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ABSTRACT. This paper presents a queuelng model of a multlprogrammed computer system with virtual 
memory Two system organizations are conmdered (1) all the processes present in the system share prtmary 
storage, (11) processes which have generated a file request (slow I/O) lose their memory space until the I/O is 
completed Our model assumes balanced memory allocation among processes, and accounts for the memory 
sharing effect through the use of hfetlme functions The model exphcltly takes into account the fact that, if a 
written-onto page is to be replaced at the moment of a page fault, it first has to be saved in the secondary 
memory. An approximate closed form solution is obtained by using an equivalence and decomposmon 
approach A procedure for evaluating the accuracy of the approximation is presented The numerical examples 
illustrate the influence of the system and program behavior parameters taken into account in our model 
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In t roduc t ion  

Rela t ive ly  gene ra l  resu l t s  o n  q u e u e i n g  n e t w o r k s  [13,  12,  3] exist ,  a n d  they  h a v e  b e e n  
successful ly  app l ied  to the  s tudy  of  the  p e r f o r m a n c e  of  c o m p u t e r  sys tems  [16,  15, 9]. 
T h e  q u e u e i n g  n e t w o r k s  for  which  an  exact  ana ly t ica l  so lu t ion  is k n o w n  h a v e  m c o m m o n  
the  fact  t h a t  the  service  r a t e  for  a service  s t a t i on  m a y  d e p e n d  only  o n  local  conges t i on ,  
i .e. o n  the  n u m b e r  of  c u s t o m e r s  a t  the  service  s ta t ion .  T h e i r  ana ly t ica l  so lu t ions  sha re  the  
p r o d u c t  f o r m ;  i .e.  t hey  h a v e  the  f o r m  of  a p r o d u c t  in which  each  fac to r  c o r r e s p o n d s  to 
the  s ta te  of  o n e  service  s ta t ion .  

T h e s e  resul t s ,  h o w e v e r ,  d0  no t  al low tak ing  in to  a c c o u n t  some  i m p o r t a n t  d e p e n d e n -  
cies e n c o u n t e r e d  in c o m p u t e r  sys tems ,  a n d  this  m o t i v a t e s  the  sea rch  for  new ,  poss ib ly  
a p p r o x i m a t e ,  so lu t ions  of  c o m p l e x  q u e u e l n g  n e t w o r k s  [2, 10,  11,  6]. O u r  a p p r o a c h  in 
this  p a p e r  will be  of  the  l a t t e r  type .  We  cons ide r  a m o d e l  of  a ba t ch  v i r tua l  m e m o r y  
sys tem in which  the  r a n d o m  va r i ab l e  r e p r e s e n t i n g  u m n t e r r u p t e d  Computa t ion  t ime  at  the  
C P U  a n d  the  r o u t m g  p robab i l i t i e s  for  a p rocess  d e p e n d  on  p r o g r a m  b e h a v i o r  charac te r i s -  
tics such  as i n p u t - o u t p u t  r a t e ,  t o t a l  c o m p u t e  t ime ,  or  page  faul t  r a t e .  We  also t ake  in to  
accoun t  the  fac t  t ha t ,  a t  t he  m o m e n t  of  a page  faul t ,  i t  can  h a p p e n  t h a t  t h e r e  is n o  
o v e r w r i t a b l e  place  f ree  in rea l  m e m o r y  to con t a i n  the  page  to be  b r o u g h t  in,  and  so the  
c o n t e n t s  of  some  m e m o r y  page  m u s t  first  be  s aved  in the  s e c o n d a r y  s to rage .  W e  use o u r  
m o d e l  to  e x a m i n e  the  e f fec t  of  m e m o r y  sha r ing  b e t w e e n  p rocesses  on  sys tem t h r o u g h -  
put .  T h e r e f o r e  we a s sume  (acco rd ing  to e x p e r i m e n t a l  ev idence  [4]) t h a t  the  page  fau l t  
r a t e  of  a p rocess  d e p e n d s  o n  the  a m o u n t  of  m e m o r y  a l loca ted  to the  process ,  i .e.  in the  
case of  b a l a n c e d  m e m o r y  a l loca t ion  we cons ide r  in th is  p a p e r ,  on  the  d e g r e e  of  
m u l t i p r o g r a m m m g .  T h e  l a t t e r  is de f ined  to be  the  n u m b e r  of  p rocesses  sha r ing  rea l  
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Throughout  this paper ,  the random variables representing the different service times 
considered are all assumed to be independent ,  exponentially distr ibuted,  and stationary.  
System overhead is not taken into consideration in our model.  (The effect of overhead in 
a similar system is studmd in [7].) 

We study two different system orgamzations: In the first one (henceforth called fixed 
multiprogramming), all the processes present in the system share real core;  in the second 
(floating muluprogramming), processes which have issued a file request  lose their 
memory space untd the requested I /O is performed.  This type of organization has been 
adopted,  for instance, m the ESOPE system [5]. 

Our  model leads to a queueing network which is not a particular case of Jackson's  
networks [13], and this is why we apply an equwalence and decomposit ion approach [6]. 
We show that our network is equivalent,  in a given sense, to a simple system whose 
formal analytical solution is well known. This solution contains an unknown parameter ,  
and we compute an approximate explicit expression for it by analyzing a subnetwork of 
our queueing model.  Having thus obtained an approximate solution for our model,  we 
evaluate its accuracy. 

1. The Model 

The mult~programmed, paged,  virtual memory computer  system we deal  with in this 
paper  consists of a CPU, a secondary memory device (SM), and a filing disk (FD) (see 
Figure l (a ) ) .  A queue of requests is associated with each device; the order  in which these 
requests are serviced is not taken into consideration. 

Denote  by N the total number  of processes (users) executing in the system and by no, 
nl,  and n2 the current numbers of processes queued and in serwce at the CPU, the SM, 
and the FD,  respectwely. At  any time we have 
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N = n o  + n l  + n 2  = n + n 2 ,  (1)  

n being the total ¢urrent number  of processes at the CPU and the SM, i.e. n = no + n~. 
All the processes are assumed to be statistically identical and independent.  In the 

model their behavior is characterized by a compute time followed by a page fault, in 
which case the process enters the SM queue; an I/O (file request), in which case the 
process joins the FD queue; or a program termination, in which case the process leaves 
the system. 

It is assumed that the system operates under sufficient load conditions, and thus the 
feedback loop around the CPU and its queue represents processes which depart from the 
system but are immediately replaced by a new process, maintaining a c o n s t a n t  number  of 
users. Processes which terminate their service at the SM or the FD return into the CPU 
queue (see Figure l(a)) .  

Let c and r be the mean total compute tJme for a process and the mean compute time 
between two successive file requests, respectwely. Experimental evidence [4] indicates 
that the mean compute time between page faults q for a program executing in memory 
space m (called the lifetime function) can be approximated by a function of the form 

q = 3'm k. (2) 

3' depends on the processing speed and on program characteristics while k depends on 
program locality as well as on the memory management  strategy. According to Belady 
and Kuehner [4], k is in the range 1.5 -< k -< 2.5. 

Note that the degree of multiprogramming ~s equal to N (the total number  of 
processes) in the case of "fixed" multiprogramming and to n (the current number  of 
processes at the CPU and the SM) in the case of "floating" multiprogrammmg. We 
assume that total primary memory available is of size M and that it is equally shared 
among the processes ( b a l a n c e d  a l l oca t ion ) ,  i .e .  m = M / N  in the first case, and m = M / n  
m the second case. Denote by q(n)  the mean execution time between two successive page 
faults for a process when there are n processes at the CPU and the SM. We have 

q(n)  = T ( M / n )  k (3) 

with "floating multiprogramming" orgamzation, and 

q(n )  = 3 " ( M / N )  k 

with "fixed multiprogramming." In the latter case, the mean compute time between page 
faults is actually independent  o f  n ,  but we write uniformly q(n)  for both system orgamza- 
tions. Let v0 = l / c ,  v l (n )  = 1 / q ( n ) ,  n = 1, . . . , N ,  and v2 = 1 / r .  

We assume that the random variable representing uninterrupted computation time at 
the CPU is exponentially distributed and that the service rate of the CPU is 

uo(n) = vo + v~(n) + vz 

when a total of n processes are at the CPU and the SM. 
In order to take into account the fact that not all memory pages are directly overwrit- 

able, we assume that at the moment  of a page fault a preliminary transfer of a memory 
page into the SM is or is not required with probability t8 or cz = 1 - /3, respectively. 

It seems reasonable to think that probabilities cz and/3 depend not only on program 
characteristics and system memory management  strategy, but also on the degree of 
multiprogramming: Most replacement algorithms choose first a page which is directly 
overwntable in order to avoid increasing the SM service t~me, and when the number  of 
processes sharing real core is small there should be a greater chance that a program 
terminatign will occur before all such pages have been used than with a high degree of 
multiprogrammmg. Therefore we write a(n)  and f l (n) .  

We also assume that the service times at the SM and the FD are independently and 
exponentially distributed with expected value 1/Uz for the FD. We shall consider that 
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there are two types of SM service: types 1 and 2 corresponding to the case where there is 
enough space in main memory to contain the page to be brought in and the case where a 
page must first be saved, respectively. The mean service time of the SM is 1//.t~ in the 
first case and 1/~z (we assume 1//.t2 = 2//z~) in the second case. 

We use the throughput of the system, defined as the average number  of programs 
processed by the system per unit time in the long run, as a measure of system perform- 
ance. Denote by A the CPU uttlizatton, i.e. the probability of a nonempty CPU at steady 
state. System throughout 0 is easily shown to be 0 = A/c, where c is the mean total 
compute time of a process. Thus it ~s sufficient to obtain the CPU utdization. 

The behavior of the system at any time t is completely characterized by the loint 
probability distribution p(no, na, n2, i, t) of the number of processes m the three queues 
(no, nl ,  nz) and the type of SM service in progress (i = 1, 2) at time t; note that forn~ = 0 
the variable t is meaningless. As we are not going to solve the system equations directly, 
we shall not write them down at this stage. The state vector (no, nl ,  n2, i) will be used, 
however, later on. 

Let us note that our model is not a particular case of Gordon and Newell's networks 
[12] (at least because of the presence of two types of service at the SM), and its solution 
cannot be obtained by direct application of their result. 

In Section 2 we obtain an approximate solution for our model. 

2. Equivalence and Decomposition 

Letp(n),  n = 0, ... , N, be the stationary probabihty distribution of the total number  of 
processes at the CPU and the SM (n = no + nl),  and let Ao(n) be the stationary 
conditional probability that the CPU is busy given n ,  i.e. 

Ao(n) = Prob{CPU busyln processes at the CPU and the SM} 

The CPU utilization A may be expressed as 

N 

A = ~ p(n)Ao(n). (4) 
n = l  

Hence we see that, in order to compute our performance measure for the system, it 
suffices to obtain p(n) and A0(n). We do so by applying an equivalence and decomposi- 
tion approach. 

Let us start by defining what we mean by equivalence. 
Definition 2.1. Two queueing systems are equtvalent from the point o f  view of a 

given state description (a vector of variables) if the probability distributions of the chosen 
state vector are identical in both systems. 

We now define a particular simple queuelng network. 
Definition 2.2. System 1 is a cyclic queuemg network consisting of two exponentlal 

servers labeled 1 and 2 (see Figure l (b) .  n and nz denote the current numbers of 
customers, all statistically identical and independent,  at servers I and 2, respectively; we 
have n + nz = N, the constant total number  of customers circulating in the system. The 
service rates are u(n) = Ao(n)v2, n = 1 . . . .  , N for server 1 and u2, n2 = 1 . . . . .  N for 
server 2. 

We have 
THEOREM 2.1. The queueing model described in Section 1 ts equivalent from the 

point o f  vtew of  the variable n, at the stationary state, to System 1. 
The proof of this theorem is similar to equivalence proofs of [6] and will be omitted. 
Using Theorem 2.1 we easily obtain an expression for the stationary probability ofn  = 

n o + nl :  

n 
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where H is a normalization constant. Equation (5) may be rewritten as 
n N n 

p ( n ) = ( 1 / H )  ( ( u 2 r ) n / n A o ( i ) ) , n = O ,  1 . . . . .  N;  H =  n=o~((u2r)n/NA°(J)) ' '  ~=, (6) 

a well-known and computationally efficient solution form. Equation (6), however, 
contains an unknown parameter (which we need also if we want to apply (4)): the 
conditional probability Ao(n). Therefore we seek a means for computing, at least 
approximately, A 0(n). 

Suppose that the rates of transitions due to paging (vt(n), ix1, ~ )  are much greater than 
the rates of transitions due to file requests (v2, u2). Then it is intuitively clear that the 
subnetwork composed of the CPU and the SM reaches, on the average, its steady state 
relatively rapidly between two successive changes in the total number of  users in it n .  
Hence Ao(n) is not much different from the CPU utilization in a dosed  cyclic two-server 
network consisting of the CPU and the SM, obtained by setting v2 = 0 and u2 = 0, with a 
total ofn processes (this system will be referred to as System 2). Denoting byA~ the CPU 
utilization in System 2 with n users, we have 

Ao(n) ~ AS. (7) 

More generally, the joint probability distributionp(n0, n~, i) (i = 1, 2 indicates the type 
of SM service in progress) in System 2 is approximately equal to the conditional 
probability of having (no, nl, i) given nn in the model of Section 1, p(no, nl, i I n): 

p(no, hi,  i { n) ~ p(no, nl,  t). 

Now it is obvious that the rates of transitions due to file requests may not be much 
smaller than those due to paging, so (7) may seem inapplicable. Nevertheless, we apply 
it, and in Section 4 we analyze the accuracy of  the approximation resulting from this 
decomposition. As we shall see, the accuracy turns out to be excellent, and its analysis 
provides more insight into the decomposability of our model. 

Section 3 is devoted to the computation of A~, i.e. to the study of System 2, which is 
interesting per se because it takes into account the paging behavior of virtual memory.  

3. Two-Server System 

3.1 SYSTEM EQUATIONS. Consider System 2 with a total o fn  processes executing in 
it.p(no, nl,  i) is the stationary probability that there are no and n~ = n - no processes at 
the CPU and the SM, respectively, and that the current service type of the SM is t ; let 

f~o=p(no,  nl,  1), n o = 0  . . . . .  n -  1; 

g~o=p(no, nl, 2), n o = O  . . . .  , n -  1; 

f~ = a(n)p(no = n, nl = 0); 

gn n = fl(n)p(no = n, nl = 0). 

Using the fact that under equilibrium, for any no, the rate of arrivals of processes to the 
CPU equals the rate of departures of processes from the CPU, and that the ratio of type 
1 over type 2 SM service requests generated is ~ n ) / ~ n ) ,  we obtain the following set of  
equations: 

-/x~f~ ° + v,(1)fl ~ = 0; 

- m g ~  + v,(1)gl = 0; (8) 

/3(1)f| = ~ l ) g ]  

fo rn  = 1, and 

--t~f°~ + vl(n)f~, = 0; (9) 
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_~,~gO + v,(n)g ' .  = o; (10) 

- / . q f , ~ 0  - /.~_g~o + v , ( n ) [ ~ 0  +~ + g~o +'] = 0 ,  no  = 1 . . . . .  n - 1 ; ( 11 )  

~ n ) [ - ( / . q  + v~(n))]~o + v~(n)~o+q = a ( n ) [ - ( m  + vdn))g,]o + Vl(n)g,"o+q, 

n 0 =  1 . . . . .  n - l ;  (12) 

fl(n)fn~ = a(n)g~, (13) 

f o r n  = 2 , 3  . . . . .  
Note that this set of equations can also be easily obtained from the system balance 

equations and that condition (13) ~s necessary because of the notat ion f,~ and g~. 
The solution of eqs. (8) is straightforward, so we shall now turn to the solutmn of 

system equations for n -> 2. The latter may be viewed as simultaneous homogeneous 
linear difference equations with two unknown functionsf,~0 and g~o, where (11) and (12) 
are the general equations and (9), (10), and (13) the boundary equations.  

Denote  b y E  the opera tor  of displacement,  1.e. El(x)  = f ( x  + 1). Equations ( 1 1 ) a n d  
(12) can be rewritten in a symbolic form: 

Op(n)f",o + ".P'(n)g'~o = O, ~,(n)f~o + q~ ,(n)g~o = O, (14) 

where 

dP(n) = - ~  + v~(n)E, ~ ( n )  = - m  + v l (n )E;  

• ,(n) = fl(n)[-(/x,  + v,(n))  + vt (n)E],  ~ l ( n )  = a(n)[tz2 + v,(n)  - v l (n)E].  

Using a difference equations technique (see [14, p. 601], we eliminate one of the 
unknown functions (e.g. f~o) from (14), thus obtaining 

[ ¢ i ( n ) ~ ( n )  - gP(n)~a(n)]g."o = O, 

i .e.  

[v,(n)]2g,~o +2 + vl (n) [~ ,  + m + v,(n)]g~o+' 

+ [ I x lm  + v~(n)(a(n)txl + fl(n)pc)]g~o = 0. (15) 

Equation (15) is a simple linear homogeneous equation w~th constant coefficients. Its 
solution can be written (see [14]) as 

g~o = C,(n)[r,(n)]% + C2(n)[r2(n)]%, no = 1 . . . . .  n ,  (16) 

where 

r,.2(n) = { g l  + tz2 + v, (n) 

---+ X/[[v,(n)] 2 + (/z z - tz,)(2v,(n)(ot(n) - fl(n)) + IX 2 - I .q)]}/2v,(n) 

are the two roots of the characteristic equation 

[v,(n)]2r 2 + v,(n)[/x, + /x2 + v,(n)] r + tx,lx2 + v , (n ) [a(n) tx l  + /3(n)/x2] = 0, 

a~d C~(n) and C2(n) are "arbi t rary constants" (to be determined from boundary and 
probabili ty conditions).  

It follows from (14) that 

f~o = ~ , (n)G(n)[r , (n)]% + ~2(n)C2(n)[r2(n)]%, no = 1 . . . . .  n, (17) 

where 

• ~j(n) = - ~(n)E=r~,n,/dP(n)E=r,,n, = -[va(n)r , (n)  - ~z]/[va(n)r~(n) - /.q], ] = 1, 2. (18) 

C~(n) and C2(n) are then easdy determined by using the boundary equations (9), (10), 
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and (13) and the condition that the obtained solution must be a probabil i ty distribution, 
I.e. 

[f,~o + g~°] = 1. 
no=l 

We have 

C~(n) = 1 / [ A l ( n )  + A2(n)B(n)] ,  C2(n) = B(n)C~(n) ,  (19) 

where 

A , ( n )  = (1 + ~,(n)){r~(n) - [r,(n)]n+~}/(1 - re(n)) + v~(n)r j (n ) [~ j (n ) /~  + 1/~2], j = 1, 2, 

B(n)  = [r~(n)]n[fl(n)~(n) - c~(n)]/[r2(n)]n[a(n) - /3(n)CC2(n)]. 

Thus, finally, f,~o andgnno (n _> 2) are given, for no = 1, ... , n,  by (17) and (16) with 
(18) and (19); for no = 0 we have 

f ~  = v ~ ( n ) f ~ / ~ ,  gO = v~(n)g~/l~z. 

A~, the CPU utilization in System 2, is obtained as 

A g  = 1 - [ f g  + gO.], 

and there is no computat ional  difficulty in evaluating this expression. F o r n  = 1, we have 

f ?  = v l (1 ) / ( t z lGO,  gO = v~(1),8(1)/(o~(1)tz2GO; 

f~ = 1 / G .  gl =/3(1) / (ot(1)G1);  

A ~ =  1 -  ( f ? + g ? ) ;  

G1 = 1 + v,(1) /pq + /3(1)[1 + v~(1)/p.2]/o¢(1). 

In Section 3.2 we present some numerical  results Illustrating the behavior of System 2. 
3.2 NUMERICAL RESULTS WITH THE TWO-SERVER MODEL. Numerical  results ob- 

tained from the two-server model  with lifetime function (3) are repor ted in Figure 2, 
which shows the effect of the degree of mult iprogramming on CPU utilization (and hence 
on throughput).  The probabil i ty that  at the moment  of a page fault there is no overwrit- 
able page free,  f l ( n ) ,  is assumed in this example to vary hnearly with n : f l (n)  = a + b n  ; a 
and b are set to a = - 0 . 5 / 9  and b = 0.5/9 so that fl(n) rises from zero for one process in 
memory to 0.5 when the degree of mult iprogramming equals 10. This is an arbitrary 
assumption used in the numerical example to show what happens if B(n) varies in this 
way; note that no assumption on the form of fl(n) has been made in the solution of 
System 2. 

The curves labeled 1, 2, 3, and 4 correspond to the foUowlng sets of model  parame- 
ters: 1: M = 128 pages, 1 / p ,  = 5 msec, k = 1.5; 2: M = 256 pages, 1//.~ = 5 msec, k = 
1.5; 3: M = 128 pages, 1/ /~ = 5 msec, k = 2.0; 4: M = 128 pages, 1 / ~  = 10 msec, 
k = 2.0. T in (3) is set to 0.01. 

We see the important  effect of the pr imary memory  size and of  the mean service time 
of the paging SM device (tsu = 1//.q) on system performance.  We also see that an im- 
provement in program behavior (increasing the locality exponent  k from 1.5 to 2.0) can 
produce a considerable improvement  of the throughput as well as an increase m the opti- 
mal (i.e. which maximizes system throughput)  degree of mult iprogrammmg. 

Section 3.3 is devoted to the problem of determining analytically the opt imum degree 
of mult iprogramming in the case where the existence of pages not  directly overwritable is 
neglected. 

3.3 OPTIMAL DEGREE OF MULTIPROGRAMMING IN A RESTRICTED CASE. W e  n o w  

consider System 2 assuming that ~8(n) = 0 for all n ,  and we examine the problem of 
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determining analytically an expression for the degree of mult iprogramming No which 
maximizes system throughput.  This seems to be a difficult problem in a general case, and 
even for the restricted case we are considering, we are only able to obtain an approxi- 
mate value. 

The assumption fl(n) = 0 reduces System 2 to a simple finite source M / M / 1  model.  
CPU utilization is obtained (see [9]) as A~ = 1/(1 + y),  wherey  = zn(1 - z)/(1 - z n) and 
Z = nk/(yuiMk). 

M is the primary memory size, k and y are the parameters  of the Belady lifetime 
function ((3)), and 1/ua is used to denote the now unique mean service time of the SM. 

For  convenience l e td  = 1/(7ulMk). Clearly maximizing A~ is equivalent to minimizing 
y. Consider the case l/ua << yMk/n k, where the mean compute time between two 
successive page faults of a process is much larger than the mean service time of the SM 
device We then have z << 1, and therefore y ~ Yl = z ". Considering n as a continuous 
variable and taking dyl/dn = 0, we see that yl  is minimized by 

N, = (1/d)Uk/e, (20) 

where e is the basis of the natural  logarithms. 
In various numerical examples (Figures 3-6) ,  we see thatN~ is a good estimate of N0, 

the "op t imum" degree of mult iprogramming.  Note that even when (20) is not  well 
satisfied, N~ still seems close to No, probably because (1 - z) is relatively "f lat"  as 
compared to z"/(1 - z"). 

Let us note that the applicability of Formula (20) can be extended to include the case 
where the probabil i ty fl(n) has some constant value, say fl0, for all n, if, instead of 
considering explicitly two types of service at the SM, we assume an exponentially 
distributed SM service time of mean 

11 m = (1 - ~ ) / m  + l~lm. 
It is worth mentioning that this approach yields, as regards system throughput,  
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numerical results very close (the CPU utihzation seems slightly greater near the optimum 
degree of multiprogramming and practically identical for other values of the multipro- 
gramming degree) to those obtained with the expliot consideration of two types of 
exponential SM service times. This may be regarded as a sign of a relative "robustness" 
of our model vis-~t-vis distributional assumptions. 

Having obtained and studied in this section the CPU utilization m System 2, Ag, we 
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address the problem of the accuracy of the approximation which is introduced if we use 
A~ for A0(n) in (6). This will be done in Section 4. 

4. Accuracy of the Approximation 

First of all, note that the only approximation in the method proposed in Section 2 for 
computingp(n) stems from the decomposition, i.e. from (7). Therefore our goal will be 
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pr imar i ly  to de te rmine  how di f ferent  is Ag  f rom the condi t ional  p robab i l i ty  A0(n). 
Reca l l  tha t  the behav io r  of the mode l  of  Sec t ion  1 is comple te ly  charac te r ized  by the 

jo in t  p robab i l i t y  d~str ibut ionp(n0,  n~, nz, t), where  i indicates  the type of  the SM service 
in progress .  Le t  ( r e m e m b e r  (1))  

f ,(no) = Prob{(n0, n~, 1)In}, no = 0 . . . . .  n - 1; (21) 
gn(no) = Prob{(n0, n l ,  2)In}, no = 0, ... , n - 1; (22) 
fn(n) = or(n) Prob{n0 = n In}; (23) 
g,(n)  = 13(n) Prob{n0 = n In}. (24) 

W e  have  

Us ing  the fact  tha t  

Ao(n) = I - [fn(0) + gn(0)]. 

p(no, nl ,  n2, i) = p(n)  Prob{(n0, n l , / ) In} ,  

the formal  solut ion for  p(n)  (eq.  (6)) ,  and  ( 2 1 ) - ( 2 4 )  m the ba lance  equa t ions  for  our  
mode l ,  we easi ly ob ta in  a set  of  equa t ions  for  the condi t iona l  probabi l i t i es f , (no) ,  g,(no), 
and Ao(n).  These  equa t ions  are given in A p p e n d i x  1. 

W h e n  apply ing  the decompos i t i on ,  we use probabi l i t i es  ~o  and g~o in Sys tem 2 for  
fn(no) andgn(no), i .e.  we use the  probabi l i t i es  of  having (no, i) in Sys tem 2 with a to ta l  o f n  
processes  m lieu of  the condi t iona l  p robab ih t i e s  of  having (no, i) given n in our  mode l .  
D e n o t e  by  ~,,(no) and ~n(n0) the co r respond ing  e r rors .  W e  have 

fn(no) = f~o + e~(no), g~(no) = g~o + ~n(no), no = 0, ... , n ;  (25) 

Ao(n) = A~ - ~,, (0) - ~,(0) .  (26) 

Since bo th  fn(no), gn(no) and f~o, g~o are  p robab i l i t y  d is t r ibut ions ,  i .e .  no rma l i zed  
with respec t  to uni ty ,  we also have  

~ [~,(n0) + aqn(no)] = 0, f o r n  = 1 . . . . .  N.  (27) 
no=0 

Subst i tu t ing  (25) and (26) into the equa t ions  of  A p p e n d i x  1 and neglect ing h igher  
o r d e r  e r r o r  t e rms  ( i .e .  p roduc t s  of two or  more  e r rors ) ,  we ob ta in  the  fol lowing set  of  
equa t ions :  

A~ +t [ - ( f q  + u2)En(0) + Vl(n)E,(1)] + U2En+I(1) + u2f~[En+l(O) + 'On+l(0)] = Ql°n, (28) 
A~+ ' [ - ( t z2  + u2)n,(0) + v~(n)n,(1)] + u2r/n+l(1) + uzg°~[an+,(O) + n,+,(0)]  = O2°, (29) 

for  n = 1 . . . .  , N - 1, where  

Q~n = uz(A~+if°~ - f ~ + l ) ,  Q~n = u2(A~ +' g~ - g~+,), (30) 

a ~ + ' { - [ v , ( n )  + I*1 + v2 + Uz]En(no) + a(n)tx,~,(no - 1) + ot(n)lx2nn(no - 1) 
+ vl(n)~n(no + 1) + v~A~ ~,-l(n0 - 1) - vJ~_-i~[E,(0) + ~n(0)]} 

+ [E,+d0) + ~%+~(0)][(Uz + v2)f~0 - v2A~f~G ~] + UzE,+l(no + 1) = Q'~g (31) 

fo rn  = 2, ... , N - 1, no = 1 . . . . .  n - 1, and  an ana logous  equa t ion  fore% (no), where  

Q ~  = u2(Ag+~f,~o _ f]~_-~l) + v2A~+~(f~o _ Ag+~f~G~), (32) 
Q~g = u2(A~+Ig~o - g~%-~) + vzA~+qg~o - A~+~g~o_q~), 

--~,6N(O) + v~(N)6N(1) = 0, (33) 
--pa~qN(O) + v~(N)nN(1) = 0, (34) 

--[Pl(N) + ~1 + V2]EN(nO) + ~(N)m¢N(no - 1) + o t ( N ) l x 2 ~ n o -  1) 
+ v~(N)~N(no + 1) + v2A~N-~(no -- 1) -- v2f~_% ~ [¢N(0) + rtN(0)] = Q ~ ,  (35) 

- [ v , ( N )  +'lxz + VZ]~N(nO) + 13(N)tZlaN(no -- 1) + /3(N)/.~2~N(no -- 1), 
+ v~(N)BN(nO + 1) + v~Ao~N_,(no -- 1) -- vzg~°_-i~[¢N(O) + "qN(0)] = a ~  (36) 
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fo rn  = N a n d n ~ =  1 , . . . , N -  1, where 

Qln~, = vz[f~o _ aUS'n0-,1 no zaOJN--1 J, Q2N = P 2 [ g / ~  ° - -  /-1t0~N--1AN~n°-I]_I- (37) 

In order  to evaluate the errors ~n(n0) and "o,,(n0), we have to solve this system of 
equations subject to condition (27) and 

13(n )En(n ) = a,(n )'on(n ) , (38) 

which follows from (23) and (24). Before indicating how this can be done in an efficient 
way, we formulate a few remarks.  

The coefficients of the system of equations are all known since they are either the 
parameters  of our model  or state probabil i t ies of System 2. Equations (28), (29), and 
(31) and its analogue are obtained by neglecting higher order  terms introduced by 
expressions of the form 

[A~ - E n ( 0  ) - -  'on(0)][ ]~n0 -~- ~n(g /0 ) ] .  

Hence,  in order  to validate the solution, it sufficies to verify a posteriori  that it satisfies 
the condition 

a ~  >> I~n(0) + "On(0) I. (39) 

Owing to condition (27), the unique solution of our system I would be on(n0) = "on(no) = 
0 for all n and no if the Q~'~I and Q ~  were all zeros. Thus the Q]% Q~g reflect the error  
introduced by the decomposit ion;  the smaller these terms, the smaller the error.  A n  
inspection of (30), (32), and (37) reveals the very interesting form of the Qf,?, i = 1, 2: a 
sum of products of two terms, one corresponding to the rates of transitions which change 
n (v2, u2), and the second depending only on the internal propert ies  of System 2. It then 
becomes obvious that there are two entirely distinct reasons for which our system may be 
decomposable .  The first is when v2 and uz are s m a l l - t h i s  corresponds to the case of 
intuitive decomposabil i ty presented in Section 1. The second is when 

I f ~  o - A ~ f ~ [  and [g~o - A ~ g ~ l  (40) 

are small. Note that (40) reflect the depar ture  of our model  from a queueing network 
with a product form solution [9, 13, 12], since these terms would be zero if our model  
had such a solution. This would be the case, for instance, if /z~ = ix2 with "fixed 
mult iprogramming" organization for any nontrivial values of v2 and u2 (see Appendix  2). 
Incidentally it is this second reason of decomposabil i ty  that explains zero error  results 
when the equivalence and decomposit ion method is applied to central server networks 
[9] and, also, for our model  when N = 1. 

Let  us now tackle the problem of finding an efficient solution procedure for the system 
of eqs. (28)-(36) ,  together with (27) and (38). This system can be written in a matrix 
form as 

TE = Q,  (41) 

where E is the vector of the errors,  Q is the vector of the Q~ and Q~ ,  and T is the matrix 
of coefficients. Note that neglecting in eqs. (28)- (36)  the terms which involve n + 1, we 
obtain N sets of simple recurrence relations which can easily be solved separately for 
each n = 1 . . . . .  N (owing to the independent  normalization conditions (27)) if we start  
from n = 1. This suggests the following lterative procedure.  Denote  by T'  the matrix of 
coefficients obtained by neglecting the terms in n + 1. In order to compute E0, a first 
approximation to E ,  we solve at the first i terat ion 

T'Eo = Q (42) 

Then consecutive residual terms for E are computed by solving, at i teration k ,  

T'Ek  = ( T ' -  T)Ee_~ f o r k  = 1 , 2  . . . . .  (43) 

The equations are of full rank 
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Note that (42) and (43) are sets of simple linear recurrence relations solved separately 
for each n = 1, ... , N. Assuming this procedure converges, we have 

00 

E =  ~ E k .  
k = 0  

This last statement is easy to prove. Indeed let 
00 

= ~ Ek.  (44) 
k = 0  

Summing (43) over k = 1 . . . . .  we obtain 

r ' ~  E~ = ( r ' -  73 E~, 
k=l  k=O 

i.e. using (44), T'Eo = TI~, which, given (42), yields 

T/~ = Q. (45) 

Since the linear system (41) has exactly one solution (conditions (27) and (38) are taken 
into account in T, T ' ,  and Q ) ,  it follows from (45) that E = E. 

Let us now consider briefly the convergence of our iteraUve procedure. The solution of 
(43) at iteration k is essentially equivalent to the solution of  

Sk = T ' -~(T  ' - T)(Sk-~ + Eo), (46) 

where Sk = ~=~ E~. It is well known from the theory of iterative methods in numerical 
analysis that (46) converges if and only if 

Ils~+~ - s~ II -< Z IIS~ - S~-i II, with L < 1. 

In our case, 

IIs,+1 - Skll = I I V ' - ' ( r '  - V) (Sk  - S k - ~ ) I I  ~< IIT'-I( T'  - T ) I I  Ilsk -- Sk- ,  II; 

SO 

IIT-'(T' - T)II = m < 1 

is a sufficmnt condition for the convergence of our procedure. Quite intuitively then, our 
procedure will converge if the coefficients of  the terms involving n + 1 (directly 
proportional to vl, u2) are not too large as compared to the coefficmnts of T taken into 
account in-T'. An upper bound for L may be obtained by considering the Jacobi matrix 
for the function T ' - I ( T  ' - T). Hence sufficient (but not necessary) convergence condi- 
tions may be derived for our iterative procedure. 

The interested reader will find in [8] more details on this procedure and on its 
convergence. Let us say here only that, for the values of system parameters explored m 
this paper, the method converges very rapidly (one or two iterations in most instances, 
and no more than six iterations in any case for an accuracy greater than 10-3). In 
Appendix 3 we give the recurrence relations corresponding to (42) and (43). 

Note that we have been able to evaluate not only the difference between A o(n) and A I, 
which was our goal, but also more generally the error introduced when we use the 
probabilities f~0, gg0 in lieu of the conditional probabilities f , (no) ,  gn(no). Note also that 
our approach yields the errors with their signs (and not just a bound for the absolute 
value), thus indicating whether the corresponding probability is under- or overestimated. 

In Section 5 we present the numerical results obtained from our model of Section 1. 

5. Numer ica l  Results o f  the Mode l  

Before discussing the numerical results of the complete model described in Section 1, we 
recall the approach used to solve it. First we have obtained, using the equivalence 
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Theorem 2.1, an expression for the probabihty of hawng a total of n processes at the 
CPU and the SM. Then,  using the decomposit ion,  we have ob t a ine dA ]  as an approxima- 
tion for Ao(n), which was the unknown parameter  of (6), and which we needed to 
compute the CPU utihzation A by (4). Note that the equwalence and decomposit ion 
approach in fact yields more.  Knowing.X0 and g~o from the analysis of System 2, we 
know an approximate solution for the detaded state of our model:  

p(no, n~, n2, 1) ~ p(n) f~o, p(no, n~, nz, 2) ~ p(n) g~o, 

so performance measures other  thanA (like mean queue lengths) can also be computed.  
Figures 7-13 show the numerical results obtained from our model:  The CPU utiliza- 

tion A is plotted versus the total number  of processes N. Throughout  the examples,  3, of 
(2) is kept  constant at 0.01. As in Figure 2, in Figures 7-12 /3(n) is assumed to vary 
linearly with the degrees of mult lprogrammmg, from 0 for one process in memory up to 
0.5 for ten processes sharing primary memory.  

The influence of the primary memory size M lS illustrated in Figures 7 and 8, m which 
a set of system parameters  with M = 128 pages and M = 256 pages, respectively, is used. 
We note a marked increase of the CPU utdization and of the opt]real total number  of 
processes (which is also the degree of mult lprogramming in the case of "fixed multipro- 
grammmg")  for both system orgaruzations considered. In Figures 8-10 we examine the 
effect of varying the parameter  k of the lifetime function (2) (corresponding, to some 
extent,  to program locality). As for System 2, this appears to be an important  parameter :  
An  improvement  in program locahty (increasing k from 1.5 to 2.5) can result m a 
considerable increase of the optimal degree of muit iprogramming and of the system 
throughout.  The fact that the mean service time of the paging device (tsM = 1/tz~) can 
also importantly affect system performance is illustrated m Figures 11 and 9 (tsM = 10 
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msec and tSM = 5 msec, respectively).  Figures 8 and 12 show the influence of the mean 
service time of the filing disk (tFD = l/us). For the values of model  parameters  used in 
Figure 12, the system is clearly " input /output  bound."  

We observe,  as in [7], that increasing the primary memory size or the program locality 
or decreasing the mean service time of the paging device reduces the sensitivity of system 
throughput to the number of users. 

Finally, in Figure 13 we study the influence of the probabil i ty/3(n)  in the case of 
"fixed mult iprogramming" system organization. Curves labeled I, II ,  and II I  correspond 
to a set of system parameters  with I: /3 = 0, N = 1 . . . .  , 10; II: /3 = 0.5N/9 - 0.5/9; 
III:  /3 = 0.5, N = 1, ... , 10. 

We observe that the presence of pages which are not directly overwritable and,  more 
generally, the form of the function /3(n) may have a considerable effect on system 
throughput and on the optimal degree of multiprogramming. Therefore it is interesting 
to obtain measurement  results showing the form of fl(n). 

If we compare the figures obtained for the two system organizations considered,  we 
note that "floating mult iprogramming" results in significantly higher thrashing threshold 
and also in higher CPU utilization than "fixed mult iprogramming."  The results obtained,  
however,  should be regarded as an optimistic estimate of the performance of the 
"floating mult iprogramming" system organization,  since our model  does not account for 
the mechanism by which a process that has completed a file operat ion acquires memory 
p~ges. 

Using the i teratwe procedure  developed in Section 4, we have evaluated the accuracy 
of our results. Condition (39) turns out to be well satisfied; in most instances the len(0) + 
• 0n(0)l are much smaller than 10 percent  of the corresponding A~. As expected,  the 
accuracy is slightly bet ter  in the case of "fixed mult iprogrammlng" (the only departure  
from a product.form solution is then due to two types of service at the SM). The relative 
error  on A (the CPU utilization) is negligible, less than 1 percent  in all cases. In 
Appendix  4 we give the evaluated errors in one of the worst instances. 
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6. Conc lus ion  

We have presented  a queue ing  ne twork  model  of a vir tual  m e m o r y  mul t ip rogramming  
system. 

We have been  able to ob ta in  an approximate ,  computa t ional ly  efficient,  dosed  form 
solut ion by using equivalence and  decomposi t ion  methods .  We have also b e e n  able to 
evaluate  the accuracy of the approximat ion  and  to de te rmine  that  there  are two totally 
distract reasons for which the decomposi t ion  can be used in the queue ing  ne twork  
represent ing  our  model .  The  first can be invoked if the rates of t ransi t ions be tween  the 
subnetwork  obta ined  by decomposi t ion  and  the remainder  of the system are small  (this 
corresponds  to the of ten used intui t ive a rgumen t  of  the subne twork  having the Ume to 
reach its steady state be tween  two in teract ions  with the r ema inde r  of the system).  The  
second depends  only on  in te rna l  propert ies  of the subne twork  and  reflects, to some 
extent ,  the depar ture  of our  model  from a q u eu emg  system with a product  form solut ion.  

The approach used to de te rmine  the accuracy can be applied to o the r  models  solved by 
the eqmvalence  and  decomposi t ion  method .  

Models  of t ime-shar ing systems, for which our  ne twork  can represen t  the processing 
part ,  may be analyzed in a similar way. 

A p p e n d i x  1 

The equa t ions  for the condi t ional  probabil i t iesfn(n0),  gn(no) are as follows: 

Ao(n  + 1)[ - ( /x l  + /z2)f,(0) + vl(n)fn(1)] + uzf,+,(1) = 0, 
Ao(n  + 1)[-(/~2 + /z2)g,(0) + v,(n)gn(1)] + u2g,+l(1) = 0 

f o r n  = 1, ... , N  - 1; 

Ao(n  + 1){-[v1(n) + ~1 + v2 + u2]fn(n0) + ~ n ) l x l f n ( n o  - 1) + o~n)~zgn(no - 1) 
+ v l (n ) f , (no  + 1) + v2Ao(n)fn-~(no - 1)} + uzf ,+l(no + 1) = 0, 

Ao(n  + 1){-[vx(n) + I,~ + v2 + u2]gn(no) + 13(n)t,qf,(no - 1) + / 3 ( n ) l . t 2 g , ( n o -  1) 
+ va(n)gn(no + 1) + v2Ao(n)gn-l(no - 1)} + u2g,,+~(no + 1) = 0, 

f o rn o  = 1, ... , n  - 1, n = 2 . . . . .  N - 1; 

-# , fay(O)  + v , (N)f ,v(1)  = O, -Ix2gu(O) + va(N)g~v(1) = 0; 

- [ v , ( N )  + v2 + txa]fN(no) + a ( N ) ~ f u ( n o  - 1) + ~ N ) t m g ~ ( n o  - 1) + v,(N)fu(no + 1) 
+ vzAo(N)fN-l(no - 1) = 0, 

- [va(N)  + v2 + Iz2]gN(no) + /3(N)pafN(no -- 1) + /3(N)pagu(n o - 1) + v,(N)gu(no + 1) 
+ v2Ao(N)gN- l (no  - 1) = 0 

fo rn0  = 1, . . . ,  N - 1; 
/3(n)fn(n) = ~n )g~(n )  for n = 1 . . . . .  N ;  
9t 

[fn(no) + gn(no)] = 1 f o r n  = 1 . . . .  , N.  
no=O 

A p p e n d i x  2 

We now give formulas (40) in the case of  "'fixed mul t i p rog ramming"  w i t h / ~  = #2 = /x. 
Our  mode l  becomes  a central  server ne twork  with two per ipheral  servers,  SM and  F D.  

We  have 

f~o = apno /G(n)  and  g,~o = 1 3 p % / G ( n ) ,  

where p = Iz/vl (recall t ha t /x l  = /x2 = /x, /3(N) = /3, vl (n)  = vO and  G(n)  = ~ o = 0  p"0. 
We also have 

A ~  = p G ( n  - 1 ) / G ( n )  . 

Hence  

fno - a ' d f~ ,~  ~ = o~pno/G(n) - [ p G ( n  - 1 ) / G ( n ) ] p % - ~ / G ( n  - 1)} 

= o~{p%/G(n)  - pno/G(n)}  = O, 

and  similarly for g~o. 
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Thus ,  though the quant i t ies  that appear  in (40) per ta in  to System 2, they reflect the 
depar ture  of our model  (of Figure 1 (a)) from a queue ing  ne twork  with a product  form 
solut ion.  This is because System 2 is a subsystem of our  model  and the form of the overall  
solut ion depends  on the characteristics of the subsystem. 

Append ix  3 

Recur rence  relat ions of the i terative procedure  as are follows: 

- ( m  + u2)e~(0) + v , (n)~(1)  = Q~.(0), - ( m  + u2)'o~(0) + vl(n)rtnk(1) = Q~.(0), 
f o r n  = 1 . . . . .  N ,  k = 0 , 1 , . . .  ; 

where  

[ f ) o  /An+l Q~.(o)  = ~ , . , . . o  , k = 0, 
0 k - 1  k - 1  n + l  |-u2{E~+~(1) + f.[~,~+l(0) + ~n+.(0)]}/Ao , k > 0, 

0 n + l  ~ a 2 n / A o  , k = 0 ,  
Q ~ . ( 0 )  = / _ u 2 { v ~ 7 _ l ( 1 ) +  o k-1 k-~ .+~ gn[En+l(0) + ~n+l(O)]}/Ao , k > 0; 

- [ v , ( n )  + Pa + Vz + u2]E.k(no) + ~n)paa~(no -- 1) + a ( n ) l ~ ( n o  -- 1) + v1(n)a~(no + 1) 

+ v 2 A ' d ~ k . _ ~ ( n o  - 1) - v,f ."ql[E.~(0) + V ~ 0 ) ]  = Q~n(no), 

- [ v l ( n )  + m + v2 + u2)n.k(no) + ~ n ) m ~ . ( n o  - 1) + 1 3 ( n ) m v ~ ( n o  - 1) + v , (n )nk . (no  + 1) 
+ vv4~n~_~(no - 1) - vzg~o-_-i~[E~(0) + rt~(0)] = Q~.~(no), 

for n o =  1 . . . . .  n -  1, n = 2 , . . . , N -  1, 

where 

( Q ~ / A ~  +1, k = 0. 
= n no--I - -  o k - 1  k - 1  n + l  Q~n(no) lv2{(Aofn_l  J~n )[En+l(0) + ~qn+l(O)]}/Ao -- U2{Ekn¥~(no + 1) 

k--I k - 1  n + l  l, + ~o[e.+~(0) + "O.+~(0)]}/Ao , k > 0, 

{ Q ~ / A ~  +1, k = O, 
= n no--I __ n o k--1 k - 1  n + l  Q~n(no) ~v2{(Aogn-i gn)[En+l(O) + nn+l(O)]}/Ao - k-~ U2{Vln+~(no + 1) 

n k--1 k - 1  n + l  . l .  + g.o[en+~(0 ) + rt.+~(0)]}/Ao , k > 0, 

- ~¢~(0) + v~(N)¢~(1) = 0 for all k,  
- /x~rl~(0 ) + v.(N)r~(1) = 0 for aUk ;  

- [ v , ( N )  + t~ + v~]e~(no) + a(N)m¢~(no - 1) + a(N)mn~(no - 1) 
+ va(N)¢~(no + 1) + v2AoNa~_,(no -- 1) -- vzf,~°_-]~[a~0) + ~ 0 ) ]  = Q~N(no), 

' - I v y ( N )  + m + v2]~/~(n0) + 13(N)ma~no - 1) + 13(N)m~(no - 1) 
+ v , ( N ) v ~ , ( n o  + 1) + v~Ao~V~,_,(no - ~) - v~g~°_-?[a~(0) + n V 0 ) ]  = a ~ , (no )  

for n 0 =  1 . . . .  , N -  1, 

where  

t n t n°  Ql~, k = O, Q2N, k = O, 
a~N(no) = tO, k > O, a~N(no) = [0 ,  k > 0; 

13(n)~kn(n) = a(n)~lnk(n), n = 1 . . . .  , k = O, 1 , . . .  ; 

~ [ ~ k , ( n o ) + ~ k , ( n o ) ] = 0 ,  n = l  . . . . .  k = 0 , 1  . . . . .  
homO 

Append tx  4 

The evaluated errors in the case M = 128 pages, k = 1.5, tSM = 5 msec,  tFV = 50 msec,  
r = 30 msec, N = 5 processes with "f loat ing mul t ip rogramming"  organizat ion are as 
follows: 
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n = 1, A~ = 0.743, 

no: 0 1 

~,:  .257 .743 

CA@0). .013 - 018 
g~o: .000 .000 

~ . ~ "  006 000 

n = 3, A~ = 0.466 

no: 0 1 2 3 

.~, .402 .224 117 063 

~ n ~  005 - 005 000 .004 
g~o 131 .037 018 .008 

~ , ~ .  - 003 -.001 -.001 .000 

n = 5, A~ = 0.212: 

no: 0 1 2 3 
f~o: 477 123 028 .006 

~ , ~  - 003 --001 001 .000 
g~,. 311 .040 .009 002 

~ . ~ .  001 000 000 000 

n = 2, A] = 0.655: 

0 1 2 

.298 .305 .307 

.008 - .009 - .002 

.047 .024 018 

.003 - .001 --.000 

n = 4, A ] = 0 3 0 8 .  

0 1 2 3 

.467 169 055 018 

005 - 002 .000 001 
225 .041 013 004 

- .006 000 - .000 - 000 

4 5 

.001 000 

.000 000 
000 000 

000 .000 

A ( the  C P U  u t i l i za t ion)  is o v e r e s t i m a t e d  by  0 . 3 0  p e r c e n t .  

4 

006 

001 
001 

000 
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