1 k=0
Qfuno) = vo{(Asfr" — frolekai(0) + nEHO) /AT — usfelzi(ne + D
+ frlefri(0) + mii(0)}/AF", k>0,

Q"ﬂ/A'H'l k p— 0
Qinln) = vol(Agghe — gholeii(0) + nET O /AT - ugnizilng + 1)
+ ghleki1(0) + nii(OB/AS™, k> 05

- m€eli(0) + v,(N)efi(1) = 0 for all k,
— wn¥0) + vi(N)ni(1) = 0 for allk;
—[viN) + g + volefi(ng) + oN) muefi(no — 1) + ofN) pomfiln, — 1)
+ viN)eki(ng + 1) + v, Afel_i(no — 1) — vof 351 [€¥(0) + 0¥(0)] = Qfn(no),
—[viN) + oy + veInfine) + BIN) ek(ne — 1) + BIN) weming, — 1)
+ viNm(ne + 1) + voAfnf_i(ne — 1) — vogi[€l(0) + n¥(0)] = Qhnlno)
forng=1,...,N - 1,

where
gns= 5 420 - {8 420
Bn)ekn) = an)ni(n), n=1,..., k=0,1,...;
%2_ [ei(ng) + mird] =0, n=1,.., k=0,1,....
Appendix 4

The evaluated errors in the case M = 128 pages, k = 1.5, tgy = 5 msec, tpp = 50 msec,
r = 30 msec, N = 5 processes with “floating multiprogramming”™ organization are as
follows:
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n=1,A% = 0.743, n =2, A} = 0.655:

Ro: 0 1 0 1 2

fio 257 743 298 .305 307

€n(ng). 013 - 018 .008 -.009 —.002

gho .000 .000 .047 024 018
Nalrtg)” 006 000 .003 -.001 --.000

n =3, A} = 0.466 ’ n =4, A} = 0308.

ne: 0 1 2 3 0 1 2 3 4
1o 402 224 117 063 467 169 055 018 006
€nlry) 005 — 005 000 .004 005 - 002 .000 001 001
gh 131 037 018 .008 225 041 013 004 001
Nalty)- -003 —.001 -.001 .000 -.006 000 —.000 - 000 000
n =5 A} = 0.212: .

gt 0 1 2 3 4 5

frot 477 123 028 006 .001 000

€n(1o) - 003 - 001 001 .000 .000 000

gh. 311 .040 009 002 000 000

Naltto)- 001 000 000 000 000 .000

A (the CPU utilization) is overestimated by 0.30 percent.
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